NMR survey of the reflected Brownian motion

Contents B. Corrections to the leading term
1. Stejskal-Tanner temporal profile
1. Introduction ) 2. Oscillating temporal profile
II. A historical overview 3 VL. Discussion .
A. Studying free diffusion by NMR 3 A. Numerical implementation
B. Bloch-Torrey equation 4 B. Odd .order moments
C. Effect of a geometrical restriction 5 L F 1rs.t moment.
D. Narrow-pulse approximation 5 2. Antisymmetric temporal profiles
E. Restricted diffusion in simple domains 6 C. Cumulant €Xpansion .
. . . D. Apparent diffusion coefficient
F. Gaussian phase approximation 7 j K
Q. Non-Gaussian behavior 7 E. Narrow-pulse approximation
H. Studying porous materials 7 g %Jicrahtzgtltoré zei%flmf 0
I. Nonlinear magnetic fields 8 ’ estricte usio
J. Matrix formalisms 8 VII. Conclusion
ITI. Multiple correlation function approach 9 Acknowledgments
A. General case 9
B. Application to spin echoes 11 A. Fourth moment in the slow diffusion regime
C. Temporal profiles of the magnetic field 13 1. First order contribution
D. Spatial profiles of the magnetic field 13 2. Second order contribution
1. Linear gradient 13
2. Parabolic magnetic field 13 B. Laplace transform technique
E. Basic confining domains 14
1. Slab 14 C. Fourth moment in the motional narrowing regime
2. Cylinder 16 . .
3. Sphere 16 D. Parabolic magnetic field
1. Cylinder
IV. Slow diffusion regime (p < 1) 16 2. Sphere
A. Leading term of the second moment 17 .
B Highergorder moments 17 E. Multiple propagator approach
C. Corrfection term to the second moment 18 F. Even order moments in the narrow-pulse
D. Spemﬁc. temporal proﬁles. 20 approximation
E. Discussion on the correction term 20
List of symbols
V. Motional narrowing regime (p > 1) 21
A. Leading terms 22 References

Denis S. Grebenkov*

Dipartimento di Scienze Fisiche, Universita di Napoli Federico Il
Complesso universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
Unité de Recherche en Résonance Magnétique Meédicale,

C.N.R.S. — Université Paris-Sud XI, 91405 Orsay, FRANCE

(Dated: March 26, 2006)

Restricted diffusion is a common feature of many physico-chemical, biological and industrial pro-
cesses. Nuclear magnetic resonance techniques are often used to survey the atomic or molecular
motion in confining media by applying inhomogeneous magnetic fields to encode the trajectories
of spin-bearing particles. The diversity and complexity of diffusive NMR phenomena, observed in
experiments, result from the specific properties of the reflected Brownian motion. Here we focus
on mathematical aspects of this stochastic process as well as on its physical interpretations and
practical applications. The main achievements in this field, from Hahn’s discovery of spin echoes
till nowadays, are presented in a unified mathematical language. A long-standing problem of
restricted diffusion under arbitrary magnetic field is reformulated in terms of multiple correlation
functions of the reflected Brownian motion. Many classical results are retrieved, extended and
critically discussed within an original theoretical approach.
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I. INTRODUCTION

A particle diffusing in a confining medium is a general
model for a number of physical, biological and indus-
trial processes. It may describe organic molecules or
metabolites in brain tissue (Le Bilan, 2003; Nicholson,
1985, 2001), reactive species near porous catalysts (Cop-
pens, 1999; Sahimi et al., 1990), ions near rough elec-
trodes or cellular membranes (Halsey and Leibig, 1992;
Nyikos and Pajkossy, 1986; Sapoval, 1994, 1996), oxygen
in human lungs (Felici et al., 2004, 2005; Grebenkov et
al., 2005; Weibel, 1984), water molecules in cements or
rocks (Halperin et al., 1994; Nestle et al., 2001; Plassais et
al., 2003; Song, 2000), etc. When such a particle encoun-
ters an interface, they may interact in different ways,
depending on their physical or chemical properties. In
general, the interaction at the microscopic level can be
represented in terms of “reflection” and “absorption” at
the interface. In the former case, the particle does not
change its state and continues to diffuse in the bulk. In
the latter case, the motion of the particle is terminated,
either by absorption on or transfer through the interface,
or by chemical transformation into another particle, or by
surface relaxation in nuclear magnetic resonance (NMR)
experiment, etc.! As a consequence, the erratic random
trajectory of a labelled particle is additionally compli-
cated by multiple reflections on the interface.

From the mathematical point of view, this stochastic
process is known as (partially) reflected Brownian mo-
tion (Bass, 1998; Freidlin, 1985; Grebenkov, 2006; Itd and
McKean, 1965; Port and Stone, 1978; Revuz and Yor,
1999; Yor, 2001). It can be rigorously constructed as a
solution of the stochastic differential equation accounting
for the reflections on the boundary of a confining domain.
Although still governed by Laplacian field, this Brow-
nian process presents a lot of new and interesting features
due to the geometrical restriction. Its consequences have
been marked in domains as different as physiology [diffu-
sional screening in mammal lungs, Felici et al. (2005)],
electrochemistry [e.g., constant phase angle frequency
regime of the spectroscopic impedance of a rough metal-
lic electrode, Armstrong and Burnham (1976); de Levie
(1965); Grebenkov (2006d); Halsey and Leibig (1992);
Nyikos and Pajkossy (1985); Sapoval (1987)] or nuclear
magnetic resonance [e.g., motional narrowing regime, see
below].

The NMR technique is of particular interest since it
presents a way to “label” or “encode” Brownian trajec-
tories of spin-bearing particles by magnetic fields.? To

1 In two last examples, the particle can still diffuse, but its state
is changed, for example, the nuclear magnetization is lost. Since
this particle does not contribute to the process any more, it can
be thought as being absorbed.

2 A detailed introduction to the basic principles of NMR can be
found in (Abragam, 1961; Callaghan, 1991). A special emphasis
on diffusive motion in porous media and its applications is placed

illustrate the idea, let us consider nuclei of spin 1/2, e.g.,
water protons. Under a constant magnetic field By, these
nuclei have two states with energies uBy and —uBy re-
spectively, x4 being the nuclear magnetic moment.® The
energy difference corresponds to a resonant or Larmor
frequency 2uBy/h = By, 27h being the Planck’s con-
stant, and v = 2u/h is called the nuclear gyromagnetic
ratio.* At thermal equilibrium, a difference of state pop-
ulations creates a magnetization which is oriented along
the direction of the magnetic field (traditionally, it is de-
noted as the axis z). An application, during a short time,
of a periodic magnetic field By rotating in the transverse
plane zy with the Larmor frequency vBy flips the spin
magnetizations into this plane. When this so-called 90°
radio-frequency (RF) pulse is turned off, the spin magne-
tizations precess with the same Larmor frequency v By in
the transverse plane and relax to their equilibrium states
(parallel to the axis z).

If the magnetic field By is not spatially homogeneous,
some spins precess more rapidly than others, depending
on their location in the bulk. Consequently, application
of a time-dependent inhomogeneous magnetic field By (r),
directed along the z axis, can be used to encode the po-
sitions of nuclei. The total phase accumulated along the
trajectory r(t) of a nucleus during time from 0 to T is
then

=7 [ dt By(x(t)). (1)
/

The macroscopic signal E' measured at time 7T is formed
by the entire ensemble of the spins diffusing in the confin-
ing domain 2. The individual transverse magnetizations,
conveniently written in a complex form e, have thus to
be averaged over this ensemble. In most experiments,
the number of spins is so large that one can average over
all possible trajectories of the reflected Brownian motion

r(t)
E=E{e*}, (2)

¢ being considered here as a functional of r(¢). For
definiteness, the signal in (2) is normalized to be 1 if
Bi(r) = 0. Note that the expectation E includes the
average over starting points with a given initial density
p(r) of spins distributed in the bulk. Since each Brown-
ian trajectory is “weighted” by the functional (1), some
parts of this complex process can be emphasized by vary-
ing the temporal and spatial dependencies of the applied
magnetic field Bi(r). One thus disposes of a powerful
experimental tool to survey the reflected Brownian mo-
tion. Studying the attenuation of the macroscopic signal

in (Blimich, 2000; Kimmich, 1997; Klafter and Drake, 1989).

3 For protons, p = 1.41060671 - 10—26 J/T.

4 For example, v = 2.675 - 108 rad T—! s~ for protons, and ~ =
2.038 - 108 rad T—! s~ ! for helium-3.



E in different magnetic fields, one can retrieve useful in-
formation about the diffusive motion itself (e.g., the dif-
fusion coefficient) and the confining geometry. For this
reason, the NMR technique is widely used to probe com-
plex morphology of natural and artificial materials (e.g.,
rocks, soils, cements, colloids) or biological tissues (e.g.,
brain, lung, bones, kidney).

In this review, we reveal and discuss main theoretical
achievements in this field, from Hahn’s discovery of spin
echoes in 1950 till nowadays. The actual understanding
of diffusive phenomena results from an intensive work of
hundreds of brilliant scientists during half a century. Dif-
ferent theoretical approaches and mathematical concepts
were employed in this investigation: random walks and
stochastic processes, partial differential equations, den-
sity matrices, Green functions, Laplace operator eigen-
basis, spectral and Fourier analysis, random fields, etc.
If the original Hahn’s work described the simplest case of
unrestricted diffusion in a time-independent linear mag-
netic field gradient, further progress mainly consisted of
extending his results to include, for instance, geometri-
cal restriction of diffusing nuclei or temporal dependence
and spatial inhomogeneity of the magnetic field. Each
technique was focused on a particular extension. For in-
stance, Stejskal and Tanner included an arbitrary tempo-
ral dependence for unrestricted diffusion, while Robert-
son and later Neuman studied restricted diffusion in sim-
ple domains for specific temporal and spatial profiles.
The diversity of theoretical approaches developed dur-
ing the last decades made difficult comparison between
them and understanding of the fundamental properties
and common features of the reflecting Brownian motion.
We believe that a single mathematical approach to dif-
fusive NMR, phenomena will clarify the state of the art
and can bring new ideas in this field. A “multiple corre-
lation function” approach has been developed and used
throughout this review to retrieve, discuss and extend
many classical results. This novel technique allows one to
tackle the problem of diffusive motion in any geometrical
confinement and arbitrary temporal and spatial profile of
the magnetic field.

To make a review of a reasonable size, the scope of pre-
sented issues has been carefully weighted. The main fo-
cus is paid to mathematical aspects of restricted diffusion
and their physical interpretations. The slow diffusion
and motional narrowing regimes as well as the underly-
ing Gaussian phase approximation and the related notion
of apparent diffusion coefficient are investigated in detail.
Many other concepts like local gradient approximation,
problem of odd moments, cumulant expansion, localiza-
tion regime or narrow-pulse approximation naturally ap-
pear. The use of NMR to probe complex morphologies
is also discussed, in particular, the problem of finding
surface-to-volume ratio. At the same time, a number of
interesting issues could not be included like, for exam-
ple, diffusion in anisotropic media and related tensorial
formalism, or numerous applications in medicine and oil
industry. Anomalous diffusion and other “strange” ki-

netics, which may occur in nanoporous materials, are not
considered [see Kimmich (2002)].

The paper is organized as follows. In the next section,
we shall give a short historical overview to emphasize the
main contributions to this field. In Section III, a new ap-
proach will be established to investigate the macroscopic
signal attenuation due to restricted diffusion under arbi-
trary magnetic field. The moments of the accumulated
phase will be found in a compact matrix form involving
the Laplace operator eigenbasis in a confining domain.
This general approach will be then applied to study spin
echoes, the most typical experimental situation. In fact,
the rephasing condition, required for echo formation, will
make this technique more appropriate for theoretical and
numerical use. Different choices of temporal and spatial
profiles of magnetic field will be discussed, including lin-
ear gradient and parabolic magnetic fields. The explicit
calculation of the two matrices B and A, determining all
the moments, will be given for three basic domains (a
slab, a cylinder, and a sphere). Section IV is devoted to
a detailed study of the slow diffusion regime, where the
classical results will be retrieved in a more general form
and then critically discussed. In Section V, the leading
and correction terms of the moments will be found for the
motional narrowing regime. In Section VI, we shall tackle
several related topics, from the numerical implementa-
tion of this approach to the problem of odd moments. A
comparison between theoretical and experimental mea-
surements will be reported. The issues of the localization
regime, cumulant expansion and unrestricted diffusion
will be discussed. In Conclusion, we shall summarize the
essential results and reveal a number of unsolved prob-
lems and further perspectives. Appendices collect some
interesting but cumbersome calculations outlined in the

paper.

Il. A HISTORICAL OVERVIEW

In this section, we present a short historical overview
to emphasize the main contributions and steps in under-
standing of diffusive NMR phenomena. This can serve
as a guide to numerous results which are announced and
briefly discussed here, while their more detailed analysis
will be given in the following sections.

A. Studying free diffusion by NMR

The origin of diffusive NMR phenomena can be at-
tributed to Hahn’s discovery of spin echoes. Hahn (1950)
showed that an application of a 180° RF pulse (Fig. 1(a))
leads to refocusing of spin magnetizations, which creates
an experimentally measurable signal called “spin echo”.
Since this macroscopic signal is formed by local contribu-
tions of numerous nuclei, it somehow reflects the proper-
ties of the whole ensemble. Spin-spin interaction, field in-
homogeneities, motion of nuclei and other related effects
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FIG. 1 (a) Formation of a spin echo at time 7' by 180° RF
pulse in steady gradient profile (Hahn experiment); (b) Peri-
odic repetition of 180° RF pulses creates a train of spin echoes
(Carr-Purcell experiment); (c¢) Pulsed gradient spin echo for-
mation (Stejskal-Tanner experiment).

determine the spin-echo amplitude and can thus be inves-
tigated by means of NMR measurements. For instance,
Hahn found the attenuation of the macroscopic signal
due to free (or unrestricted) diffusion under steady mag-
netic field of a linear gradient g and duration T

E = exp[-D~*¢°T?/12], (3)

D being the free self-diffusion coefficient.” On the one
hand, the above relation helps to estimate the effect of
diffusive motion when studying, for example, spin-spin
relaxations. On the other hand, it accesses a direct ex-
perimental measurement of the diffusion coefficient by
NMR. The Hahn’s averaging procedure was improved by
Das and Saha (1954).

This fundamental result was further extended by dif-
ferent authors. Carr and Purcell (1954) proposed to re-
peatedly apply 180° RF pulses in order to produce a train
of multiple spin echoes as shown in Fig. 1(b). They used
a random walk approach to derive the signal attenuation
due to free diffusion for k-th echo:

E= eXp[—D'ngQT?’/(Hk:Q)]. (4)

Again, the effect of diffusive motion can either be elimi-
nated by taking a large number of echoes, or be investi-
gated by studying the dependence on k. Its experimen-
tal realization was later improved by Meiboom and Gill

5 In the original Hahn result, the prefactor was 1/3 which would
correspond to a steady gradient without 180° RF pulse. This
error was corrected by Carr and Purcell (1954).

(1958) and now is known as Carr-Purcell-Meiboom-Gill
(CPMG) technique.

Douglass and McCall (1958) improved Hahn’s analysis
and gave another experimental verification. From the
probabilistic point of view, the accumulated phase ¢ is a
random variable whose distribution is determined by the
properties of the diffusive motion, the applied magnetic
field, and the geometry of confining medium. If there
is no geometrical restriction, the Brownian motion can
be thought as a sum of independent infinitesimal spatial
displacements of a diffusing nucleus. In this case, the
central limit theorem (Feller, 1971) ensures a Gaussian
distribution of the random phase ¢ in (1):

P(¢) = 2r E{¢*}) 2 exp (mﬁ—@}) )

Like its Fourier transform, the signal is completely deter-
mined by the second moment E{¢?}:

E = exp[-E{¢?/2)]. (6)

Douglass and McCall found the second order moment
E{p?} to be equal to 4D~y?g?(13 — 72T + T3/6), where
7 is the moment of the 180° pulse. Taking 7 = T/2, one
gets E{p?/2} = D~?¢*T3/12 in agreement with (3).
Stejskal and Tanner (1965) proposed to replace a
steady gradient by a pulsed gradient to facilitate the mea-
surement and to enlarge the ranges of applicability. A
typical pulsed gradient profile is shown in Fig. 1(c). If
there is no gradient during the RF pulses, their amplitude
need not be particularly large; in turn, no gradient at the
echo time 7" makes the determination of the echo ampli-
tude more precise. In their paper, Stejskal and Tanner
found the signal attenuation due to free diffusion for arbi-
trary temporal profile of a linear magnetic field gradient

g(t):

7D72<fdt G2(t) — 4G(T/2) det G(t) + 2TG2(T/2)>
E —e 0 T/2 ,

(7)
where G(t) = fot dt'g(t") and the 180° RF pulse is applied
at time 7'/2. This general relation and its derivatives for
particular temporal profiles are widely used until nowa-
days for theoretical and experimental purposes. For in-
stance, the signal attenuation for a pulsed gradient shown

in Fig. 1(c) was found to be
E = exp[-Dy?¢**(T/2 - §/3)]. (8)

One retrieves the Hahn’s result by taking § = 7/2. We
shall thoroughly discuss these results in the following sec-
tions.

B. Bloch-Torrey equation

An alternative description of diffusive NMR phenom-
ena was proposed by Torrey (1956). To account for the



diffusive motion, he modified the Bloch equation (Bloch,
1946) for the spin magnetization m(r,t):

(% ~ DA +ing - r) m(r,t) =0, 9)

where A is the Laplace operator. Looking for a solution
of the one-dimensional equation in the form m(x,t) =
A(t)e="9%t | Torrey retrieved the relations (3), (4) in a
simpler way.

An introduction of appropriate boundary conditions
makes the equation (9) suitable to describe the restricted
diffusion in a confining domain 2. In general, the Fourier
(or mixed, or relaxing) boundary condition is used to take
into account the surface relaxation or permeability of the
boundary 99:

D(% m(r,t) = Km(r, ), (10)

where K is the relaxation rate (or interface permeabil-
ity), and 9/0n is the normal derivative directed towards
the bulk. The above relation is nothing else than a
conservation law: at each boundary point, the fluxes of
magnetization from the bulk and through the boundary
are equal. The role of the Fourier boundary condition
for the Laplacian transport phenomena was thoroughly
discussed (Filoche and Sapoval, 1999; Grebenkov et al.,
2003, 2006¢; Sapoval, 1994). If the interface is imperme-
able for spins and does not contain magnetic impurities
which could lead to a surface relaxation (i.e., K = 0),
the above condition is reduced to the Neumann (or re-
flecting) boundary condition on the boundary 0:

0

— m(r,t) =0. 11
(e 1 ()
Once the magnetization m(r,t) is found by solving the
Bloch-Torrey equation with a given initial condition p(r),
the signal amplitude F at time T is obtained by integra-
tion of m(r,T’) over the whole confining domain 2:

E= [ dr m(r,T). (12)
/

The Neumann boundary condition (11) was used by
Kaplan (1959) to describe electron spin resonance in met-
als. After Wayne and Cotts (1966) who solved numeri-
cally the Bloch-Torrey equation in a laminar system with
the reflecting boundary condition, this approach became
quite common in numerical analysis of diffusive NMR
phenomena.

C. Effect of a geometrical restriction

Relations (3) - (7) were derived by different meth-
ods that commonly used the assumption of unrestricted

diffusion: the nuclei diffuse freely in an infinite reser-
voir. Woessner used the spin-echo technique to exper-
imentally demonstrate the effect of a geometrical re-
striction. The signal attenuation was measured for wa-
ter molecules in a geological core and in aqueous sus-
pensions of silica spheres (Woessner, 1960, 1961, 1963).
Although In E was still proportional to g2, the ratio
D' = —InE/(v?¢g?T3/12) was not equal to the free dif-
fusion coefficient D of water. Woessner called this ratio
a “spin-echo diffusion coefficient” which is now known
as “effective or apparent diffusion coefficient”. The de-
crease of D’ with T was attributed to the growing propor-
tion v DT/ L of molecules whose motion was restricted by
boundaries of the reservoir of size L.

D. Narrow-pulse approximation

The first theoretical treatment of restricted diffusion
was proposed by Stejskal (1965) and Tanner and Stejskal
(1968). Stejskal modified the Bloch-Torrey equation (9)
to include the case of anisotropic, restricted diffusion and
flow. Then, the restricted diffusion was studied by the
“pulsed (field) gradient spin-echo” (PGSE) method. If
the duration § of gradient pulses is small compared to the
characteristic diffusion time L?/D, the macroscopic sig-
nal can be related to the Fourier transform of the Green
function in the confining medium 2. Indeed, the first gra-
dient pulse encodes the position r of a nucleus at time
t = 0 by factor e?798T while the second gradient pulse
labels the position 1’ of the same nucleus at time t = T
by factor e—ivogr’ (the sign is changed by the 180° RF
pulse). The probability density to diffuse from r to r’
during time 7T is known as propagator or Green function
Gr(r,r’) (see subsection III.A). The average over initial
and final positions leads to the macroscopic signal:

1 ) /
E= v /dr/dr’ Gr(r,r') o8 r=r) (13)
Q Q

V being the volume of the domain 2. The crucial sim-
plification of this approach, known now as “narrow-pulse
or short-gradient-pulse approximation” (NPA), is an ex-
plicit manifestation of the confining geometry via the
Green function. The PGSE method allows one a di-
rect experimental measurement of the Fourier transform
of the Green function, and gives thus a simple way to
probe a complex morphology by NMR. This technique,
also called “g-space imaging method”, was widely used
for both theoretical and experimental studies (Callaghan,
1991). For instance, the effect of diffusion diffraction
was predicted and discovered by Callaghan, Coy, Mac-
Gowan, Packer and Zelaya (1991) and further extended
by Callaghan, Coy, Halpin, MacGowan, Packer and Ze-
laya (1992) and by Coy and Callaghan (1994). An anal-
ogy with X-ray diffraction and electron or neutron scat-
tering was also discussed by Cotts (1991). A similar be-
havior for a cylindrical pore was reported by Séderman



and Jonsson (1995) and by Gibbs (1997). Balinov,
Séderman and Ravey (1994) observed the diffraction-like
effects in highly concentrated water-oil emulsion. Their
manifestation in the case of porous media was discussed
by Bergman and Dunn (1994) and by Sen, Hiirlimann
and de Swiet (1995). The effect of surface relaxation
was considered by Mitra and Sen (1992). In particu-
lar, the influence of surface relaxation on the apparent
diffusion coefficient in the long time limit was studied
by Sen, Schwartz, Mitra and Halperin (1994). The re-
lation between pulsed gradient NMR measurements of
restricted diffusion and the return-to-the-origin proba-
bility was pointed out by Mitra, Latour, Kleinberg, and
Sotak (1995b) and by Schwartz, Hiirlimann, Dunn, Mi-
tra, and Bergman (1997). King, Houseman, Roussel,
van Bruggen, Williams and Gadian (1994) used the ¢-
space concept for imaging of the brain. An original ap-
proach to describe the diffusion diffraction was devel-
oped by Stepisnik (1998). He proposed to express the
nonuniform spin phase distribution in a pore as a series
of waves with wave vectors characterizing the geometry
and boundaries of confinement.

The validity of the approximate relation (13) and ap-
plicability of this concept in different NMR contexts
were extensively investigated by different authors. Blees
(1994) numerically solved a modified Bloch-Torrey equa-
tion by finite difference method in order to quantify the
effect of finite duration of gradient pulses. For the same
purpose, Linse and Séderman (1995) performed Brown-
ian dynamic simulations for molecules entrapped in pla-
nar, cylindrical and spherical geometries. Mitra and
Halperin (1995) studied how the finite duration of gradi-
ent pulses makes isolated pore appear smaller than their
actual size. Wang, Caprihan and Fukushima (1995) pro-
posed a criterion of applicability of the NPA by consider-
ing restricted diffusion in simple domains (slab, cylinder
and sphere). Monte Carlo simulations were also imple-
mented by Duh, Mohori¢ and StepiSnik (2001) to show a
strong deviation from approximate theoretical results in
the case of intermediate and long sequences. Mair, Sen,
Hirlimann, Patz, Cory and Walsworth (2002) showed a
breakdown of the narrow-pulse approximation by ana-
lyzing the restricted diffusion of xenon in model porous
media (random packs of mono-sized glass beads). Malm-
borg, Topgaard and Séderman (2004) studied highly con-
centrated emulsions to show how the duration of the gra-
dient pulse influences NMR diffusion experiments. We
shall discuss the narrow-pulse approximation in subsec-
tion VL.E.

E. Restricted diffusion in simple domains

Robertson (1966) applied a quantum mechanics op-
erator formalism to study restricted diffusion in a slab
geometry (between two parallel planes). The magneti-
zation m(r,t), satisfying the Bloch-Torrey equation (9)
with Neumann boundary condition (11), was expanded

over eigenfunctions u,,(r) of the Laplace operator on an
interval

m(r,t) = > cm(t) um(r). (14)

m

An infinite-dimension system of linear differential equa-
tions was obtained for unknown coefficients ¢,,(t). A
further analysis of the density matrix c,, ()¢, (t) led to
an approximate relation

= 8 1
—InE ~¢* —
ne mz::oﬂ"l(Qm—i—l)4 <7r2(2m—|—1)2p
3 46—71'2(2m+1)2p/2 4 e—w2(2m+1)2p
74(2m + 1)* p? ’

(15)

where ¢ = vgLT and p = DT/L?. For small time T (p <
1/7%), a series expansion of the exponential functions in
(15) leads to the Hahn’s relation (3). For long enough
T (p > 2/7?), Robertson found a new behavior of the
signal attenuation due to restricted diffusion in a slab
geometry, which is now called “motionally averaging or
motional narrowing regime”:

E ~ exp[—+*¢°L*T/(120D)]. (16)

Although In F is still proportional to g2, the dependence
on the gradient duration 7', the diffusion coefficient D
and the slab width L is drastically different in compari-
son with Eq. (3). For instance, the nuclei with higher D
diffuse more rapidly, but the related signal attenuation is,
contrarily to intuition, smaller. A sharp dependence on
the size of the confining domain appears here as a char-
acteristic feature of restricted diffusion. This behavior
was experimentally observed in a laminar system in the
same year by Wayne and Cotts (1966). We shall discuss
the motional narrowing regime in detail in Section V.

The Robertson’s work had a deep impact on a posterior
development of this field. A high sensitivity to the geo-
metrical confinement stimulated the interest to restricted
diffusion as a way to probe confining morphologies of
porous materials and biological tissues by NMR. A num-
ber of far-reaching extensions were made. So, Stepisnik
(1981, 1985) developed the density matrix calculation for
a much more general case including, e.g., strong dipolar
coupling. In particular, the NMR spin-echo attenuation
in the magnetic field gradient was related to the velocity
autocorrelation function (StepiSnik, 1993).

The eigenfunction expansion of the magnetization be-
came a usual tool to study restricted diffusion. For in-
stance, Brownstein and Tarr (1979) used it to explain
multiexponential relaxation for water in biological cells.
Song (2000) reported an experimental demonstration of
the excitation and detection of a wide range of eigen-
modes in porous media by exploring the inhomogeneous
internal magnetic field in the pore space. This interest-
ing technique was applied to characterize multiple length
scales in rocks by Song, Ryu and Sen (2000).



Finally, Robertson’s operator formalism was a pro-
totype for efficient numerical techniques like multiple
propagator or step-wise gradient approach (see subsec-
tion II.J). The multiple correlation function approach
(Section III) has been conceptually issued from Robert-
son’s work.

F. Gaussian phase approximation

Neuman (1974) retrieved and extended the Robert-
son’s results by considering the accumulation of phase
shifts during diffusive motion. In the limit of short diffu-
sion times, only a small fraction of nuclei can “feel” the
presence of reflecting boundaries, and their contribution
to the accumulated phase can be neglected. One thus re-
trieves a Gaussian distribution (5). In the opposite limit
of very long diffusion times, each spin explores the bulk
several times during a fixed time interval. At this time
scale, the spatial displacements of a spin can be seen as
independent “jumps” at randomly chosen bulk points,
and the central limit theorem leads again to the relation
(5). Neuman assumed that a Gaussian distribution was
valid even for the intermediate case. This assumption,
known now as “Gaussian phase approximation” (GPA),
reduces a difficult problem of resolving the Bloch-Torrey
equation in confining medium to the calculation of the
second moment E{(?} which is in general much simpler.
In particular, Neuman carried out an analytical calcu-
lation of restricted diffusion in a slab, a cylinder and a
sphere. For these “basic” domains, the Green function
and the eigenfunctions of the Laplace operator are known
explicitly (see Table I).

After Neuman’s work, the Gaussian phase approxima-
tion was repeatedly used by many authors. Murday and
Cotts (1968) observed experimentally the restricted dif-
fusion of liquid lithium in spherical droplets and con-
firmed GPA. To explain transverse relaxation processes
in porous sedimentary rocks, Kleinberg and Horsfield
(1990) modeled pores as spherical cavities and then ap-
plied Neuman’s results. Hayden, Archibald, Gilbert
and Lei (2004) used them to fit the experimental mea-
surements for the restricted diffusion of hyperpolarized
helium-3 in a cylindrical pore. Kuchel, Lennon and Dur-
rant (1996) extended Neuman’s relation for a sphere to
account for surface and bulk relaxation. A theory of the
macroscopic signal formation in presence of structure-
specific magnetic field inhomogeneities, developed by
Sukstanskii and Yablonskiy (2003, 2004), was based on
the Gaussian phase approximation. The accuracy of the
GPA was numerically investigated by different authors.
For example, Balinov, Jonsson, Linse, and Séderman
(1994) used Brownian dynamics to simulate the motion
of spins confined to spheres and between planes.

The Gaussian phase approximation and Neuman’s re-
sults will be discussed in detail in Section V.

G. Non-Gaussian behavior

Neuman'’s relations were in such good agreement with
numerical and experimental observations that the Gaus-
sian phase approximation was believed to be correct for
any set of physical parameters. In particular, Stepisnik
(1999) gave a general phenomenological estimate for the
gradient intensity (¢ < 40 T/m for gases and g <
100 T/m for liquids) under which the Gaussian phase
approximation was supposed to be correct.

The discovery of a non-Gaussian behavior was like a
bolt from the blue. Stoller, Happer and Dyson (1991)
studied the spectral properties of the Bloch-Torrey equa-
tion on an interval that corresponds to restricted dif-
fusion in a slab geometry. For a large gradient inten-
sity g, they demonstrated a non-Gaussian decrease of
the macroscopic signal as a function of g. The physi-
cal consequences of this new and unexpected behavior
was discussed by de Swiet and Sen (1994). This so-
called “localization regime” was experimentally observed
for the first time by Hiirlimann, Helmer, de Swiet, Sen
and Sotak (1995). They studied the restricted diffusion
of water molecules between two parallel plates at distance
0.16 mm. A drastic deviation from the Gaussian g*-
dependence of the In E was observed at gradient intensity
higher that 15 mT/m (see subsection VLF and Fig. 7).
This corresponds to the case when the gradient length
(D/vg)'/3, over which the spins dephase by 2, becomes
shorter than both the diffusion length v DT and the plate
separation L. The manifestation of localization regime
for a CPMG sequence was analyzed by Sen, André, Ax-
elrod (1999) and by Zhang and Hirasaki (2003). We shall
continue this discussion in subsection VIL.F.

This important discovery forced physicists to revise a
common belief in the Gaussian phase approximation and
stimulated a number of important researches in this field.
The knowledge of the fourth and higher order moments
of the accumulated phase appeared to be mandatory for a
better understanding of diffusive NMR phenomena. This
fundamental problem was studied by Bergman and Dunn
(1995) who calculated the fourth moment in the case of a
periodic porous medium. Some of their interesting ideas
were employed by the author to develop a systematic
technique to compute the multiple correlation functions
of the reflected Brownian motion (see section III).

H. Studying porous materials

In the nineties, a series of papers® was devoted to
the study of restricted diffusion in porous media in the
short time limit. Starting from Woessner’s qualitative

6 de Swiet and Sen (1994); Helmer, Hiirlimann, de Swiet, Sen and
Sotak (1995); Latour, Mitra, Kleinberg and Sotak (1993); Mitra,
Sen, Schwartz and Le Doussal (1992); Mitra, Sen, and Schwartz
(1993).



arguments, Mitra et al. developed and experimentally
checked a quantitative theory to account for the contribu-
tion of nuclei whose motion was restricted by boundaries
of the confining medium. The effective diffusion coeffi-
cient was found at short times:

Deypp >~ D (1 —aV DT%) , (17)

where S/V is the surface-area-to-pore-volume ratio of
the confining medium. The numerical prefactor o was
analytically computed for steady and pulsed gradient
profiles shown in Fig. 1(a),(c) (see subsection IV.E).
NMR techniques appeared thus as promising experimen-
tal tools to measure the surface-to-volume ratio, the in-
trinsic characteristic which plays an important role in
oil industry and medical diagnostics. So, the notion
of effective time-dependent diffusion coefficient was ap-
plied by Helmer, Dardzinski and Sotak (1995b) to inves-
tigate in vivo systems and by Mair, Cory, Peled, Tseng,
Patz, and Walsworth (1998), by Mair, Wong, Hoffmann,
Hirlimann, Patz, Schwartz and Walsworth (1999) and by
Mair, Rosen, Wang, Cory and Walsworth (2002b) to the
case of granular materials. Probing short length scales in
a static gradient with the CPMG sequence was proposed
by Zielinski and Hiirlimann (2005). We shall discuss the
result (17) in detail in section IV.

I. Nonlinear magnetic fields

Although the investigation of restricted diffusion in a
linear magnetic field gradient counts hundreds of refer-
ences, there were only few theoretical works devoted to
nonlinear magnetic fields. This situation may appear
a bit surprising since hardware imperfections unavoid-
ably lead to smaller or bigger deviations from a linear
gradient. Moreover, the difference in magnetic suscep-
tibilities of porous and bulk media creates a structure-
dependent distribution of local inhomogeneities of the
magnetic field. These fields were difficult to control ex-
perimentally and to investigate theoretically by classical
approaches.

The first theoretical study of the effect of nonlin-
ear magnetic fields on restricted diffusion was proposed
by Tarczon and Halperin (1985). In the case of one-
dimensional diffusion restricted on an interval, an arbi-
trary spatial profile of the magnetic field was represented
by a Fourier series. Its coefficients were shown to deter-
mine the second moment of the accumulated phase, and
the Gaussian phase approximation gave the macroscopic
signal. In particular, Tarczon and Halperin proposed an
approximate relation in the short time limit:

E = exp[—Dv?g;T°/12], (18)

where g2, =< (VB(r))> > is the spatial average of
the squared gradient of the magnetic field. Tarczon
and Halperin argued that the signal attenuation in a

nonlinear magnetic field B(r) could be characterized by
an effective gradient g.rs. This result was applied by
Hiirlimann (1998) to take into account susceptibility-
induced gradients in porous media. In the simple case
of a linear gradient, B(r) = g-r, one could get g2 = ¢*
and retrieve the Hahn’s relation (3). Moreover, Tarczon
and Halperin suggested a more accurate result which is
now known as “local gradient approximation”:

23
B~ %/dr exp {DWHT (VB())*|. (19)
Q

We shall discuss this result in section IV.

The other theoretical treatments of nonlinear magnetic
fields in the whole space (i.e., unrestricted diffusion) have
to be mentioned. The first one was given by Majumdar
and Gore (1988), who proposed to model the spatial dis-
tribution of susceptibility-induced magnetic field inhomo-
geneities as discrete random fields. The effective diffusion
coefficient (or relaxation rate) was found to be propor-
tional to the variance of the distribution of the magnetic
field gradients. The case of continuous Gaussian random
fields was considered by Mitra and Le Doussal (1991). In
the long time limit, they found an exponential decrease
of the macroscopic signal in time 7" with a power law cor-
rection. The problem of large fluctuations in finite-size
systems was discussed.

Le Doussal and Sen (1992) derived an exact solu-
tion of the Bloch-Torrey equation in the whole space for
quadratic (or parabolic) magnetic field profile, B(z) =
go+ g1z + g22%. In the short time limit, the signal atten-
uation was similar to that of the “effective” linear gradi-
ent, in agreement with the approximate relation (18). In
the long time limit, however, Le Doussal and Sen found
that In £ was proportional to T instead of the Hahn’s
T3-dependence. A natural length scale (8D /vg2)'/* was
shown to govern the problem. Parabolic magnetic fields
were studied experimentally by Bendel (1990).

Finally, Zielinski and Sen (2000) reported a numerical
solution of the one-dimensional Bloch-Torrey equation
with parabolic and cosine spatial profiles of the magnetic
field. The evolution of the signal was argued to be largely
determined at all times solely by the two “moments” of
the magnetic field, <(VB)?> and < ([ dzB(z))? >, and
not by the details of its local spatial distribution. They
also showed that the local gradient approximation holds
only in the short time limit and is invalid for longer times.

J. Matrix formalisms

A numerical study of restricted diffusion would de-
serve another review. To calculate the attenuation of
the macroscopic signal, different authors performed ei-
ther a numerical resolution of the Bloch-Torrey equation,
or Monte Carlo simulations of the reflected Brownian mo-
tion. In the former case, the bulk of a confining domain



was discretized by a regular lattice or a more compli-
cated mesh, so that a discrete version of the Bloch-Torrey
equation could be numerically solved by finite difference
or finite element method. The distribution of the spin
magnetization m(r,t) over lattice sites was sequentially
calculated with a small time step 7. The macroscopic
signal was then given as spatial average of m(r,¢). In
contrast, Monte Carlo techniques were used to simulate
diffusive motion and compute accumulated phase of an
individual spin. Brownian trajectories were usually mod-
eled as a sequence of independent random “jumps” in the
bulk with reflections on the boundary. The jump distance
in each spatial direction was normally distributed with
dispersion v2D7. Once the accumulated phase distribu-
tion P(p) was approximately found by launching a large
number of random walkers, the signal could be deduced
as expectation of €%,

Although efficient for some purposes, these techniques
present inconveniences and limitations. For instance, the
statistical error of Monte Carlo simulations decreases
slowly with the number of random walkers; the study
of intensive gradients requires a very fine resolution
(or discretization) of the Bloch-Torrey equation; long
time analysis is in general difficult by both techniques,
etc. To overcome these problems, Caprihan, Wang and
Fukushima (1996) proposed an original numerical ap-
proach. The idea was to approximate a given tem-
poral gradient profile g(t) by a large sum of equidis-
tant very narrow gradient pulses at times k7, 7 be-
ing a short time interval between two successive pulses.
These gradient pulses encode the successive positions
r;, = r(k7) of a diffusing nucleus by factors e?798%Tr,
where g = g(k7). The random displacements of nuclei
during the time interval 7 is determined by the Green
function G, (rg,rg+1). To calculate the average over all
positions ry, Caprihan et al. used the expansion of the
Green function over the Laplace operator eigenfunctions
(see Appendix E for details). A general but cumbersome
expression for the macroscopic signal was derived. As
example, they considered the case of restricted diffusion
between two parallel planes.

The original approach by Caprihan et al. was refor-
mulated by Callaghan (1997) in a simple and elegant
matrix form. He showed that the macroscopic signal
can be written within a matrix formalism involving the
eigenbasis of the Laplace operator (see Appendix E for
details). Practically, the numerical problem of finding
the signal attenuation under arbitrary temporal gradi-
ent profile was reduced to symbolic manipulation with
two matrices which depend on several physical parame-
ters. Callaghan illustrated the efficiency of this “multiple
propagator approach” by considering restricted diffusion
between two parallel planes. In a further work, Callaghan
and Codd (1998) and Codd and Callaghan (1999) stud-
ied restricted diffusion in a cylinder and a sphere and
discussed the role of surface relaxation. Price, Stilbs and
Séderman (2003) used this technique to check the valid-
ity of the narrow-pulse approximation. Grebenkov (2006)

developed a spectral analysis of the underlying matrices
to show multiexponential signal attenuation for CPMG
sequences.

The Callaghan’s matrix formalism was reformulated
in terms of random walks by Sukstanskii and Yablonskiy
(2002). Using the modified approach, they obtained a
number of interesting results, in particular, they found a
transition between oscillatory and monotonic behaviors
of the free induction decay signal as a function of time.
The accuracy of the Gaussian phase approximation was
also discussed.

Finally, Barzykin (1998, 1999) proposed an equivalent
matrix formalism by considering a step-wise approxima-
tion of the temporal gradient profile. In his approach,
the two matrices determining the macroscopic signal de-
pend solely on the confining geometry. These matrices
have thus to be calculated only once for a chosen confin-
ing medium (e.g., a sphere), after that the computation
of the signal is straightforward and rapid for any set of
physical parameters. This is an important improvement
of the above matrix techniques and a crucial simplifica-
tion for numerical analysis.

The different matrix approaches outlined above were
mainly intended for numerical computation of the macro-
scopic signal. In the next section, an extension of the
Barzykin’s technique will be introduced to tackle theoret-
ically the problem of restricted diffusion in arbitrary mag-
netic field. This “multiple correlation function approach”
will be applied throughout the paper to retrieve, extend
and critically discuss numerous results shortly presented
in the above overview.

I1l. MULTIPLE CORRELATION FUNCTION APPROACH

In this section, the moments of a random phase accu-
mulated by a diffusing spin are found in a matrix form
involving the Laplace operator eigenbasis in a confining
domain. Spatial inhomogeneities and time dependence of
the magnetic field enter as functionals and weight factors
to the multiple correlation functions. After a formulation
for a general case in subsection III.A, this MCF approach
is applied to spin echoes in subsection III.B. Different
choices of temporal and spatial profiles of the magnetic
field are considered in subsections III.C and III.D respec-
tively. In subsection IIL.E, the analytical results are de-
rived for the restricted diffusion in three simple domains
(slab, cylinder and sphere).

A. General case

As a first step, we reformulate the general physical de-
scription (1), (2) of diffusive NMR phenomena in such a
way that will allow us their further theoretical and nu-
merical study. For this purpose, the exponential function



in (2) is expanded in a power series

B=3" T B, (20)
n=0

where the moments of the random variable ¢ are

E{o"} =~"E /dtl.../dtnBtl(r(tl))...Btn(r(tn))
0 0

(21)
The multiple integral of the product of “identical” func-
tions can be written as ordered time average

E{x"} = n! 'y"/dtl... /dtn E{ B, (r(t1))...Bt, (r(tn))},

(22)
where the time moments t;, ..., t, are now in as-
cending order. The multiple correlation function
E{B, (r(t1))...Bs, (r(tn))} can be calculated according to
its probabilistic meaning:

e the starting position ry of the reflected Brownian
motion is chosen with a given initial density p(ro);

e the probability density for arriving from this point
to a random position r; = r(¢1) at time ¢; is given
by the Green function Gy, (rg,r1) of the diffusion
operator in domain )

0
(& - DA) Gi(r,r') =0 (23)
with the appropriate Fourier or Neumann boun-
dary condition, and Gi—o(r,r’) = é(r — 1), 6 being
the Dirac distribution (delta-function);

e the subsequent positions ro = r(t2), .., r, =
r(t,) are also distributed according to the cor-
responding probability densities G, ¢, (r1,1r2), ...
thftn,l(rnflyrn)-

Since the reflected Brownian motion is a Markovian pro-
cess (without memory), the multiple correlation function
is

E{B¢, (r(t1))...Bt, (r(tn))} = /dro .../drn p(ro)x
Q Q
X Gy, (vo,r1) By, (r1) Giy—t, (r1,12) ... By, (r5).
(24)

A similar relation was used by Bergman and Dunn (1995)
to describe the signal attenuation in periodic porous me-
dia.

To proceed, one can use the spectral decomposition of
the Green function over the eigenfunctions u,,(r) of the
Laplace operator (Arfken and Weber, 2001)

Gi(r,1') =Y tm(r) ul,(r') exp[—D t A /L?], (25)
m=0
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where L is a characteristic dimension of the confining
domain Q (e.g., its diameter), and the asterisk denotes
the complex conjugate. The eigenvalues A, are defined
to be dimensionless:

At (r) = — (%) U (1), (26)

and the Neumann or Fourier boundary condition is im-
posed according to the physical properties of the inter-
face. The eigenfunctions wu,,(r) are orthonormal in the
space L?(Q) of measurable and square integrable func-
tions:

/dr U (1) Uy (T) = O (27)
Q

where 0,y is the Kronecker symbol. For theoretical
analysis, it is convenient to introduce the dimensionless
diffusion coefficient

p=DT/L>. (28)

The substitution of the spectral decomposition (25) in
Eq. (24) for each Green function leads to

E{B, (r(t1))..Be, (x(tn)} = > o > Upye Prmtt/T
mq1=0 my=0
X Brnymy (t1)e P2 (G2mt)/TR (o) o Up, (tn),

(29)

where the infinite-dimension matrix B and vectors U and
U(t) are defined as”

Bop (1) = / dr u’,(r) By(r) um(r)  (30)
Q

Un = VY2 [ dr un(r) p(r) (31)
/

Un(t) = V_1/2/dr uk,(r) By(r) (32)
Q

and V is the volume of the domain 2. The summation
over indices my, ..., my, can be thought of as a matrix
product that leads to a compact representation of a scalar
product for the multiple correlation function

E{By, (r(t1))... Bt (r(tn))} =
n—1

U - H e—pAtj/T B(t]) epAtj/T e—pAtn/TU(tn) ,
j=1

(33)

7 The initial density p(r) might be alternatively set to the inverse
of the domain volume V provided that eigenfunctions u.,(r) are
appropriately normalized [see, for example, Barzykin (1999)]. In
practice, however, such a tricky normalization is quite difficult,
so that we prefer to use the classical expansion (25) for the Green
function.



with the diagonal infinite-dimension matrix A:
Am,m’ = 6m,m’)\m- (34)

The ordered time average of the above correlation func-
tion gives the moment E{¢x™} of the random phase ¢
and determines the n-th order contribution to the signal
expansion (20). An unbounded increase of the eigenval-
ues \,, with m ensures a rapid convergence in the ma-
trix product (33) and makes possible a truncation of the
matrices B and A to a limited dimension for numerical
analysis.

At first thought, one may wonder what is the in-
terest of such a formal approach? The compact and
transparent physical description by Egs. (1), (2) is “re-
duced” to a cumbersome mathematical formalism involv-
ing the multiple time integration of the product of time-
dependent infinite-dimension matrices. Even for numeri-
cal simulations, modeling the reflected Brownian motion
might seem to be more simple and efficient. However,
this thought is misleading: the deceptive simplicity of
Egs. (1), (2) relies in the fact that the diversity of diffu-
sive NMR phenomena is “hidden” in a very complex be-
havior of the reflected Brownian motion. The stochastic
character of diffusive motion is entangled with particular
properties of the confining domain and applied magnetic
field. The complexity of these phenomena made them at-
tractive for physicists since the Hahn’s seminal paper in
1950 till our days. The above matrix formalism is in fact
a general mathematical basis to study the diffusive motion
in any confining geometry under arbitrary magnetic field.
In this formal way, the physical problem of finding the
macroscopic signal of diffusing spins is entirely reduced
to the analysis of the Laplace operator eigenmodes, and
thus solved, as a physical problem. In what follows, we
shall show how this mathematical basis can be applied
for a theoretical analysis in many cases of particular in-
terest. As the most usual NMR technique, the spin echo
formation will be examined in the next subsection.

B. Application to spin echoes

In the classical Hahn'’s experiment (Hahn, 1950), the
180° RF pulse is emitted after time T/2 to invert the
spin magnetizations (Fig. 1(a)). For immobile spins, de-
phasing during the time interval [0,7/2] is completely
compensated by rephasing during the following time in-
terval [T'/2,T], if the applied magnetic field satisfies the
rephasing condition

T/2 T
dt Be(r) — [ dt Bi(r)=0 (35)
[

at any spin location r inside €2. In this case, the accumu-
lated phase ¢ is strictly zero for all spins (i.e., their mag-
netizations are in phase at time T'), which leads to echo
formation at time 7. When spins diffuse, rephasing is
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not complete, and the echo amplitude is decreased. This
attenuation can be experimentally measured to study the
spin motion.

In a typical situation, the magnetic field B;(r) is com-
posed of a constant field By generated by a static mag-
net, and a time-depending diffusion-sensitizing inhomo-
geneous field SF(t)B(r) of maximum intensity §. The
temporal and spatial profiles, F'(¢t) and B(r), are defined
to be dimensionless and normalized to 1. For mathemat-
ical convenience, the temporal profile is supposed to be a
piecewise-smooth function on the interval [0, T'], while the
spatial profile is a smooth function in the bulk (domain
Q). These formal assumptions are fulfilled in practice.

Throughout this paper, the application of the 180° RF
pulse will be taken into account by inverting the sign
of the function F(t) for t > T//2. The above rephasing
condition is reformulated for such an “effective” temporal
profile of the magnetic field as

T
/ dt F(t) = 0. (36)
0

Since the contribution of the constant field By vanishes
after rephasing, the total phase ¢, accumulated during
the time T', can be written in the same form as before,
with Bi(r) = SF(t)B(r):

T

o= / dt 3 F(t) B(r(t)). (37)

0

In Egs. (30), (32), the time dependence of the matrix
B(t) and vector U(t) can thus be factorized out:

B(t)=F(t) B Ut)=F@t) U, (38)
where
Brm = | dru) (r) B(r) um(r), (39)
/
Un = VY2 [ dr u,(r) B(r). (40)
/

For convenience, the integral variable ¢ can be replaced
by a dimensionless parameter ¢/7":

1

p =T [ dt $0) BCXo), (41)
0
where
X, =r(tT) and f(@t) = F(T) (42)

correspond to the time rescaling of the reflected Brow-
nian motion and the effective temporal profile. In the
remainder of this paper, t will denote the dimensionless



time ranging between 0 and 1. The dimensionless param-
eter

q =BT (43)

gives the effective dephasing of spins with gyromagnetic
ratio v in a magnetic field of strength 3 applied over time
T. The two independent parameters p and ¢q will result
different NMR regimes for restricted diffusion.

According to (41), the physical phase ¢ is proportional
to the random variable

¢ = [ dt f(t) B(Xy), (44)
/

which we shall still call “phase”. Relation (2) shows that
the macroscopic signal F is in fact the characteristic func-
tion of this variable:

E = E{e'%}. (45)

Since phase ¢ is a bounded random variable, its cha-
racteristic function is known to be analytical (Feller,
1971). In particular, its series expansion

==X

absolutely converges for any ¢g. The moments E{¢"}
may be straightforwardly deduced from the results of
Sec. III.A:

(46)

{¢"} =<E{B(X1,)..B(X¢,)} > , (47)

where <...> denotes the f-weighted (ordered) time ave-
rage of the magnetic field, with the effective temporal
profile f(t). For any function h(ty,...,t,) of time vari-

ables ¢y, ... t,, this average is defined as
1 1
<h(tr, ot dtl.../dtn F(t2)ewf(tn) Bty s ).
0 tno1
(48)
For example, one has
1 1
<(t1 —t2)>, = /dtl f(tl)/dtz f(t2) (t1 —t2). (49)
0 th

The multiple correlation function E{B(X4,)...B(X:, )}
represents the spatial average of the reflected Brownian
motion, “weighted” by the magnetic field profile B(r). It
can be written according to (33) in the matrix form:

(Xe,)} =

n—1
U- H e PA B ePA | o= PAtaTT ) (50)

j=1

E{B(Xy,)..B
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The multiple correlation function does not depend on the
temporal profile f(t) of the magnetic field. The crucial
advantage of the last relation in comparison with Eq. (33)
is that the temporal and spatial averages can mow be cal-
culated separately. First, the matrix B is constructed for
a given domain 2 and spatial profile B(r), independently
of the function f(¢). Second, the f-weighted time average
of the multiple correlation function is calculated. This is
a significant simplification for the theoretical analysis and
numerical computation.

In the case of Neumann boundary condition (11), there
is no loss of magnetization at the interface, so that its
steady state distribution does exist and has to be uni-
form. It means that

e for any geometry of the domain €2, the ground
eigenmode corresponds to the constant eigenfunc-
tion ug(r) = V12, with eigenvalue \g = 0;

e the initial density of spins is typically uniform,?

p(r) =1/V.

In this case, the definition (31) of the vector U implies
Un = 6m, 0. Moreover, the first diagonal element of the
matrix e PM in Eq. (50) is equal to 1, independently of
p and t;. Finally, the elements U, of the vector U can
be written as By, 0. All these simplifications lead to the
following expression for the multiple correlation functions
in the case of reflecting boundaries:

E{B(X:,)...B(X:,)} =

B e Pamtoh g empltazta)A g 3 e=p(ta=tn-0)A

where the subscript o ¢ denotes the first diagonal element
of the matrix product in brackets. In the next sections,
we shall show how this representation can be applied to
derive different NMR regimes of restricted diffusion. For
sake of clarity, we focus our attention on the reflecting
boundary condition, bearing in mind that taking into
account surface relaxation effects is in general straight-
forward but more cumbersome.

8 At equilibrium condition, the initial spin density p(r) is uniform
for reflecting boundaries. Usually, it is considered that the 90°
RF pulse acts uniformly over the sample so that all spins are
excited in the same way. Consequently, the initial magnetization
m(r,t = 0) is proportional to p(r) and thus uniform. However,
this is not always the case. Recently, Song (2000); Song et al.
(2000, 2003) proposed an efficient experimental technique to de-
tect the pore geometry, when the uniformly distributed spins are
excited selectively within a narrow frequency range that creates
a non-uniform magnetization at time ¢t = 0. In MCF approach,
this effect can be taken into account through the vector U.



C. Temporal profiles of the magnetic field

The application of two identical linear gradients of du-
ration § < 1/2 before and after the 180° RF pulse is
probably the most common way to encode the diffusive
motion. The temporal profile of these pulses (i.e., their
“shape”) is typically trapezoidal in an experiment and
rectangular for theoretical analysis (Fig. 2(c),(d)) like

f)=00)—0(t—-0)—-06(t—-1/2)+0(t—-0—1/2), (52)

where ©(t) is the Heaviside step function, O(t) = 1 for
t > 0, and 0 otherwise. Among others, two specific cases
were particularly favored by theoreticians. These are the
steady profile (6 = 1/2) employed in the first spin-echo
experiment by Hahn (1950) and the narrow-pulse pro-
file (6§ < 1/2) first introduced by Tanner and Stejskal
(1968). Whatever the value of § is, the function (52) will
be called “Stejskal-Tanner temporal profile”. A train of
2k pulses of alternate signs can be treated in a similar way
(Fig. 2(b)). This would correspond to a Carr-Purcell-
Meiboom-Gill sequence which is also commonly used to
experimentally study restricted diffusion.

Another interesting situation occurs when the mag-
netic field is applied periodically with time. In this case,
one samples molecular dynamics in the frequency do-
main rather than in the time domain. Callaghan and
Stepisnik (1995, 1996) showed that such frequency mod-
ulated gradient spin-echo measurements provide access
to much shorter time scales than that of the traditional
Stejskal-Tanner profile. We shall consider sinusoidal
and cosinusoidal temporal profiles, f(¢) = sin(27kt) and
f(t) = cos(2mkt), where k is the number of periods until
echo formation at time ¢t = 1 (Fig. 2(e)).

D. Spatial profiles of the magnetic field
1. Linear gradient

The simplest case of a linear magnetic field gradient
covers the majority of theoretical, numerical and experi-
mental NMR studies of the diffusive motion. If nonlinear
effects can be neglected, the magnetic field of a linear gra-
dient g is proportional to the projection of the coordinate
vector r onto the gradient direction ey, i.e., 8 = gL and

B(r) = (e -1)/L. (53)
The dimensionless magnetic field strength ¢ is then:
q=9TL. (54)

The substitution of the linear magnetic field gradient
(53) into (39) leads to a specific form for the matrix B
which was first introduced by Robertson (1966) and then
extended by Barzykin (1998, 1999) to describe the signal
attenuation due to diffusive motion.
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FIG. 2 Several effective temporal profiles f(t): steady (a),
CPMG (b), Stejskal-Tanner rectangular (c) and trapezoidal
(d), and periodic (e). Profiles (a)-(c) correspond to the gradi-
ents shapes shown in Fig. 1 (for convenience, the rectangular
profile (c) was shifted to the left). The case (e) is related to
a frequency modulated magnetic field. The inversion of the
spin magnetization by the 180° RF pulse is already taken into
account by changing the sign of the effective profile.

2. Parabolic magnetic field

For a long time, nonlinear magnetic fields were practi-
cally excluded from the usual scope of scientific questions
both for theoreticians and experimentalists. These fields
may have different origins like hardware imperfections or
susceptibility effects. In the former case, an applied lin-
ear gradient is known to be uniform only near the center



of the coils (Tarczon and Halperin, 1985). If the sam-
ple is relatively big, its peripheric regions are subjected
to a nonlinear magnetic field. In turn, a difference be-
tween the magnetic susceptibility of the interface (e.g.,
pore materials, rocks, alveolar tissues) and that of the
bulk (e.g., water or oil molecules, gases) leads to local
non-linear magnetic field inhomogeneities (Bergman and
Dunn, 1995; Callaghan, 1991; Kleinberg and Horsfield,
1990; Majumdar and Gore, 1988). These fields were dif-
ficult to control experimentally and to investigate theo-
retically by classical approaches.

The growing interest to nonlinear magnetic fields was
brought by Le Doussal and Sen (1992) thanks to an ex-
act resolution of the Bloch-Torrey equation in the whole
space in the presence of a steady parabolic magnetic field.
Note that such a field can be experimentally generated
(Bendel, 1990). Other important examples of nonlinear
fields can be found in stray field experiments (Hiirlimann,
2001) or geophysical applications (Kleinberg et al., 1992).

In this review, the normalized isotropic parabolic mag-
netic field

B(r) =r*/L? (55)

is considered as a paradigm for nonlinear fields. Its in-
tensity go determines the dimensionless magnetic field
strength ¢:

q=9.TL*. (56)

The implementation of the other possible choices of
magnetic field spatial profile is straightforward, at least
at the numerical level. In particular, Zielinski and Sen
(2000) paid special attention to a cosine profile of the
magnetic field in the one-dimensional case because it can
be thought as a crude model for microscopic field inho-
mogeneities induced by susceptibility differences. This
interesting choice of the spatial profile, as well as a num-
ber of others, is not considered in this paper, but can be
treated within the present approach.

E. Basic confining domains

Before proceeding with the analysis of the moments
E{¢"}, we give three examples of confining media for
which the eigenbasis of the Laplace operator is explicitly
known (Carslaw and Jaeger, 1959; Crank, 1975). The
majority of theoretical studies are actually restricted to
these “basic” domains. Although their shapes are quite
simple, the use of these structures to model a geometri-
cal confinement considerably helped to comprehend the
diffusive motion in more realistic media.
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1. Slab

The restricted diffusion between two parallel infinite
planes separated by a unit distance is the most studied
case. This problem is equivalent to one-dimensional dif-
fusion on the interval (0, 1) with reflections at endpoints 0
and 1. The eigenbasis of the Laplace operator with Neu-
mann boundary condition (11) is simple and well known:

Am = T2m?2, U (X) = € cOS(TM), (57)
where €, = v/2 for m > 0 and €y = 1 to normalize the
eigenfunctions wu,,(z). The eigenvalues ), directly give
the elements of the matrix A.

The elements of the matrix B depend on the choice of
the spatial profile B(z) of the magnetic field. In the case
of a linear gradient applied in the direction normal to the
planes, B(z) = z, one easily calculates

m2 + ml2

EmEm/ m+m/’
Bm,m’ = ((_1) * - 1) (m2 _ m/2)2

T2

(58)

for m # m/, and By, m = 1/2. In particular, one gets for
m >0

Bom = V2((=1)" = 1) A" (59)
For the parabolic magnetic field (55), one finds

2€m€m’(_1)m+m/ (m2 4 m/2)

y M 7& mla
Bm m’ = 7T2 (m2 - m/2)2
' 1 1 ,
§+—27T2m2’ m=m' >0,
(60)
and By, = 1/3. In particular, one has
22 (=)™
Bom = M ) (61)

m2m?2

Another choice of the magnetic field spatial profile can
be implemented straightforwardly.

If the surface relaxation is significant, the Neumann
boundary condition (11) can be replaced by a more gen-
eral Fourier boundary condition (10). It is convenient to
introduce the dimensionless relaxation rate h as

h=KL/D, (62)

where L is the physical length of the interval. The eigen-
values and eigenfunctions of the Laplace operator have
to be recalculated® (see Table I). Although the expres-
sions become more cumbersome and less transparent, the

9 The matrix B was calculated for a linear magnetic field gradi-
ent in basic domains by Barzykin (1999). This computation is
elementary for a slab geometry since the eigenbasis is formed by
sine and cosine functions. Please note that the relations pre-
sented here correspond to restricted diffusion in a segment (0, 1),
while Barzykin considered a centered segment (—1/2,1/2).
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same concept is applied. We should mention, however,
two differences with respect to the reflecting case. First,
one has to use the general relation (50) for the multiple
correlation functions instead of its simpler form (51). In
particular, the computation of the vectors U and U is
required (see Table I). Second, the matrices B and A de-
pend on the dimensionless relaxation rate h. If this value
is fixed, there is no conceptual difference with respect to
the case h = 0. If, on the opposite, one studies the de-
pendence of the signal (or correlation functions) on this
parameter, the matrices B and A have to be recalculated
for each value of h. From the numerical point of view,
this is not a problem since their numerical computation is
quite rapid. However, theoretical analysis of the depen-
dence on h is difficult since this parameter intervenes the
eigenvalues and eigenfunctions of the Laplace operator in
a complex manner.

2. Cylinder

For a cylinder of umit!® radius, the classical re-
presentation of the eigenfunctions involve two positive
indices n and k

Uk (ry ) = ﬁ Bk Jn(anr) cos(ng),  (63)

where J,(z) are the Bessel functions of the first kind.
The normalization constants 3,5 and the positive roots
ank are defined in Table I. In our notation, the pair of
indices n and k can still be thought as a single index
m. For a numerical implementation, one has to sort the
eigenvalues A\, = aik in an ascending order to truncate
the infinite-dimension matrices B and A. The position
of the eigenmode in such a sequence can be used for its
single index m.

The calculation of the matrix B and vector U for a
linear magnetic field gradient was performed by Barzykin
(1999). His results and our calculation for a parabolic
magnetic field are summarized in Table I. Please note
that the dimensionless relaxation rate h is still given by
(62), where L is the physical radius of the cylinder.

The finding of the roots a,; and integration over r in
the above expressions require a numerical computation

10 The physical radius L will re-appear in dimensionless coefficients
p, ¢ and h. At this point, we should stress that the term “charac-
teristic dimension of the confining medium” is a bit ambiguous.
For example, if one considers restricted diffusion in a long thin
tube, the motion is essentially confined along the transverse di-
rection (perpendicular to the axis of the tube). In this case, the
“characteristic dimension” means the width, and not the height
of the tube. The situation may be still more complicated in
porous media when different length scales present. We shall not
discuss these subtle points here, staying on a formal position
when L can be thought as an appropriate length scale to get di-
mensionless parameters q and p. For a slab geometry, L is always
the separation width of parallel plates (length of an interval). For
a cylinder and a sphere, L is always the radius.
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that is simple and has to be performed only once!! for a
chosen spatial profile of the magnetic field. The stored
matrices B and A can then be used for subsequent inves-
tigations of restricted diffusion.

3. Sphere

For a sphere of unit radius, the eigenfunctions are

Unkl (T, 9; 90) = (277)71/2ﬁnk ]n (ankr) Pn (COS 9) €lea

(64)
where P, (z) the Legendre polynomials. The normaliza-
tion constants 3, and the positive roots a,, are defined
in Table I. Although the eigenfunctions are formally enu-
merated by triple index {n,k, [}, the last index [ will be
omitted throughout this paper since the polar coordinate
 is not involved in the following analysis. In particular,
the integration over ¢ will simply give a factor 27. If the
spatial profile of the magnetic field was dependent on ¢,
this coordinate would be taken into account.

The calculation of the matrix B and vector U for a
linear magnetic field gradient was performed by Barzykin
(1999). His results and our calculation for a parabolic
magnetic field are summarized in Table I. Please note
that the dimensionless relaxation rate h is still given by
(62), where L is the physical radius of the sphere.

As previously, the elements of the matrices B and A
have to be numerically computed only once, and then
their stored values can be used for further analysis of re-
stricted diffusion in a sphere. In what follows, we mainly
focus on the reflecting boundary condition, while the ac-
counting for a surface relaxation is straightforward but
more cumbersome.

IV. SLOW DIFFUSION REGIME (p <« 1)

The multiple correlation function approach is devel-
oped as a mathematical basis for a theoretical study of
restricted diffusion. To show its efficiency, we are going to
retrieve some classical results in a more general form. We
start by the analysis of the moments E{¢"} in the slow
diffusion regime, when the dimensionless diffusion coef-
ficient p goes down to 0. This regime is also known as
the “short time limit” since T'— 0 implies p — 0. First,
we calculate the leading term of the second moment and
suggest its general form for higher order moments. Then
corrections to the leading term are discussed.

11 The situation is more difficult when one studies the dependence
on the surface relaxation h. In this case, one has to recalculate
the matrices for each value of h.



A. Leading term of the second moment

According to the general relation (51), the second mo-
ment of the random phase ¢ can be written as

0,0 72"

¢2
E {3} =< [BePlmtIA B) > (65)

In the limit p — 0, one can formally expand the expo-
nential function in a power series up to the first order:

2 ~
E{?}<1>2Cop<(t2t1)>2 G+.., (66)
where f-weighted time averages <1>, and < (t2 —t1) >,
are defined by Eq. (48), while the coefficients (j; denote
the following spatial averages:

Ck = Z BO,m )\fn Bm,O (67)
m=1
and
o = Co + (Boo)?. (68)

Note that the above expansion is formal since the higher
order terms (BA2B, BA®B, ...) diverge strictly speaking
(this divergence can be renormalized as discussed in the
next subsections).

The coefficients CNO and (1 can be further simplified by
considering the spatial averages [B?]o,0 and [BAB]oo in
view of a field theory technique. Indeed, the matrix B
contains and represents a scalar field B(r), while the mat-
rix A acts like a field operator: one can replace the com-
bination Ay um(r) by —L2Au,,(r), and then apply the
second Green formula to transpose the Laplace operator
to the adjacent field B(r). For example, one starts from
the definition

Co = % Z /dr U (T) B(r)/dr/ uy, (r') B(r') (69)
m=0¢ Q

and obtains

Co = % / dr B*(r), (70)

Q

since there was no matrix A to act on the field B(r),
while the summation over m gave 6(r—r’). Note that the
coefficient Q:O does not contribute to the second moment
since the f-weighted time average of a constant vanishes
due to the rephasing condition (36).

In a similar way, one writes the definition of the coef-
ficient ¢; and obtains by the second Green formula

o :LVQ Oj (/dr U (1) AB(r)f/dr um(r) %f)
m=1 19

[219]
x /dr’ ul (r') B(r'),
Q

(71)
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where the boundary condition Ou,(r)/dn = 0 cancelled
another integral over the boundary 0f). The summation
over m gives 6(r —r') — 1/V, whence one gets

L2
¢ = 7/dr |VB(r)|?, (72)
Q

where VB(r) is the gradient of the magnetic field B(r).

In particular, for the linear gradient profile (53), the spa-

tial average (7 is equal to 1 for any confining geometry.
The leading term of the second moment is then

E{Qg}wp<(t1t2)>2 LVQ/dr IVB(@)* | . (73)

Q

This is an extension of the slow diffusion results to arbi-
trary temporal and spatial profiles of the magnetic field.
In the particular case of Stejskal-Tanner temporal profile
(52), one has

<(t1 —ta)>, = 6%(1/2 - 6/3), (74)

and Eq. (73) is reduced to the result of Tarczon and
Halperin (1985) derived for the restricted diffusion be-
tween two parallel planes by Fourier expansion of the
magnetic field.

B. Higher order moments

A similar analysis can be in principle realized to calcu-
late the leading terms for higher moments of even order.
However, the computation becomes much more cumber-
some, since a large number of particular cases have to be
carefully considered. Moreover, an unbounded increase
of the elements A,, ,,, of the matrix A when m — oo re-
quires a renormalization procedure. The calculation of
the leading term of the fourth moment is given in Ap-
pendix A:

4 2 o [ 1A
E{%} :%(<(t1—t2)>2) V/dr |VB(r)*
Q
(75)
Looking at this relation, one can suggest a general form
of the leading terms for even order moments in the slow
diffusion regime:

E{(";:!} ~ P <ty - t2)>2)"L72" /dr VB2
Q

(76)
A systematic computational technique will be of great
interest to rigorously demonstrate this relation.

In the particular case of a linear magnetic field gradi-
ent, one has L*"|VB(r)|*" = 1, and

o IO R




where the leading term of the second moment is simply

E{%Q}Np<(t1t2)>2. (78)

Substituting the leading terms (77) in the series expan-
sion (46), one finds a compact form of the Stejskal-Tanner
formula (7)

E ~ exp[—qu <(t1 —t2) >2}, (79)

because the f-weighted time average < (t1 — t2) >, can
be written in a more usual way as:

1 t 2

<(ty —ta)>, = /dt /dt’ | . (80)

0 0

For example, it is equal to 1/12 for the steady temporal
profile, leading to a widely used expression (3).

Interestingly, the relation (77) becomes exact in the
free (or unrestricted) diffusion limit, when the characte-
ristic dimension L of the confining domain goes to in-
finity. In this case, the dimensionless diffusion coeffi-
cient p tends to 0, while the dimensionless magnetic field
strength ¢ diverges but their combination ¢?p remains
constant. Since the moment E{¢?"} appears in front of
¢*", its leading term of order p™ gives a nontrivial contri-
bution, while the correction terms of order higher than
p™ vanish. As a consequence, the Gaussian form (79) is
ezact for a linear magnetic field gradient in the free dif-
fusion limit. It is worth noting that the passage from
restricted to unrestricted diffusion is in general more del-
icate than here (see subsection VI.G).

For nonlinear magnetic fields, the substitution of the
moments (76) in the series expansion (46) gives

1
E ~ v /dr exp [—qu <(t1—t2) >, L2|VB(r)|2]. (81)
Q

This relation can be seen as an extension of the local
gradient approximation (19) by Tarczon and Halperin
(1985) to arbitrary temporal profile f(t). Moreover, the
present derivation is not restricted to the one-dimensional
case. However, this extension is based on the conjectural
expression (76) which was proven in Appendix A only for
n = 2. The MCF approach appears as an appropriate
basis to demonstrate this result for any order n. At the
same time, the relation (81) remains an approximation
involving the leading terms of all even moments in the
slow diffusion regime. Note that the free diffusion limit
(L — o0) of Eq. (81) in the case of nonlinear magnetic
fields may not exist (or be trivial).

We should stress that there is a significant difference
between the slow and free diffusion regimes, although in
both cases p goes to 0. In the free diffusion limit (L — oo
and ¢ — 00), each combination (¢?p)™ provides a nontriv-
ial contribution, while the correction terms for each mo-
ment vanish. Brought together, these contributions lead
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to the Gaussian form (79). In the slow diffusion limit (L
and q are kept fixed), the second moment of order p gives
a major contribution, while the other moments of higher
orders appear as its vanishing corrections, and can thus
be neglected. Consequently, the series expansion (46) of
the signal becomes

E=1-q E{¢?/2) (82)
or, with the same accuracy,

E ~ exp[—¢® E{¢*/2}]. (83)

Although one retrieved again the Gaussian form (79),
this relation is just a convenient representation of the
first order approximation (82). In the literature, there
are a lot of speculations about the slow diffusion approx-
imation (83) which is actually trivial. The same relation
can be written in the limit ¢ — 0 with a fixed p. In
both cases, its applicability is limited to relatively small
values of ¢ and p. A potential extension of its validity
is called the Gaussian phase approximation. In contrast,
the very same relation (79) is exact in the free diffusion
limit for any values of p and ¢q. The confusion between
the free and slow diffusion regimes is quite common and
may be misleading. The presence of a non-uniform mag-
netic field yields that extending the confining domain is
not equivalent to reducing the diffusion length.

C. Correction term to the second moment

A careful revision of the derivation in subsection IV.A
would reveal a gross defect. As we mentioned at the
beginning of this section, the series expansion of the ex-
ponential function in (65) is not mathematically allowed
since the terms BA2B, BA3B, ... are divergent due to an
unbounded increase of the elements A, , with m. At
the same time, this very same increase ensures a rapid
convergence of the exponential function exp[—p(t2 —t1)A]
itself. A certain renormalization procedure has thus to
be introduced.

Let us consider again the second moment

o0 o0
E{¢_2} =Y BowuBumo Y. =p)" \n <(ty —t)" >

) 0,m~Pm,0 nl m 2 1 2"

m=0 n=0
(84)
To extract the coefficient in front of p™, one has to ex-
change the order of summation. However, this operation
is not allowed since it would lead to a divergent series.
As one will see below, this difficulty can be formally over-

come by taking the sum over m up to a large but finite
cut-off M:

@) .~ )" S
E {7} ~ Z ol < (tg—tl)n >2 Z BO,mBm7O)\% .
n=0 m=0
(85)
As we have already seen, the zeroth term (n = 0) va-
nishes after the f-weighted time average, while the first




term (n = 1) converges as M goes to infinity and pro-
vides the leading contribution of order p. In contrast,
the higher order terms (n > 2) are divergent in the limit
M — oo. For three basic domains and two choices of the
magnetic field spatial profile, the asymptotic behavior of
the divergent sum at large M is

M
> BomB
m=0

where c¢p is a geometry-dependent constant (see Ta-
ble II). The correction term is then

—c M?’Z

This series can be calculated explicitly with the help of
the identity:
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—_— M2n—3
2n—3"

0\, X CB T (86)

(ts — tr)w2M2)"
n' (n—3/2)

(87)

23/2 _ —5/2
n73/2 /da( 1—|—a)a .
0

(88)
The substitution of x = p(ta — 1&1)7r2M2 leads to the
correction

n

1
5 B p*/2 (ta — t1)*? 7% T(=3/2), (89)
where the integral over a was replaced by its limit
I'(—3/2) = 4/n/3 for M (or z) going to infinity. The
complete expression for the second moment is then

2 2
]E{%}N p <(ti—ts)> Lv/dr IVB(r)[?
Q

+ p3/2 py <(ta — t1)3/2 >y
(90)

where

_ 2cp
H2 =3/

(see Table II). In Appendix B, the Laplace transform
technique is used to obtain the p3/2 dependence and
higher order correction terms for restricted diffusion in
three basic domains under linear gradient and parabolic
magnetic fields.!?

Although the correction of order p®/? vanishes in the
limit p — 0 faster than p, it is significant for practical
applications (see Fig. 3). This correction is related to

(91)

12 We should note, however, that the presence of the p3/2 correc-
tion depends on the spatial profile of the magnetic field. To
illustrate this point, let us consider restricted diffusion in a
slab with reflecting boundaries under cosinusoidal magnetic field,
B(z) = cos(mkz) (integer number k > 0 is fixed). In this case,

pl/2
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slab cylinder | sphere
linear B 4 2 2
2| 8/(3V/7) | 4/(3V7) | 4/(3v/7)
parabolic B 8 16 2
2|16/ (3v/m) |32/ (3v/m) |48/ (3v/7)

TABLE II Prefactor ¢z and coefficient po in the slow dif-
fusion regime for three basic domains under linear magnetic
field gradient and parabolic magnetic field. The values of the
coefficient p2 have been also confirmed by a numerical analy-
sis of the exact relation (65) for these domains.

-0.005} o
-0.01f o

-0.015 = Op
107° 10 10

FIG. 3 The second moment E{¢?/2} (solid line) as a function
of p for the restricted diffusion between two parallel planes
(in a slab) under steady linear gradient magnetic field. For
small p, this moment is compared to its leading term in the
slow diffusion regime with (circles) and without (dashed line)
correction term in (90). One clearly sees the importance of
this correction.

the fact that the spins in the neighbourhood of the in-
terface, within the diffusion length (DT)'/2, are more
confined than those of the bulk, so that their dephasing
is less pronounced. The fraction of these spins can be es-
timated as (DT)/? /L that explains the additional factor
in the p3/2 dependence. The numerical prefactor psp
accounts for specific geometry of the confining medium
and the spatial profile of the magnetic field, while the f-
weighted time average < (t; —t1)%? >, assesses the choice
of the temporal profile f(¢). In this light, our expression
(90) is an extension of the results by Mitra et al. (1992)
and by de Swiet and Sen (1994) to the general case of

the matrix B is particularly simple:

EmEm/

(6k,m+m’ + 6k:,m—m’ + 6k,—m+m’ + 6k,—m—m’) .

B =
One then finds the second moment
—p(tg— 1 —p(ty—
E{¢?/2} =< [Be P2 1)AB] o> = 5 <e plt2=t1)Xe > |
In the slow diffusion regime (p < 1), one gets
)\2
{6 /2} = —ph <(t2 = 1) >, +9° % <(t2 —11)* >, + ..

In this series expansion, there is no divergent term, and the p3/2
correction disappears.



arbitrary temporal'® and spatial profiles of the magnetic

field (see discussion in subsection IV.E).

D. Specific temporal profiles

For the Stejskal-Tanner temporal profile f(¢) shown in
Fig. 2(c) (two rectangular pulses of duration ¢), the f-
weighted time average of the function (t2 — ¢1)* for any
positive power a can be found explicitly:

<(tg —t1)* >, =
25(1-‘4-2 + 2(1/2)a+2 _ (1/2 + 5)04-‘,—2 _ (1/2 _ 5)04-‘,—2
(a+1)(a+2) '

(92)

As an example, for a steady profile (§ = 1/2, Fig. 2(a)),
the above relation is reduced to
27 -1
<(ta—t1)*> = ———= . 93
(2 1) ) (a+1)(a+2) ( )
The other case of particular interest is the narrow-pulse
approximation (6 — 0), for which one derives for oz > 0

<ty — 1) >, ~ —(1/2)%6%, (94)

The analytical computation of the f-weighted time av-
erage of the function (to — t1)® for arbitrary « is more
difficult for other profiles, but its numerical realization
is simple and straightforward. The most important case
a = 1 can be still proceeded theoretically. For instance,
one retrieves a classical expression for the trapezoidal
Stejskal-Tanner profile shown in Fig. 2(d):

1 1 7 7 1
< (tl*tQ) >2 = 57’24’7'54’552*1—573*67'25*7'52*553.
(95)

If the ramp time 7 is equal to 0, the trapezoidal profile is
replaced by the rectangular one, while the above relation
is reduced to (74).

For a CPMG sequence, the 180° RF pulse is repeat-
edly applied to generate a train of spin echoes. The
corresponding effective temporal profile f(t) is a peri-
odic repetition of a chosen shape fo(t) (e.g., rectangular
pulse) and its inversion [see Fig. 2(b)]. The representa-
tion (80) allows one to show that the f-weighted time
average < (t1 — t2) >, for a CPMG profile f(t) with
k echoes is k? times smaller than the fo-weighted time
average < (t1 — t2) >, For example, if one repeats k
times the rectangular Stejskal-Tanner profile shown in
Fig. 2(c), the corresponding time average for such CPMG
sequence will be

6%(1/2-6/3)

= . (96)

<(t1 —tz) >2 =

13 A similar kind of time dependence in the case of multiple-pulse
PGSE diffusion measurements was proposed by Fordham et al.
(1996).
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For 6 = 1/2, one retrieves the Carr-Purcell relation (4).

Finally, a simple calculation of the f-weighted time av-
erage < (t1 —t3) >, for sinusoidal and cosinusoidal profiles
f(t) = sin(2nkt) and f(t) = cos(27wkt) gives 3/(87%k?)
and 1/(87%k?) respectively.

E. Discussion on the correction term

As we mentioned above, the expression (90) is an ex-
tension of the results by de Swiet and Sen (1994); Mitra et
al. (1992, 1993); Sen et al. (1994). To compare the two
approaches, let us consider the restricted diffusion under
a linear magnetic field gradient, for which the expression
(90) becomes

< (tg — t1)3/2 >2
<(ta —t1) >, >
(97)
Two particular choices of the temporal profiles were dis-
cussed in the literature.
In the narrow-pulse approximation, one uses Eq. (94)
to write

2
E{%} ~p<(t1t2)>2<1u2p1/2

{5} =0 #(1-me2?). o9

Using the value pug = 8/(3+/m) for the slab geometry, one
finally obtains

e{S )= a(1- 2 voTE L), @

where the definition of p!/2 was explicitly used. In this re-

lation, the factor 2/L can be associated with the surface-
to-volume ratio of a slab. For a cylinder and a sphere,
the value of ps is twice smaller than for the slab (see Ta-
ble II), so that the last factor would be 1/L, where L is
the radius. An elementary calculation shows that 1/L is
equal to S/(Vd) for both cases, where d is the dimension
of space. Consequently, the above relation can be written
in a unique form for three basic domains as

e{ S} =0 #(1- 5= vOIR 5). o)

This result was derived by Mitra et al. (1992) using the
properties of Green functions near a flat reflecting bound-
ary. The relation (100) was argued to be valid for any
geometry, providing a way to measure the surface-to-
volume ratio of the confining medium.

A steady magnetic field gradient is another commonly
considered choice of the temporal profile. In this case,
one finds

1 <(t2—10)*?>,  12(4—12)

ty—t = —
<(t 2)>2 12 <(t2 —t1)>, 35

(101)



For a sphere, the relation (97) can be reduced to
®? P 32(2v2-1) S
Ed—/t>—(1—-+/DT)2 ———— — 102
{ 2 12 / 1057 V)’ (102)

where 3/L was replaced by the surface-to-volume ratio
of a sphere. One retrieves the result by de Swiet and Sen
(1994), which was argued to be valid for any statistically
isotropic confining medium. A similar expression can be
obtained for a slab geometry,

E{%Q} z%(l—i’) DT/2 %f/;l) %) (103)

where the factor 2/L can be associated with the surface-
to-volume ratio of a slab. Since this geometry is not
isotropic, the relation (102) could be applied only after
averaging over all spatial orientations of the confining
domain. This operation would suppress an additional
prefactor 3 appeared in (103). If one considers a fixed
slab, the spatial orientation is not applicable, and the
prefactor 3 should be taken into account. The case of a
cylinder can be similarly treated.

Although the shapes of the basic domains are differ-
ent, the leading and correction terms are the same for all
three cases. This is a characteristic feature of the slow
diffusion regime when the signal attenuation is essentially
independent of the particular geometry of the confining
domain. One can expect that a similar relation will hold
for more realistic structures in porous material or bio-
logical tissues. Numerical studies of more complicated
domains would be useful to clarify this point.

The dependence of the correction term on the surface-
to-volume ratio was considered by Mitra et al. as a way
to determine this important characteristic of porous ma-
terials in a NMR experiment. In this perspective, the
extension (90) to arbitrary temporal profile f(¢) of the
magnetic field becomes much more valuable. On the one
hand, it allows one to calculate this correction for specific
gradient profiles used in experiment. On the other hand,
one can think to optimize the temporal profile f(¢) in
such a way that it enhances the contribution of the cor-
rection term so that it may facilitate the determination of
the surface-to-volume ratio of a studied porous material.

At the same time, we should stress the ambiguity of
this notion in the present context. The surface-to-volume
ratio naturally appears in the relation (103) as the frac-
tion of spins in the neighbourhood of the interface, within
the diffusion length v/ DT, with respect to the total num-
ber of spins (proportional to the volume). One may won-
der, however, whether the whole surface does contribute
in the same way. To illustrate this point, let us consider
restricted diffusion in a parallelepiped of size Lx Hx H. If
the magnetic field gradient is applied along the x axis, the
presence of restrictive walls along the y and z directions
does not change the signal attenuation. In other words,
the above analysis for the slab is still valid in this case.
This is a simple consequence of the fact that the three
components (or coordinates) of the Brownian motion
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with normal reflections on the boundary are indepen-
dent in this geometry. One thus gets the relation (103)
with ratio 2/ L. However, the surface-to-volume ratio for
the parallelepiped is (2H* +4HL)/(H?L) = 2/L+4/H.
By varying the dimension H of this domain, one can
formally produce ratios between 2/L and infinity. This
simple example clearly shows that various regions of the
surface may contribute in different ways: two planes or-
thogonal to the gradient direction give 2/L, while the
other four planes do not contribute at all. In general,
one may expect that the contribution of each boundary
point would be weighted by projection of the gradient di-
rection onto the normal vector at this point. To account
for this effect, the orientation of the confining domain
can be averaged over all spatial directions, which gave
the supplementary prefactor 1/3. If the parallelepiped is
replaced by a cube with H = L, the surface-to-volume
ratio is equal to 6/L, and one retrieves 2/L after “ori-
entational average”. Such a trick, even when possible, is
limited to spatially isotropic structures. In our opinion,
a more profound analysis of this problem is required, es-
pecially in view of applications to realistic media. The
MCEF approach appears to be an efficient theoretical and
numerical tool to investigate the correction terms for dif-
ferent confining geometries.

V. MOTIONAL NARROWING REGIME (p > 1)

When the diffusion length v/ DT strongly exceeds the
characteristic dimension L (p > 1), the diffusing spins
explore the whole domain a number of times during their
motion.'* This is the so-called “motional narrowing or
motionally averaging regime” for which the geometrical
properties of the confining domain are important. In
particular, the specific signal attenuation in this regime
is at the origin of the edge enhancement in NMR mi-
croscopy (Callaghan et al., 1993; Callaghan, 1995; Hyslop
and Lauterbur, 1991; Putz et al., 1992). In this section,
we first obtain the leading terms and then discuss their
corrections.

14 To avoid a possible ambiguity, we stress again that the confin-
ing domain is considered here to be bounded. This situation is
significantly different with respect to a commonly used model
of porous structure, e.g., in rocks (Hirlimann et al., 1994; La-
tour et al., 1995). In the latter case, the diffusion of nuclei is
restricted within small cavities that are interconnected between
them forming an infinite (or very big) pore network. In the long
time limit, the nuclei can travel between several pores, but they
never explore the whole structure. The results of this section are
not applicable to such a pore network.



A. Leading terms

As for the slow diffusion regime, we are going first to
calculate the leading term of the second moment:

2 o0
E{¢—} = Z Bom <e Pmtldms B (104)

2
m=0
In the limit p — oo, the above exponential function con-
verges to a delta-function so, in a first approximation, it
can be replaced by (pA;,)~8(ta —t1). One gets

¢? - - -

E {7 ~Dp < 6(t2 - tl) >2 Z BO,m)\mle,Oa (105)
m=1

where the constant term (for m = 0) vanished due to the

rephasing condition. The f-weighted time average of the

delta-function is simply

1

<Ot —t1)>, = /dt 2.

0

(106)

The sum over m, denoted as (1 according to (67), de-
pends on the confining geometry and the magnetic field
spatial profile B(r). In the next subsection, this constant
will be calculated explicitly for basic confining domains
and different spatial profiles.

The leading term of the second moment in the motional
narrowing regime is then

1
2
E {%} ~pl¢ /dt F2(0).

0

(107)

In a similar way, one can compute the leading terms for
higher order moments. An example of such calculation
for the fourth moment is given in Appendix C:

1
4
e{ G =g | foro
0

One can guess their general form for even orders:

2

(108)

n

E{%} ~p (Y % O/Idt 2], (109)

while a systematic computational technique is required
for a rigorous demonstration of this relation. Bringing
together the leading terms of even moments, one derives
an extension of the classical result for the motional nar-
rowing regime:

1

N 2
! cfl/dt £2(0)

0

E ~exp (110)
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The dependence of the In E as a function of ¢ /p was first
outlined by Robertson (1966) for the one-dimensional dif-
fusion under steady linear gradient, and then extended
to the case of a cylinder and a sphere by Neuman (1974).
In fact, the Neuman’s approach might be directly ex-
tended to any confining domain. At the same time, it
was not appropriate to integrate arbitrary temporal or
spatial profiles of the magnetic field.

B. Corrections to the leading term

While the leading asymptotic behavior in Eqgs. (107)
and (109) is general for any temporal profile f(t), the cor-
rection terms strongly depend on the particular choice of
the function f(¢). To illustrate this point, we shall calcu-
late the correction to the leading term of the second mo-
ment for two typical profiles used in NMR experiments.

1. Stejskal-Tanner temporal profile

Once the temporal profile f(¢) is chosen, the f-
weighted time average of the exponential function in
(104) can be calculated explicitly. In particular, for the
two rectangular pulses shown in Fig. 2(c), one gets

20
—DPAm (t2—t1) _ o
<e p 2—1l1 >2 — p)\m
2+ efp)\m(l/2+6) + efp)\m(l/szi) o 2€7p/\m/2 o 2€7p/\m5
P*A%,

(111)

The right hand side of this relation was proposed by Mur-
day and Cotts (1968) to calculate the self-diffusion co-
efficient of a confined liquid lithium within a spherical
restriction.

The spatial average of this function with By, Bm,o
(summation over m from 1 to infinity) gives the second
moment E{¢?/2}. If p is big enough, the exponential
functions in (111) rapidly vanish since the eigenvalues
Am progressively increase. For § < 1/2, one obtains the
second moment to a very good approximation:

¢2

E{—}~<1&®p1x2p2, (112)

2

where both coefficients (_; and (_» are defined by (67).
In addition, one can recognize the factor 26 as the integral
of the squared temporal profile (52):

1

/ dt f2(t) = 26.

0

(113)

One sees that, for the second moment in the motional
narrowing regime with the Stejskal-Tanner temporal pro-
file (52), all the possible complexity of the confining geo-
metry and magnetic field spatial distribution is repre-
sented via the two constants (_; and {_o only. Moreover,



if ¢ is small or p is relatively large, the second moment
gives the most significant contribution to the signal, so
that one can use the first order approximation:

E ~exp [—qQ (¢o1 (20) p~t —2¢2 pQ)]. (114)

For the particular case of a steady profile (6 = 1/2), the
exponential function e~?*»(1/2-9) in (111) is constant,
and one has

$? > 1 e PAm —gemaPrm 43
E<—? = mPm -
{2 mz::lBQ o\ s P22,

(115)
This very same structure of the second moment was given
by Robertson [compare to Eq. (16) taking A, and By,
from Egs. (57),(59)], and then reproduced by different
authors. For large enough p, one gets

2
E{?} ~(pt=3Capa (116)

In this case, the integral of the squared temporal profile
is equal to 1. The comparison between this asymptotic
result and the precise computation of the second moment
is shown in Fig. 4. One can notice that the relation (116)
is applicable even for p around 1, where the motional
narrowing regime was not expected to be valid.

Interestingly, the relation (115) can be already recog-
nized in the paper of Tarczon and Halperin (1985) where
there was no sign of the Laplace operator eigenbasis. In
that work, the restricted diffusion on an interval was con-
sidered in the case of a steady magnetic field of arbi-
trary spatial profile that was periodically extended over
the whole coordinate axis. The elements By, then ap-
peared as Fourier coefficients of the spatial profile B(r),
while the time average (111) was derived by a specific and
cumbersome technique. Similarly, the relation (72) for ¢
was also found in the one-dimensional case by Tarczon
and Halperin (1985).

Both coeflicients (_; and (_5 in the case of a linear
magnetic field gradient were found by Robertson (1966)
for a slab and by Neuman (1974) for a cylinder and a
sphere. Their values are reproduced in Table III.'> The
calculation for the parabolic magnetic field (55) can be
done in a similar way. In the case of a slab geometry, one
uses the explicit formulae (57), (60) for A, and By, to
get:

8 o 1 8
1= 2 T
el (117)
8 1 4
C”’Fzﬁ’ma

15 Note a typographical error in (Neuman, 1974): for the cylinder,
the coefficient (—1 was misprinted as 7/296 instead of 7/96.
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magnetic field| slab |cylinder sphere
G 1 1 1
¢o . 1/12 1/4 1/5
& linear 1/3 1/4 1/5
(-1 1/120 7/96 8/175
(oo 17/20160| 11/512 |  83/7875
G 4/3 2 12/5
Co 4/45 | 1/12 12/175
& parabolic 1/5 1/3 3/7
-1 8/945 | 1/192 8/2625
(oo 4/4725 | 1/2880 [148/1010625

TABLE III Several coefficients (i for a slab, a cylinder and
a sphere under linear gradient and parabolic magnetic fields.
Coefficients (o and (i are directly obtained by Egs. (70), (72).
The values of (—1 and (2 for a slab, a cylinder and a sphere
were calculated by Robertson and Neuman for a magnetic
field with a linear gradient profile. The case of parabolic
magnetic field is considered in Appendix D.
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FIG. 4 The second moment E{¢?/2} (solid line) as a function
of p for the restricted diffusion between two parallel planes (in
a slab) under steady linear magnetic field gradient. For large
p, the second moment is compared to its leading term in the
motional narrowing regime with (circles) and without (dashed
line) correction term in (116).

Note that the above value of the coefficient (_; for the
parabolic magnetic field was found by Zielinski and Sen
(2000). A more complicated derivation for a cylinder and
a sphere is briefly presented in Appendix D (the found
values are resumed in Table IIT).

2. Oscillating temporal profile

In the case of a sinusoidal temporal profile f(t) =
sin(2wkt), one gets

P33+ Ar2k2p,, + 8m2k?
P2, + An2k2)?
4r2k2e~PAm

(P2, 4AmPR2)?

< e*pATn(t27tl) >2 :l
2

(118)



The second term vanishes rapidly in the limit p — oo,
while the first term can be expanded into the series in

powers of p~:

< e PAm(tz—t1) >, = % p N —2m?k p AN B+ 0.

(119)
The prefactor 1/2 in front of p~ is indeed equal to the
integral of the squared temporal profile f(¢) as required.
In contrast to the case of the Stejskal-Tanner profile, the
correction terms start from p~2 and contain higher orders
in a series expansion.

A similar analysis for a cosinusoidal temporal profile
f(t) = cos(27kt) leads to a different result:

1

<e PAmlta—t) 5 —
2

1 pAn (P22, — 2pA,, + 472K?)
2 (p2A2, + 4m2k2)?

er—pAm
P2, 1 A2 R2)2
(120)
In the limit p — oo, one gets
1
< _pAWL(tZ_t1)> i —1)\—1 _ —2)\—2_
—21%k% p T3NS 4+ O(p™?),
where the first correction to the leading term p~! is of

order p~2. While the leading term is always of order

1/p, independently of the temporal profile, the form of
correction terms strongly depends on a particular choice

of f(¢).

VI. DISCUSSION

In the two previous sections, we have applied the MCF
approach to retrieve, extend and reinterpret some classi-
cal results on diffusive NMR phenomena. After a sketch
on the numerical implementation of this approach, we are
going to discuss some open or poorly understood issues
which can now be better investigated.

A. Numerical implementation

The implementation of the MCF approach for a numer-
ical analysis is straightforward and simple, especially for
the “basic” domains: a slab, a cylinder and a sphere. The
matrices B and A, entirely determining all the moments
E{¢"}, have to be computed numerically only once for a
chosen confining geometry and spatial profile of the mag-
netic field. The signal is then found through the series
expansion (46).

Interestingly, the numerical computation of the signal
can be performed in a much simpler way. The technique
that we are going to resume was developed by Robertson
and further extended by Barzykin (1998, 1999) to study
the restricted diffusion under linear gradient magnetic
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field. To illustrate the idea, let us consider the Bloch-
Torrey equation (9) with time-independent magnetic field

BB(r):

<% — DA+ ivﬂB(r)> m(r,t) = 0. (122)

In general, the Fourier boundary condition (10) is im-
posed. The magnetization m(r,t) can be expanded over
the Laplace operator eigenbasis:

mr, ) = > Co(t) wn(r). (123)
m’=0

The macroscopic signal F would be obtained by integrat-
ing m(r,T') over the domain 2:

E = Z cm/(T)/dr Uppr (1) = V2 Z em(T) Uy,
m’=0 Q m’'=0

(124)

where the new infinite-dimension vector U is explicitly

introduced:

Upyr = V=12 / dr U (r) (125)

Q

To find the coefficients ¢,/ (T), one substitutes the ex-
pansion (123) into the Bloch-Torrey equation (122), mul-
tiplies it by the eigenfunction u’,(r) and integrates over
Q). These operations lead to a set of ordinary differential
equations:

d DA, RS
5 Cm(t) + 95 > B e () =0,
m’=0
(126)
where the matrix B is defined by (39). The initial condi-

tion m(r,t = 0) = p(r) implies that
n0) = [ do plo) wiy(6) =V UL a2
Q

where the definition (31) of the vector U was used.

The coefficients ¢, (t) can be thought as components
of an infinite-dimension vector C(¢), and the above set of
equations reads

d :
TE C(t) = —(pA +igB)C(¢), (128)
where the matrix A is defined by (34). The solution of
this ordinary differential equation is simply

C(t) = exp[—(pA + igB)t/T|C(0). (129)

Bringing together the above relations, one can write the
macroscopic signal in a compact form of a scalar prod-



uct!6

E = (U - exp[—(pA + igB)|U™). (130)

A particular simplification can be achieved for the re-
flecting boundary condition. Since the initial density is
uniform, one gets U,, = Uy, = 0m,0. In this case, the
macroscopic signal is simply equal to the first diagonal
element of the exponential matrix:

E = [e"PA~1B] (131)

0,0°
We stress that the relations (130) and (131) are ezact for
a time-independent magnetic field.

In fact, this result can be applied to numerically com-
pute the signal for a given time-dependent profile f(t).
For this purpose, the interval [0, 1] is divided into a large
number K of subintervals of duration 7 = 1/K. On the
kth subinterval, the function f(¢) is approximated by a
constant f(k7). The signal can be numerically found

with!”
. K
E ~ (U . <H exp[—T(pA +iq f(k7) B)]) U*)
k=0
(132)
or, for the reflecting boundary condition, with
K
E ~ H exp[—7(pA +iq f(kT) B)] (133)
k=0 0,0

This is an extension of the Barzykin’s numerical approach
to an arbitrary spatial profile B(r) of the magnetic field.
The crucial point is that an unbounded increase of the
eigenvalues A\, with m allows one to truncate the infinite-
dimension matrices B and A to moderate sizes (since the
matrix A stands as argument of the exponential func-
tion). Further computation of the matrix product in
(132) or (133) with the help of commercial softwares like
Matlab, Maple or Matematica is rapid and very accurate.
This technique can be readily implemented for “basic”
domains for which the matrices B and A are explicitly

16 The surface relaxation attenuates the signal even in the case
when no diffusion-sensitizing magnetic field is applied (¢ = 0).
It is then convenient to normalize the signal with ¢ > 0 by the
signal at ¢ = 0,

(U - exp[—(pA + igB)]U*)
(U - exp[—pA]U*)

Enorm =

This normalization is not needed for the reflecting boundary con-
dition, for which (U - exp[—pAJU*) = 1.

17 It is worth to note that the matrices B and A do not commute,
so that the product in (132) cannot be “reduced” to

K

exp [—7 Y (pA+iq f(k7)B)| .
k=0
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known.When the geometry of the confining domain {2 is
more complicated, one needs first to compute the eigen-
basis of the Laplace operator in order to build B and A.
This is a classical problem in applied mathematics for
which a number of efficient numerical algorithms have
been developed. As for the “basic” domains, one needs
only a small number of eigenmodes.

Note that the general matrix representation (51) of the
moments E{¢"} could be derived from the expression
(133) in the limit 7 — 0 and K — oo. The main steps
of such a derivation for a similar case of the multiple
propagator approach are shown in Appendix E.

B. 0Odd order moments

The series expansion (46) of the signal E involves, in
general, both even and odd moments E{¢"} of the ran-
dom phase ¢. In the literature, the odd moments form-
ing the imaginary part of the signal are somehow missed:
some authors proposed heuristic arguments or specific
assumptions to neglect them (e.g., inversion symmetry
of the confining domain), the others passed over in si-
lence. In this subsection, we would like to discuss why
the odd moments do not contribute, at least for typical
cases considered in the literature. At the same time, seve-
ral counter-examples will be given to illustrate a possible
deviation from this common belief.

1. First moment

Although the results of this subsection could be derived
directly from Eq. (51), we would like first to give an intui-
tive feeling for the reason why odd moments may or may
not disappear under certain conditions. By definition,
the first moment E{¢} is equal to the f-weighted time
average of the expectation E{B(X;)}. Here the magnetic
field spatial profile B(r) is averaged over all possible tra-
jectories of the reflected Brownian motion started from
uniformly distributed initial position (the density p(r)
is typically uniform for reflecting boundaries). In other
words, the expectation E{B(X;)} can be written as

E{B(X,)} = %/dr o(r,t), (134)

Q

where v(r, t) is the expectation for the reflected Brownian
motion started from a fixed point r:
v(r,t) = E{B(X:) | Xo =r}. (135)

Note that this function is a solution of the diffusion equa-
tion

(% _ DA) o(r,t) = 0, (136)



with the Neumann boundary condition and v(r,t = 0) =
B(r). Consequently, the function v(r,t) can be inter-
preted as a “density of pseudo-particles” diffusing in do-
main ) with reflecting boundary. The magnetic field
B(r) formally appears as the “initial density of pseudo-
particles”, while the expectation E{ B(X})} gives the “to-
tal number of pseudo-particles” at time t. Note that this
is only a formal illustration since the magnetic field B(r)
can be negative. Since the boundary is reflecting, there
is no loss of these “pseudo-particles”, and E{B(X;)} is
constant for any t:

B(B(X)} = B{B(X0)} = 1. [ dr B

Q

(137)

This result could be derived directly from Eq. (51) for
n =1

E{B(X,)} = [B],, = %/dr B(r). (138)
Q

From this point, different situations can be considered:

1. If the magnetic field B(r) is such that its integral
over domain € is equal to 0, then the first moment
E{¢} is zero for any temporal profile f(t). This is
the case for a linear gradient B(r) = rcosf in a
cylinder, a sphere, and a centered interval (—1,1).
However, this condition is limited to symmetric do-
mains and linear gradients. For example, it is im-
possible to satisfy neither for a linear gradient in
a non-symmetric domain nor for a parabolic mag-
netic field.

2. If the temporal profile f(¢t) satisfies the rephasing
condition (36), the constant expectation E{B(X})}
vanishes for any magnetic field spatial profile B(r),
leading to E{¢} = 0.

3. If none of the above conditions is satisfied, the first
moment E{¢} is not zero, providing a nontrivial
contribution to the imaginary part of the signal F.

An example of a nontrivial contribution from the first
moment can be given if the boundary is relaxing. In
this case, E{B(X;)} can be still interpreted as the “total
number of pseudo-particles” which, in turn, varies in time
due to the surface relaxation. Except for very specific
cases, its f-weighted time average is not zero and the
first moment does contribute.

These examples show that the situation with odd mo-
ments is not so simple as commonly believed. Moreover,
the above analysis cannot be directly applied to higher
order moments. For instance, the zero integral of the
magnetic field spatial profile (By,0 = 0) is not sufficient
to cancel higher odd moments since B, ,, are not neces-
sarily zero for m > 0. On the other hand, their cancella-
tion due to the rephasing condition (36) remains an open
question. In the next subsection, we give the proof in one
case. A more detailed analysis, which would clarify the
role of these moments, is out of the scope of this paper.
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2. Antisymmetric temporal profiles

The most interesting situation corresponds to a cancel-
lation of odd moments for an arbitrary spatial profile of
the magnetic field due the rephasing condition. However,
its derivation is much more difficult and would require a
more profound study of the f-weighted time averages.
Here we focus on a specific case when the temporal pro-
file is antisymmetric with respect to the point 1/2, i.e.,

fA=1) = —=f@).

A simple algebraic proof is based on the approximate re-
lation of the subsection VI.A. Indeed, let us separate
the matrix product in Eq. (133) in two parts: the first
K /2 factors remain unchanged, while the next K/2 fac-
tors are modified according to a simple matrix identity
XY = (Y*X*)*

(139)

*

K/2 K/2
E ~ H e~ TlpA+igBf (k)] H o~ TIPA—igBF (K —k)7)]
=0 h=0 0,0
(140)
In the second product, one uses f((K — k)7) = —f(k7)
to obtain
K/2 K/2 *
E~ H e~ TIPA+igBf (kT)] H o—TIPA+igBf (kT)]
h=0 h=0 0,0

(141)
It is clear now that the matrix in big square brackets is
real-valued as the product of two matrices, one of them
being the complex conjugate of the other. Consequently,
the imaginary part of the signal F is zero, so that all odd
moments vanish. To complete the derivation, one takes
the limit 7 — 0 (and K — o00).

Since the usual temporal profiles (Stejskal-Tanner, si-
nusoidal, etc.) satisfy the condition (139) or its varia-
tions, the problem of the odd moments in such typical
cases is now solved. We conjecture that the rephasing
condition (36) is sufficient for cancellation of the odd
moments in general. Its mathematical demonstration re-
mains an interesting open problem.

C. Cumulant expansion

The knowledge of the even moments of the random
phase ¢ gives the macroscopic signal in the form of a
series expansion (46). The basic properties of the expo-
nential function allow one to find also the series repre-
sentation of the logarithm of the signal which is called
“cumulant expansion”:

InE = i CO" | gon (142)
n=1

(2n)!

Here < ¢?" . denote so-called “cumulants” or “cumu-
lant moments” which can be expressed through the “or-



dinary” moments, for example,

< ¢ == F{¢?}, < o' == E{¢'} - 3(E{s°})°, ..
(143)
(under the condition that odd moments are zero). The
characteristic feature of the cumulant expansion is that
the fourth and higher order cumulant moments are ex-
actly zero for a Gaussian phase ¢. In this case, the cu-
mulant expansion is naturally truncated to the second
moment, and one obviously retrieves the Gaussian form
of the signal. If the phase is not Gaussian, the cumu-
lant expansion gives the higher order corrections to the
Gaussian behavior. The fourth and higher cumulant mo-
ments indicate to which extent the Gaussian phase ap-
proximation remains valid. For this reason, the cumulant
expansion was preferred by some authors to the ordinary
expansion. At the same time, it should be clear that
both representations contain exactly the same informa-
tion about the signal E.

In spite of its apparent convenience, the cumulant ex-
pansion has an important mathematical “defect”. As
was recently discussed by Frghlich et al. (2006), the cu-
mulant expansion has a limited convergence radius. It
means that the series expansion (142) converges only in-
side a certain disk in the complex plane of values ¢. In
other words, there exists a critical value g. such that the
above relation is divergent for ¢ > ¢g. (see Frghlich et al.
(2006) for a more detailed discussion on this topic). At
the same time, the “ordinary” expansion (46) is abso-
lutely convergent for any value of gq.

D. Apparent diffusion coefficient

Under weak diffusion-sensitizing magnetic field (¢ <
1), the signal is mainly determined by the second mo-
ment E{¢?/2}, while the higher order moments can be
neglected, i.e.,

E o 1- ¢?B{¢%/2} ~ exp[—¢?B{¢?/2}],  (144)

whatever the magnitude of the dimensionless diffusion
coefficient p. In the limit p — 0, the second moment
E{¢?/2} is proportional to p according to (73), whence
In E o< ¢*p o< D. When p increases, the second moment
is not necessarily dominated by its leading term, and
In F is not proportional to the free diffusion coefficient D
any more. This deviation was experimentally observed
by Woessner (1963) and traditionally characterized by
apparent (or effective) diffusion coefficient (ADC). In our
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notations, the ADC can be defined as'®

-1
2
Do ()2} {p < (0 - )%, - [ de [VB@)P
%4
Q
(145)
The ratio D/Dgpp is called “tortuosity” and considered
as important macroscopic characteristics of porous mate-
rials or biological tissues (Helmer et al., 1995,b; Latour et
al., 1993; Mair et al., 1999; Mitra et al., 1992, 1993). It
shows how the diffusion of spins is “slowed down” by the
presence of restrictive boundaries. In other words, the
unrestricted diffusion of spins with the apparent diffu-
sion coefficient Dy, is meant to represent the restricted
diffusion of spins with their free diffusion coefficient D.
Of course, this qualitative picture is just a simplified in-
terpretation of restricted diffusion. Nonetheless, the ap-
parent diffusion coefficient was used for a long time as
a convenient characteristics for the confining geometry
of porous materials or biological tissues. For example,
human lung diseases like emphysema can be identified
by an increase of the ADC due to enlargement or par-
tial destruction of the alveolar tissue (Moller et al., 2002;
Saam et al., 2000; van Beek et al., 2004; Yablonskiy et
al., 2002). In spite of numerous applications of the ADC
in different branches of the NMR industry, this notion
remains limited to the first order approximation (144) of
the general series expansion (46).

The apparent diffusion coefficient is directly related
to another widely used concept of “b-value” or “b-
coefficient”. To find the ADC in experiment, one mea-
sures the macroscopic signal as a function of the param-
eters of the applied magnetic field (typically, gradient in-
tensity g or duration T'). The substitution of the second
moment, expressed from (144) as E{¢?/2} ~ —In E/¢?,

18 We should note that this “NMR definition” is not similar to the
“classical” definition, when time-dependent diffusion coefficient
D(t) appeared as a measure of the mean square displacements
in time ¢,

E{ [r(t) — r(0)]?} = 2d D(¢) t.
As a “kinetic” characteristic of the reflected Brownian motion,
D(¢) is totally independent of the applied magnetic field, while
the NMR diffusion coefficient (ADC) is sensitive to its temporal
and spatial profiles. In our notations, the “kinetic” diffusion
coefficient can be written as a function of p according to

D(p) = D (2pd)~' E{ [B(X1) — B(X0)]*},

where B(r) = r/L is a formal notation. For reflecting boundary,
one obtains a compact matrix form

D(p) = D (pd) "' [B(I — e PM)B] .
In the limit p — 0, one retrieves D(p) — D as required. A similar
relation, written in a form of series expansion, can be recognized
in (Mitra et al., 1993), where it was derived for a sphere with
reflecting boundary. In the remainder of this review, we shall
consider the NMR diffusion coefficient only.



to (145) leads to a simple relation

—InFE
b )

Dapp ~ (146)

where the b-value is defined as

a*p

L2
b= "5 <(t —t2)>, 7/dr |VB(r)|?. (147)
Q

This is an extension of the classical definition, b =
v2g*T3 /12, to the case of arbitrary spatial and temporal
profile of the magnetic field. The relation (146) is often
written as
E ~ ¢ bDars, (148)

While the ADC is intended to represent the effect of
confining geometry, the b-value resumes all information
about the applied magnetic field. The fact that a single
parameter might be used to describe the whole exper-
imental setup was widely employed in practical appli-
cations, particularly in medical imaging. For example,
some authors gave b-value without even mentioning the
gradient intensity, duration or temporal profile. It should
be however clear that such a simplification is exagger-
ated. Since the diffusive NMR phenomena are governed
by at least two independent parameters p and ¢, the b-
value alone cannot capture the whole picture. We stress
that the b-value is only a useful notation for the com-
bination of different parameters in Eq. (147). We shall
illustrate this point by the following example.

For the slow diffusion regime (p < 1), the second mo-
ment E{¢?/2} is given by Eq. (90), whence one gets

< (tg - t1)3/2 >,
Dapp ~ D (1 — /D 12 — "2 (149)

< (tQ — tl) >2

where a linear magnetic field gradient was considered. In
particular, one retrieves the results by Mitra et al. (1992)
and de Swiet and Sen (1994) for narrow-pulse and steady
temporal profiles:

Dapp 4
~ 1 — DT/2 — 1
D 3T 2 v (150)
and
Dapp 32(2v2 — 1) S
~1 - V/DT/2 = 151
D 105y/7 2y (151)

respectively, where Eqs. (100, 102) were used.

The relation (149) does not depend at all on the di-
mensionless gradient intensity g. Consequently, the pa-
rameters ¢ and p can be changed in such a way that Dgpp
would be substantially modified according to (149), while
the b-value is kept fixed. This simple example shows that
two experiments with the same b-value can give very dif-
ferent values of ADC. The knowledge of the b-value alone
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is not sufficient to compare different medical measure-
ments presented in the literature (e.g., ADC maps of the
lungs). At this point, we remind that the notion of ADC
and relations (146), (148) are applicable only when the
Gaussian phase approximation is valid.

In the motional narrowing regime (p > 1), one gets
the second moment from (107) so that

Dapp ~D (pO/p)Qa (152)

where

1
Cfl 2
o0 O/dt fE(0).

The coefficient p represents the relevant information
about the temporal and spatial profiles of the magnetic
field, as well as about the confining geometry. We pro-
pose a simple interpolation formula between very slow
diffusion (Dgpp ~ D) and motional narrowing regimes:

(153)

v

Dapp =~ D (14 (p/po)®) " (154)
Note that this relation does not account for the p'/? cor-
rection of the slow diffusion regime. As the notion of the
apparent diffusion coefficient itself, this formula may be
used only for the magnetic fields of relatively small inten-
sity when the Gaussian form of the macroscopic signal is
still valid.

Both theoretical relations (149) and (154) can be com-
pared to the recent experimental measurement of the
apparent diffusion coefficient by Hayden et al. (2004).
In their setup, a cylindrical borosilicate glass cell of
diameter L = 4.82 cm was filled with helium-3 gas
(v ~2.04-10% rad T~!s™!) to a pressure of 1 Torr. The
rescaling of the experimental conditions (temperature
and pressure) to a reference measurement gave the free
diffusion coefficient D ~ 0.14 m?/s (Barbé et al., 1974;
Bendt, 1958). The steady linear magnetic field gradient
was applied in a perpendicular direction to the cylinder
axis. The apparent diffusion coefficient D,p, was mea-
sured for different echo times 7. We remind that, for this
particular case, one has pg = 4/(3+/w) and (_1 = 7/96,
while the f-weighted time averages < (t2 — ¢1) >, and
< (ty — t1)3/? >, are given by (101) for the steady tem-
poral profile. One then finds p3 = 7/8.

The comparison between the experimental data and
the above theoretical relations is shown in Fig. 5. For
the slow diffusion regime (small p), the relation (149) re-
mains in a very good agreement with experiment, until
the correction term exceeds unity. From this point, the
apparent diffusion coefficient is negative, and the slow
diffusion regime becomes invalid. In the motional nar-
rowing regime (large p), one observes the expected be-
havior p~2. The use of the interpolation formula (154) al-
lows one to avoid unphysical divergence when p is getting
smaller. Note that this formula gives good results even
for very small p, when the motional narrowing regime is
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FIG. 5 Apparent diffusion coefficient as a function of p for a
cylindrical cell. The slow diffusion correction (149) and the in-
terpolation formula (154) are compared to the spin-echo mea-
surements in a borosilicate glass cell by Hayden et al. (2004).
The shown experimental data have been communicated to the
author by Dr. M. E. Hayden.

not formally applicable. In this region, the small devia-
tion to the experimental data is related to the slow dif-
fusion correction term which was not taken into account
in Eq. (154). In summary, one can see that both theoret-
ical relations are in good agreement with experimental
measurements over four orders of magnitude. This result
may look more exciting if one recalls that there are no
adjustable parameters in the theoretical relations.

E. Narrow-pulse approximation

The Stejskal-Tanner profile (52) in the limit of vanish-
ing pulse duration §, known as “narrow- (or short-) pulse
approximation”, has been applied for a long time to study
restricted diffusion.'® Its main advantage is that diffu-
sive motion during these short pulses can be neglected,
so that the accumulated phase becomes

¢ ~ 6B(Xo) — 6B(X1/2), (155)

and one gets the signal in a simple form

£ = [ dro ptro) [ dr expliad(Blra) B )] Gryaeo.v),
Q Q

(156)
where the time moment T/2 corresponds to the appli-
cation of the second narrow pulse. The combination g
is kept fixed in the limit § — 0, so that the magnetic
field strength ¢ must go to infinity. For a linear mag-
netic field gradient, the macroscopic signal appears as the
Fourier transform (13) of the Green function. A complete
separation of the geometrical properties of the confining
domain (represented by the Green function) and spatial

19 Balinov et al. (1994); Callaghan (1991); Callaghan et al. (1991);
Coy and Callaghan (1994); King et al. (1994); Kuchel et al
(1996); Sen et al. (1995); Séderman and Jonsson (1995); Tan-
ner and Stejskal (1968). See also references in subsection II.D.
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inhomogeneities of the magnetic field allowed to obtain a
number of important theoretical results. This concept of
“g-imaging” provided a direct experimental measurement
of the Green function.? In particular, one can expect an
oscillatory behavior related to the geometrical structure
of the confining medium (Callaghan, 1991). To illustrate
this effect, one can again expand the Green function over
the Laplace operator eigenbasis. In the case of uniform
initial density p(r), the macroscopic signal from (156)
takes a simple matrix form:

E = |:eiq68 e—pA/Q e—iq68:| (157)

0,0

The elements of the matrix e’48 were found explicitly
for three basic domains (see Table I). For instance, the
calculation for a slab geometry with reflecting boundary
condition gives?!

. EmEm/
[ezq53] - — 5 |:1/)m_m/(q5)+’l/)m+m/ (q5):| ) (158)
where

Ym(qd) = (-1)™q0 3 {sinq& +i((—=1)™ — cos qé)} .

(¢9) — (wm)
(159)

The substitution of this result into (157) leads to the
classical form of the signal attenuation in a slab geometry
within the narrow-pulse approximation:

2(1 — cos ¢d) +4(g0)? i o—mm?p/2 1—(=1)™cos q(i .
(49)” [(a0)2 = (7m)?]
(160)
If the echo time 7 is long enough (p > 2/7?), the second
term can be omitted, and the signal exhibits “diffraction-
like” oscillations. Since the dimensionless parameter q is
defined as yg LT, the behavior of the macroscopic signal
as a function of the gradient intensity g allows one to
determine the distance L between parallel plates of a slab

geometry, i.e., to probe this geometry experimentally.

The applicability of the narrow-pulse approximation
was thoroughly studied (Blees, 1994; Lori et al., 2003;

m=1

20 The “g-space” parameter ygd/2m introduced in Callaghan (1991)
and frequently used in the literature on the narrow-pulse approx-
imation should not be confused with our dimensionless parameter
q=~9TL.

The matrix e naturally appears in the multiple propagator
approach (see Appendix E). In the case of a cylinder and a
sphere, its elements [eiq‘m} o for any m and m’ were obtained
by Codd and Callaghan (199’9) for the Fourier boundary condi-
tion (10). Another representation for the Neumann boundary
condition (11) was given by Sukstanskii and Yablonskiy (2002).
In both cases, the expressions are cumbersome and have to be
computed numerically. However, the calculation of the signal
by Eq. (157) requires the knowledge of the elements [eiq‘m]o

alone, and their expressions are simpler (see Table I, L11).

21 iq6B

,m



E
1 - ‘
S o NPA
N 5=0.01
0.8F . -- 3=01 |
.
N
N
N
0.61 iR 1
N
N
0.4r A 1
> \\
R N
0.2F N 1
0 ‘ ‘ T
0 2 4 6 8 10

FIG. 6 Macroscopic signal as a function of ¢d is found an-
alytically within the narrow-pulse approximation (circles),
and numerically by the MCF approach for 6 = 0.01 (solid
line) and § = 0.1 (dashes line). The physical parameters
(D=23-10""m?/s, L =1.6-10"° m, T = 0.22 s) qualita-
tively correspond to that from (Callaghan et al., 1991). One
sees that the approximate relation (160) is not applicable for
0 = 0.1 since the condition dp < 1 fails (here p ~ 2).

Mair et al., 2002; Malmborg et al., 2004; Price et al.,
2003; Wang et al., 1995, etc.). Its practical application is
limited by the assumption about a short durationdT" of
gradient pulses with respect to the characteristic diffusion
time L?/D, i.e., 6p < 1. If p is too small, the diffraction
effects are dumped by a number of terms in the sum. In
fact, it can be shown that the relation (160) is reduced
to E ~ 1 — ¢?p(6%/2) that can be written in a classical
Gaussian form

E ~ exp[—¢* p 62/2]. (161)

In this case, there is no need to use the narrow-pulse
approximation. In the opposite limit of large p, the
diffraction effects would appear (Fig. 6), but the condi-
tion dp <« 1 is more difficult to realize in experiment
(since the gradient pulse duration § is limited by in-
strumental constraints). In spite of this difficulty, the
“diffusion diffraction” was experimentally observed for
the first time in a water-saturated, orientationally disor-
dered, loosely packed array of monodisperse polystyrene
spheres by Callaghan et al. (1991).

The narrow-pulse approximation may also be valuable
to give an intuitive feeling how the other more sophis-
ticated techniques work. For instance, its use as a sim-
plified temporal profile helps to better understand the
properties of the f-weighted time average in the MCF
approach. In the limit § — 0, the f-weighted time aver-
age of a smooth function F(¢1,...,t,) is reduced to

5" 11
F(t,ntn)> ~—Y (-1)FCk F ==
< (17 ’ )>n n! Z( ) Cn <0507 7272)5
k=0 —~~
k times
(162)
where C* are the binomial coefficients. For example,

52 1 11
<F(t1,t2) >, ~ 3(F(o,o) — 2F(0,§) +F(§, 5))

(163)
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This general result can now be used to write the moments
as

E {ﬂ} ~ 5—n <(1 +(=1)")[B"]4,

n—1

+ ) (~1)FCF[Bre PN 2R 070) :
k=1

(164)

A further analysis is significantly simplified by using
this relation. For instance, one can easily check that
all odd moments vanish since [BFe PA/2Bn—H],, =
[Bn—ke=PA/2BK]; . Note that the relation (164) could
be derived directly from Eq. (156) by using the spec-
tral decomposition (25) of the Green function within the
narrow-pulse approximation.

Another representation for the even moments can be
derived by expanding the exponential function in (156):

E{%} - %!dro P(ro)!dr Gz (o, )%

x [B(re) — B(r)]*".
(165)

The spectral decomposition of the Green function allows
one to study the dependence of these moments on the
parameter p. In particular, one can rigorously obtain
their leading terms (see Appendix F for a sketch of this
derivation):

E{ i }N P (62/2)" LTQn/dr |VB(r)*"
Q

(2n)! n!

(166)
This is a particular form of the general relation (76) in the
case of the narrow-pulse profile, for which the f-weighted
time average < (t; — t2) >, is §2/2. While the general
result was demonstrated for n = 1,2 and conjectured for
higher n, the relation (166) is proven for any n. This
example may illustrate the use of the narrow-pulse ap-
proximation as an investigation tool.

F. Localization regime

In previous sections, we have considered the behavior
of the moments E{¢?"} in two asymptotic limits, when
the dimensionless diffusion coefficient p goes to zero or
infinity. In both cases, the leading terms could be sat-
isfactory only for very small or very high values of p.
The use of correction terms significantly improved the
quality of the results, but was still insufficient to de-
scribe the behavior for intermediate values of p. More-
over, our analysis was essentially focused on the second
and fourth moments. If the dimensionless magnetic field
strength ¢ is small, these moments provide the most sig-
nificant contribution to the signal and contain exhaus-
tive information about its attenuation. However, when ¢



increases, a larger number of moments is needed to ac-
curately compute the signal E. One may thus expect
to observe a new kind of behavior for sufficiently intense
magnetic fields. This is actually the case. If the dephas-
ing length (D/vg)'/? is much smaller than the diffusion
length /DT and the characteristic dimension L of the
domain, a new localization regime appears (de Swiet and
Sen, 1994; Stoller et al., 1991). In this case, the spins
of the “bulk” diffuse over several dephasing lengths so
that their net contribution to the total magnetization
vanishes. The macroscopic signal is thus formed by the
spins close to the interface whose dephasing is less pro-
nounced. In our notation, this situation corresponds to
g>pand ¢>p> 1.

Stoller et al. (1991) gave the first theoretical study of
this regime for one-dimensional diffusion. Using an exact
resolution of the one-dimensional Bloch-Torrey equation
(9) and analyzing of the underlying spectral problem,
they showed a non-Gaussian behavior of the signal E:

Ey

E~C(p/q)'/® exp {—7 (qu)l/g] : (167)

where F;1 ~ 1.0188 is the first root of the derivative of the
Airy function. The numerical prefactor C' was found to
be 5.884 for a slab geometry. The dependence (167) and
its significance for NMR applications were discussed by
different authors (de Swiet and Sen, 1994; Hiirlimann et
al., 1995; Sen et al., 1999). In particular, the coefficient
E1/2 was argued to be independent of the confining ge-
ometry.

Four years later, the above theoretical prediction was
observed by spin-echo technique. An elegant experi-
ment of Hiirlimann et al. (1995) definitely destroyed
the myth of “almighty” Gaussian phase approximation
and dispelled last doubts about the localization regime.
Hiirlimann et al. studied restricted diffusion of water
molecules (D =~ 2.3 - 1072 m?/s) between two parallel
plates at distance L = 0.16 mm. The signal attenuation
was measured as a function of the gradient intensity g.
Even for long-time gradient pulses (I" = 120 ms), the
dimensionless diffusion coefficient p was small (p ~ 0.01)
so that the slow diffusion regime, with a Gaussian g*-
dependence, could be expected. This was actually ob-
served for the gradient applied in a longitudinal (unre-
stricted) direction. Figure 7 shows a good agreement be-
tween experimental points (squares) and theoretical pre-
diction (dash-dotted line) by the classical Hahn’s relation
(3).

The situation became completely different when the
gradient had been turned on the direction perpendicular
to the plates (circles in Fig. 7). A drastic deviation from
the Gaussian g?-dependence of the In E can be clearly
seen at gradient intensity higher than 15 mT/m (¢* >
0.6 - 10%). This behavior cannot be attributed neither to
the slow diffusion limit, nor to the motional narrowing
regime. Neither an apparent diffusion coefficient, nor any
related concept has meaning in this localization regime.
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Figure 7 shows that the experimental data are in a
qualitative agreement with the predictions by Stoller et
al. (diamonds). A small deviation from the theoreti-
cal relation (167) is mainly caused by surface relaxation.
To illustrate this point, we have numerically calculated
the macroscopic signal by MCF approach. The dashed
line, corresponding to the Neumann boundary condition
(11), confirms a good precision of the Stoller’s theory in
the case when the surface relaxation can be neglected
(K =0 or h=0). To fit better the experimental points,
we calculated the signal for different values of the dimen-
sionless surface relaxation h. The solid line corresponds
to the Fourier boundary condition (10) with A = 2 (or
K ~28.8 ym/s).?

The most exciting feature of the observation by
Hiirlimann et al. is that the localization regime is ob-
served under ordinary experimental conditions. In view
of the above results, a number of theoretical questions
arises. A formal expansion of the exponential function
in (167) leads to a series of fractional powers of p and q.
This is probably not surprising with respect to p, since
we have already seen fractional powers of p in the correc-
tion term to the slow diffusion regime. In contrast, the
fractional powers of ¢ would be in contradiction to the
fact that the signal F must be an analytical function of
g. Of course, the relation (167) has to be considered as
an asymptotic behavior for pg? > 1 so that the above
expansion is not formally allowed. Nevertheless, the pas-
sage from the general expansion (46) to this asymptotic
form is intriguing. In spite of a considerable theoretical
work, this question remains still open. The MCF ap-
proach may help to shed a new light on this interesting
problem. Since this description is not restricted to a par-
ticular choice of parameters p and ¢, it can reproduce, at
least numerically, any feature of the signal attenuation,
including the localization regime. Its theoretical analysis
would require a systematic technique for calculating the
moments E{¢™} of high orders.

At first sight, the problematic of the localization
regime may look like a mathematical puzzle of limited
practical interest. We believe, however, that a better un-
derstanding of the nature of this specific non-Gaussian
behavior will enrich our knowledge about diffusive NMR
phenomena in general. Moreover, some recent researches
showed a potential importance of the localization regime
for restricted diffusion in lungs (Grebenkov and Guillot,
2006).

22 This value of the surface relaxation K is given for illustrative pur-
pose only. A more profound analysis of the localization regime
in presence of surface relaxation is certainly required and will be
helpful to accurately determine this characteristic. Some other
possible sources of deviation between the theory and the experi-
ment were mentioned by Hirlimann et al. (1995).
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FIG. 7 Illustration of a drastic deviation from a Gaussian be-
havior at high gradient intensity. At logarithmic scale, experi-
mental data for free diffusion (when the gradient applied along
unrestricted direction) fall onto the straight line —¢*p/12 as
expected. In contrast, experimental data for restricted diffu-
sion follow the theoretical relation (167). A small deviation
from this behavior is mainly caused by surface relaxation as
shown by numerical analysis. The shown experimental data
from (Hiirlimann et al., 1995), have been communicated to
the author by Dr. M. D. Hiirlimann.

G. Unrestricted diffusion

The unrestricted diffusion (“ordinary” Brownian mo-
tion in the whole space) was always considered as the
most simple situation for theoretical analysis since the
Green function Gy(r,r’) takes an explicit Gaussian form:

(r—r')?2

Gi(r,x') = (47rDt)7d/2 exp [ D

] . (168)

d being the dimension of the space. Unfortunately, the
unrestricted diffusion brings a number of specific unphy-
sical artifacts like infinite volume of the bulk or infinite
magnetic field in the case of a linear gradient. More-
over, the use of a usually appropriate uniform spin den-
sity would require an infinite amount of spins producing
infinite signal at time ¢ = 0. Indeed, the exact solution
of the Bloch-Torrey equation (9) in the one-dimensional
space R under steady magnetic field B(xz) = gz of lin-
ear gradient g (without rephasing condition) gives the
magnetization density m(z,t) as

m(z,t) = expliygrt] exp[—D~?g*t?/3] (169)

(Borodin and Salminen, 1996; Torrey, 1956). The sec-
ond factor can be easily recognized as Hahn’s attenuation
(Hahn, 1950). However, the integration of the above re-
lation over the bulk R with uniform initial density gives a
delta-function §(vygt) which has a simple physical mean-
ing. At time ¢ = 0, an infinite amount of spins are in
phase producing an infinite macroscopic signal. At late
times ¢t > 0, the dephasing of an infinity of spins totally
cancels the signal. In the literature, some tricks have
been suggested to overcome this divergence. In our opin-
ion, the only rigorous way to avoid such difficulties is to
work directly with confining domains.
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In this light, the passage from restricted to unre-
stricted diffusion is delicate. In particular, for ty-
pical magnetic fields B(r), the correlation functions
E{B(X},)...B(X:,)} given by Eq. (24) diverge after inte-
gration with uniform initial density p(rg). On the other
hand, the Stejskal-Tanner formula (90) for the macro-
scopic signal is independent of the characteristic dimen-
sion of the domain in the case of linear gradients, and can
thus be applied for unrestricted diffusion. A similar ar-
gument fails in other cases, e.g., for a parabolic magnetic
field.

VIil. CONCLUSION

The fascinating properties of the Brownian motion
have attracted scientists for more than one and a half
centuries from its discovery in 1827. Among a variety
of related scientific domains, nuclear magnetic resonance
provides an efficient experimental tool to survey the dif-
fusive motion by a direct measurement of different func-
tionals of this stochastic process. A voluntary choice of
the temporal and spatial profiles of the applied magnetic
field makes possible, in principle, a complete experimen-
tal analysis of Brownian trajectories. The presence of
a confining boundary makes this problem still more in-
triguing. On the other hand, the specific properties of
the reflected Brownian motion are at the origin of the
diversity and complexity of diffusive NMR phenomena
observed in experiments. In spite of intensive theoretical
investigation during the last five decades, a lot of impor-
tant questions remain open.

The main aim of this review was to show in an origi-
nal unified way the progressive development in this field
from the Hahn’s discovery of spin echoes till nowadays.
For this purpose, the multiple correlation function ap-
proach was first established and then used to retrieve,
extend and critically discuss a number of classical re-
sults. This approach makes possible a theoretical analysis
of restricted diffusion in confining media under arbitrary
magnetic field. Its spatial inhomogeneities are naturally
included via matrix elements B,, », in the Laplace op-
erator eigenbasis. In turn, the dependence on time was
taken into account as the f-weighted time average of the
multiple correction functions. A thorough analysis of the
second and higher order moments of the random phase
accumulated by a diffusing spin in magnetic field allowed
us to retrieve some classical results in a more general
form. For instance, the slow diffusion and motional nar-
rowing regimes were extended to arbitrary temporal and
spatial profiles of the magnetic field. A further analysis
of high order moments will allow to specify the validity
ranges of the Gaussian phase approximation. The study
of corrections to the leading terms also gave new results.
In the slow diffusion regime, the results by Mitra et al.
have been generalized for arbitrary temporal and spa-
tial profiles. The obtained relations were reinterpreted
in order to precise the meaning of the surface-to-volume



ratio which appeared as a prefactor in the correction
term. In the motional narrowing regime, the classical
corrections, first found by Robertson (1966) and Neu-
man (1974), have been extended and critically discussed.
In particular, we have shown that the form of these cor-
rections strongly depends on the temporal profile of the
magnetic field. The slow diffusion correction term and
a simple interpolation formula have been compared to
experimental measurements of the apparent diffusion co-
efficient in a cylindrical cell. Although we could proceed
far enough, a systematic computational technique to op-
erate with the temporal and spatial averages for high
order moments is still required.

Two simplifying assumptions were used to advance the
analysis. The computation of the f-weighted time ave-
rages was significantly easier due to the rephasing condi-
tion which, in turn, was required for echo formation. The
derivation of the results for the fourth moment and the
cancellation of odd moments were mainly based on this
condition. The second assumption about the Neumann
boundary condition concerned the spatial averages. For
instance, an analytical computation of the coefficients
(. called for the fact that the ground eigenstate uy was
constant (and the corresponding eigenvalue was zero).
In principle, one could try to reproduce the analytical
results of this paper in a more general context, includ-
ing relaxing interfaces or non-rephased temporal profiles.
However, this effort seems to be rather of an academic
interest since the numerical analysis of the problem can
be easily performed in a general case.

The lack of a complete theory of restricted diffusion in
confining media under arbitrary magnetic field was prob-
ably one of the main obstacles in developing experimen-
tal NMR techniques with specifically designed temporal
and spatial profiles. The use of nonlinear fields beyond
a simple linear gradient may help to enhance the par-
ticular geometrical features of a sample. For instance, a
spatial profile with two local minima at fixed locations or
with a local “valley” would enable one to study the dif-
fusive motion of spins between these locations (since the
contribution of other spins would be much more atten-
uated by higher magnetic field). A periodic distribution
of B(r) might be also of practical interest to enhance dif-
fusion diffraction. At the same time, the susceptibility-
induced or random magnetic fields can now be treated
in an efficient numerical way. This would be a promis-
ing extension of some interesting techniques,?? developed
originally for the whole space, to a more realistic case of
confining media. On the other hand, an opportunity of
using various temporal profiles of the magnetic field is
not explored yet. While the induction of a nonlinear
magnetic field presents an experimental challenge for it-
self, the design of specific temporal profiles is somewhat

23 (Kiselev and Posse, 1998; Kiselev and Novikov, 2002; Mitra and
Le Doussal, 1991; Sukstanskii and Yablonskiy, 2003, 2004).
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readily accessible. For instance, the temporal profile op-
timization might be useful to increase the contribution
of the correction term in the slow diffusion regime.

The MCF approach creates a mathematical basis for
a new promising branch of computational NMR anal-
ysis. Combined with numerical tools in electrodynam-
ics, it makes possible a complete study of the diffusive
phenomena in coils which can be specifically designed to
generate nonlinear diffusion-sensitizing magnetic fields.
Indeed, one can first calculate the spatial profile of the
magnetic field in a chosen geometry, and then use this
profile to predict the consequent signal attenuation in a
NMR experiment. This analysis will help to design the
gradient coils whose selective properties will be adapted
to enhance a particular property of the restricted motion.

The scientific interest of diffusive NMR, phenomena is
actually far beyond their role for the experimental study
of porous materials or biological tissues. As we have
shown in this review, a close relation to the probabil-
ity theory should make them attractive for mathemati-
cians investigating the reflected Brownian motion. From
this methodological point of view, a rigorous reformula-
tion of numerous physical results dispersed in the litera-
ture seems to be of great importance to bring new ideas
in this long-standing field. A number of open math-
ematical problems were outlined in previous sections.
Among them, we should stress a better understanding
of the transition between different diffusion limits, espe-
cially the passage to the localization regime. At last, the
inverse problem of determining the confining geometry
from the knowledge of the signal attenuation is unsolved
and of primary practical importance, for instance, to de-
tect the mineral oil in rocky structures or pathological
diseases in human organs.
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APPENDIX A: Fourth moment in the slow diffusion regime

In the slow diffusion regime, the leading term of the
fourth moment is expected to be of order of p?. To show
it, the exponential functions in (51) can be formally ex-
pended up to second orders in p. The f-weighted average
of a constant (order p°) vanishes due to the rephasing
condition. We first show that there is no contribution of
the first order, and then calculate the coefficient in front



of p?.

1. First order contribution

There are three terms of order p:

[BAB3]010 <(ty —t1) > + [B2AB2} 0.0%

3 (A1)
X <(t3 — t2)>4 + [B AB}O,O <(t4 — t3)>

The spatial averages are found by a field theory technique
briefly outlined in subsection IV.A:

[B°AB], , = [BABT],, = (8487, =
— 35 dr B*(r) |[VB(r)|*. (42)
Q
The f-weighted time averages are
<(ta—t1)>, =<(ta—t3)>, =
:7§ <(t3—t2)>4:7% Fy, (43)
where
1
F, = / dt [f()" (A4)
0
and the primitive
t
fo = [ar s) (45)
0

satisfies f(0) = f(1) = 0 due to the rephasing condition
(36). Consequently, the sum of the three terms in (A1)
is strictly zero. We have thus shown that there is no
contribution of the first order in p.

2. Second order contribution

The second order contribution to a formal series expan-
sion is given by the first diagonal element of the matrix

1 1
§(t2 —t1)?BA*B? + 2( 3 — t9)2B2A% B>+

1
§(t4 — t3)263A26 + (tg — ﬁl)(t3 — tg)BABABQ-i-

(tg — tl)(t4 — tg)BAB2AB + (tg — tg)(t4 — t3)82ABAB
(A6)

where the f-weighted time average has to be taken. The
computation of this coefficient in front of p? is compli-
cated by the fact that the six individual terms in this
expression are divergent (while their combination should
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converge). One thus need to use a renormalization pro-
cedure to regroup these terms in a convergent way.

The computation of the f-weighted time averages is
simple:

1
< (tg - t1)2 > = _6F1F3a
1
<(tz —ta)?>, = ZF223
1
< (t4 — t3)2 >4 = _6F1F3a
1 (A7)
<(t2—t1)(t3—t2)> :Z(F1F3 F22),
1
<(ﬁ2—ﬁ1)(ﬁ4—t3)> :—§(F1F3 F22),
1
<(tz —ta)(ts — t3)>, = 4(FlF3 F2)

A field theory technique used in subsection IV.A to de-
rive the relations (70), (72) can be applied here to calcu-
late the spatial averages. For example, the first diagonal
element of the matrix BA2B? can be written as

S [ [are ) upe0) 2, wnlr) Bra), (A8)
m Q

where the sum is taken from m = 1 to a large but fi-
nite cut-off. As previously, one replaces Apul, (r1) by
—L?Au, (r1) and A\t (r2) by —L?Au,,(r2), and then
uses the second Green formula for both integrals. The
result can be conveniently represented as

[BA*B%] 32 2XP +v,2 - 2@y (v, 0 _ ZO),

(A9)
where the following notations are introduced to lighten
the expressions:

X _ 2 / dr 1wy (r) B () [VB(r) 2,

Q

VAR L2/dr U (r) B¥(r) AB(r), (A10)
Q

z®) — L2/dr y, (r) BX(r) %B(r).
o

In a similar way, one finds five other spatial averages

[32A2[3’2 =4 Z’X(l) +y— Z(l)‘

[B°A%B] . = 32 2X@ + Y@ — 2@ (v, — z0),
[B°ABAB], =2 Z X@ 4y — 2@ (v - 20,
[BAB?AB], , = Z(yng?) — ZD) (v -z,
[BABAB?] 22 (XP + Y@ - z2) (v, - z0),

(A11)



The substitution of the temporal and spatial averages
into (A6) and further algebraic simplification gives the
leading term of the fourth moment as

¢ 1 2 F2 1) (1) _ 7
ES (=57 FQZ IXP v - Zz0P-
XD+ Y2 - 22) (v - 20)].
(A12)

This expression does not contain divergent terms, so that
the sum can be extended up to infinity. One then sub-
stitutes the notations (A10) and sums over m to get
d(ry; — ra). After integration, a number of terms in the
above expression vanish. One finally gets the leading
terms of the fourth moment:

4 1 L4
E{%} =3 p? (< (t1 —t2)>2)2 v/dr |VB(r)|* ],
Q

(A13)
where the f-weighted time average < (1 — t2) >, is sub-
stituted instead of F. A similar analysis could be used
to compute higher moments, but a more systematic tech-
nique would be certainly helpful.

APPENDIX B: Laplace transform technique

In subsection IV.C, the p3/2 correction terms to the
second moment has been obtained in the slow diffusion
regime (p < 1). Here, we briefly show how the Laplace
transform technique can be used to study the second or-
der moment in a more precise way.2* In particular, we
are looking for the spatial average [Be*p(trtl)AB]o,o and
its dependence on the variable p = p(to — t1). For three
basic domains and two choices of the magnetic fields spa-
tial profiles, one has

[BeiP(tQitl)AB]oﬁo = (BO,O)2 + H(ﬁ)v (Bl)

where
e e B2
D=a) g ®

and the numerical prefactor ¢, constant o and values au,
are determined by the matrices B and A (see Table IV).
Let us denote by L[H](s) the Laplace transform of the

function H(p)
/d e~ H(p). (B3)
0

24 This technique was applied by Mitra et al. (1993) to calculate
the time-dependent diffusion coefficient for a sphere.
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It is easy to check that the Laplace transform of the
derivative of H(p) with respect to p is equal to

L) = S*ff; mi: <a$n1— a a?nl—i— s) - (B4

In the first sum, one can recognize [BAB]y that was
denoted as (7. If one introduces a new function

Ho(p) = Y e7™m,

m=1

(B5)

the second sum can be written as £[Hp](s). On the other
hand, the integration by parts in the definition of the
Laplace transform gives L[H']|(s) = —H(0) + sL[H](s),
where H(0) was denoted as {y. One thus obtains

Co G cnL[Ho)(s)
LIH)(s) = 22 — Holls) )
s s(s+a) s(s+a)
Taking the inverse Laplace transform, one gets®®
[Be—P(t2—t1)AB]O ~0 _ g ( e—P(t2—t1)a)
(B7)

+ep L™t {%} (p(t2 — tl)).

Consequently, the spatial average on the left hand side is
related to the inverse Laplace transform of the function
L[Hol(s)/(s(s + «)). Curiously, L[Hp](s) can be found
explicitly for three basic domains®® (see Table IV). In
this light, Eq. (B7) is a closed and relatively simple re-
lation, which does not involve an infinite set of the roots
Q. However, numerical computation of rapidly conver-
gent series in (B2) is in general much easier than finding
the inverse Laplace transform in (B7).

In the slow diffusion limit p — 0 (or s — 00), one can
use the relation (B7) to rigorously obtain the correction
term. For three basic domains and two choices of the
magnetic field spatial profile, one finds

L[Ho)(s) ~¢p Y2 (s — 0). (B8)
The numerical prefactor ¢; is equal to 1/2 for all cases,
except for a slab geometry with a linear gradient, for

25 The case o = 0 should be considered as a limit o — 0.
26 In general, the calculation of the sum

ix23102:i< 1 N 1 )

m=1 m m=1 T—am T+ am

is based on the fact that oy, are all the roots of some explicit
function (e.g., J{(x) in the case of a cylinder with linear magnetic
field gradient, see (Watson, 1962) for details). The substitution
= = iy/s leads then to the results shown in Table IV. If z = 0 is
also the root, a supplementary term appears.



which ¢, = 1/4. One gets
[Be Pl2=AB], o ~ (o — (up(ta — t1)+

dence 3/2 2
— t @
MV )77 +0(p7),

where the identity £=1[s7?](p) = pP~1/T(B) was used.
One thus retrieves the results of subsection IV.C with

3/2(t2 _ (BQ)

_ Aepeg
H2 =3
Correction terms of order p? and higher can be derived
in a similar way (see Table IV).

It is worth to note that Eq. (B8) is equivalent to the
asymptotic behavior of H(p) at p — 0:

Ho(p) ~

(B10)

Cy

(mp)t/2
At this point, we outline an interesting similarity be-
tween this function and the averaged return-to-the-origin
probability considered by Mitra et al. (1995b) and by
Schwartz et al. (1997):

P() = [ v Grpoay rx) = 3 e
m=0

Q

(B11)

(B12)

The only difference is that the last sum contains all eigen-
values \.,,, while the function Hy(p) is defined for specific
eigenmodes, for which By, # 0. In the limit p — 0,
the Green function in (B12) can be roughly approxi-
mated by the free diffusion Green function (168), whence
P(p) ~ (4mp)~%/2. Since L[Hp|(s) contains a smaller
number of terms, its convergence at s — oo is better,
and the behavior of Hy(p) at p — 0 is less sharp than
for P(p). Note that the properties of the function P(p)
was investigated by Kac (1966) in attempt to answer the
famous question: “Can one hear the shape of a drum?”.
Although interesting, a further discussion on this topic is
out of the scope of this paper.

APPENDIX C: Fourth moment in the motional narrowing
regime

As an illustrative example, we are going to calculate
the leading term of the fourth moment E{¢*} in the mo-
tional narrowing regime. Although the calculation is ele-
mentary as well as for the second moment, the variety of
specific cases makes it cumbersome for higher moments.

Let us consider the f-weighted time average for the
fourth moment:

<e—p)\m1 (t2—t1) e—PAmQ (ts—t2) e—p>\m3 (ta—t3) >4, (Cl)
As for the second moment, one might simply replace
each exponential function by its leading asymptotic term
(PAm,)"10(tiz1 — t;) as p — o0, so that the fourth mo-
ment would behave as p~3. However, a more accurate
analysis requires to account for special cases when cer-
tain A,,, are zero. Let us briefly consider these cases.
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TABLE IV Laplace transforms of the function Hy for three
basic domains and two choices of the magnetic field spatial
profile. The asymptotic behavior of L[Ho](s) as s — oo allows
one to find the correction terms of the function H(p) in the
slow diffusion limit p — 0, where p = p(t2 — t1). For a slab
geometry, the presented correction terms give very accurate
results since higher order corrections decrease exponentially
with s. Clearly, more accurate results for a cylinder and a
sphere involve higher order time averages: < (t2 — t1)? >a,

<(tz — t1)5/2 >q, etc.



o for my = my = mg = 0 (all \,,, are zero), the
f-weighted time average of a constant vanishes;

e when two of three eigenvalues are zero (m; = mg =
0 or my = mg = 0 or ma = m3 = 0), one replaces
the remaining exponential function by its leading
asymptotic term. The summation over nontrivial
eigenvalues gives the same constant for three cases:

> A BomBm,oB3 o = B oG- 1- (C2)

m=1

Then one calculates the f-weighted time averages
of é-functions:

2<8(te —t1) >, =2 <0(ts —t3)>, =
1
<ty ta)>, = / dt f2(t) F(0),

0

(C3)

where the primitive f is defined by (A5). One con-
cludes that the sum of three terms is equal to 0.

e for the cases m1 = 0 or mz = 0, one obtains
1
<Blta — 1) 8t —ta) >, = - [ de 0) fo),

10 (C4)

<O(ts —ta) O(ta —t3)>, = /dt 2t ft),

0

while the spatial averages are identical, so that
these contributions cancel each other.

e the only nontrivial case is mg = 0 (with m; > 0
and mg > 0). One has

1 2

<O(tz —t1) O(ta —t3)>, :% /dt 2@ | , (Cb)
0

i.e., the time average of these two delta-functions
is factorized. The same happens for the sums over
indices mi and ms

—1 —1 2
E Am1601m18m170 Bovmi’mei’nO)\mg =¢25.

mi1,m3

(C6)

One finally obtains the leading term (108) of the fourth
moment in the motional narrowing regime.

APPENDIX D: Parabolic magnetic field

It has been shown in section V that the behavior of the
second moment E{¢?} in the motional narrowing regime
is completely determined by a few coefficients (; which
depend on the confining geometry and spatial profile of
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the magnetic field according to (67). Robertson (1966)
and Neuman (1974) calculated ¢_; and (_o for three ba-
sic domains (a slab, a cylinder and a sphere) in case of a
linear gradient. In subsection V.B, these coefficients were
found for restricted diffusion between parallel planes un-
der parabolic magnetic field (55). In this Appendix, we
are going to sketch their computation for a cylinder and
a sphere.

1. Cylinder

Let us first consider a cylinder, for which the matrix B
is given by (L12) in Table I. The only nontrivial contri-
butions to the sums (67) are provided by zeros a,, = aom
of the equation Jj(z) = 0. The relation (L14) in Table I
allows one to represent the coefficients (j as

oo
G =16 Z a2k,
m=1

These sums can be found analytically through so-called
Dini’s expansions (see (Watson, 1962) for details). In our
particular case, one can use the Dini’s expansion of the
function 22" over a basis of functions Jo(a,x) on the
interval (0, 1):

(D1)

1 Nt Jo(amx)
2n 0\&m
= 2 m,n T 7\ D2
* n+1+ mzzlc 7 Jo(oum) (D2)
where the coefficients ¢, n, are
1
1
o = dt 72" Jo(amt). D3
= gy [ Rt (03)
0
The substitution of n = 0 leads to ¢;,,0 = 0 for any

m > 1, while the coefficients c¢,, , for positive n can be
expressed by the recurrent formula (Watson, 1962):

2n  4n?
Cm,n = S a—2 Cmynfl. (D4)
Applying this formula repeatedly, one finds
n—1
—k)dk(nh2
= _1)k (n 22k D5
Cm, Z( ) ((n _ k)')g A ( )

k=0

Setting = 1 in Eq. (D2), one derives for any n > 1

: >:2§<—1>k(”‘k)4k(”!)2 Sk (pg)

2n+1) (n—Kk)H2 16

This relation allows one to compute the values of (i for
any k < 1 (for which the corresponding sums are con-
vergent). In particular, one finds the first four values by
taking one after another n =1, 2,3, 4:

1 1 1
=2 = — 1= = —.
G W=Tp 1T 2T g
(D7)
Note that the first two values could be obtained directly
by the general relations (68)-(70).



2. Sphere

The computation for a sphere can be performed in
a similar way. According to the relation (L14) in Ta-
ble I, the only nontrivial contributions are provided by
the positive roots @, = aom of the equation jj(x) = 0
or zJj 5 (x) — $J1/2(z) = 0:

Gr=24) ol (D8)
m=1
One uses the Dini’s expansion
3z1/2 > J12(amz)
2n+1/2 _ /2 m D9
St Z e Tl DY
where the coeflicients ¢y, n, are
1
Con = / dt 1322 ] o (anmt).  (D10)
' J1/2
0
The substitution of n = 0 leads to ¢p,,0 = 0 for any

m > 1, while the coeflicients c¢,, , for positive n can be
expressed by the recurrent formula (Watson, 1962):

20 dn(n+1/2) (D11)

Taking one after another n = 1,2,3,4, one derives the
coeflicients

12 12 8 148
G=% =3 ST em 2T 010605
(D12)

Again, the first two values could be obtained directly
from the general relations (68)-(70).

APPENDIX E: Multiple propagator approach

A considerable progress in the numerical analysis of
diffusive NMR phenomena was achieved by the multi-
ple propagator approach first proposed by Caprihan et
al. (1996), further developed by Callaghan (1997) and
equivalently reformulated by Sukstanskii and Yablonskiy
(2002). Although this approach was intended to study
the particular case of a linear magnetic field gradient, we
describe its extension for any spatial profile B(r).

Dividing the interval [0, 1] into K subintervals of du-
ration 7 = 1/K, one can approximate the integral in
Eq. (44) by a finite sum

E~E {exp [@'q TkaB(XkT)] } ; (E1)
k=0

where fr = f(k7). To calculate the expectation, all pos-
sible values of the random variables Xy have to weighted
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with the corresponding probabilities. Indeed, the start-
ing position rg is distributed according to a given initial
density p(rg). The probability distribution of the next
position r; after time 7 is given by the Green function
Gr(ro,r1), and so on. One thus obtains

E~ /dro/dr1 .../drK p(rg) e foBxo)
Q Q

Q

x Gr(ro,r1) €471 BED G (py 1ry) ... 97K BER)

(E2)

The spectral expansion (25) of the Green function allows

to write the signal F as the scalar product E = (W-HW),
where an infinite-dimension matrix H is
H=RA(fi) R.. A(fx-1) R (E3)

Two infinite-dimension matrices R and A and two vectors
W and W are defined as

Ap (f) = / dr uj, (r) um (r) expligr frB(r)],
Q
Rm,m’ = 5m,m’ eXp[fp T )\m]a

Wi = Vl/Q/dr um (1) p(r) expligr foB(r)],
Q

Wy = V71/2/dr uy, (r) expligr fx B(r)].
) (B4)

Although the multiple propagator approach provided an
efficient numerical tool, its use for theoretical analysis
was quite limited since the dependence on the main pa-
rameters p and ¢ was hidden in matrices R and A and
vectors W and W.

One may wonder what happens with the multiple pro-
pagator approach in the limit 7 — 0. In the first order
in 7, one has

A(fr) ~ I +iqr fiB (E5)

where the matrices A and B are defined by Egs. (34) and
(39) respectively, and I stands for the identity matrix.
For sake of simplicity, let us consider the case of reflecting
boundaries, for which the elements W,,, and W,, can be
simply approximated by 6,,,0. The matrix H becomes

R~1-—prA,

K

H ~ [ [I +7(igfrB —pA)],
k=0

(E6)
which can be formally expanded as:

K
H ~ I+TZ(iqfle—pA) +
k1
K
+7" > (iqfe, B—pA)...(igfr, B—pA) +
k<. <kn
(E7)



This expansion contains all possible products of matrices
B and A. A general form of the term containing n mat-
rices B and m matrices A can be written as

AABAAB..AABA.A  (ES)
S~—~— e S~—~— N ad
é() el en,—l en

where the positive indices ¢y, ..., £, are such that ¢y +
... +4,, = m. The coefficient in front of this term is

K
(ig)" (—=p)™ 7" > FFiy.Fr,,,.. (B9

k1<---<kn+7n

where Fy, = fi, if the matrix B stands at j-th place
in the sequence (E8), and Fj, = 1 otherwise. If the
subdivision step 7 is small enough, these coefficients can
be considered as integral sums that leads in the limit
7 — 0 to

1 1 1

. +4o PRV

(W)”(fp)m/dtl/dtg / dt,, ﬁ F(t1) %
0 T 0: 1:

ty

(tn - tn—l)en'71 (1 - tn)én
ta) ... tn
I
(E10)
Taking all possible combinations of indices /y, ..., £,, from

0 to infinity, one obtains the n-th order contribution to
the sum (E7) as

1

1 1
H, = (iq)”/dtl/dtg / dty, f(t1)...f(tn)X
0 t1 tn_1

x e PhAge=plta=t)AR  Be=P(tn=tn-1)ARe—p(1—tn)A
(E11)

According to Eq. (51), the first diagonal element of the
matrix H, is exactly the f-weighted time average of the
correlation function E{B(Xy,)...B(X¢, )}, multiplied by
(ig)™. Consequently, we retrieved the series expansion
(46) for the signal E. On the one hand, this derivation
reveals how the limit 7 — 0 can be proceeded within the
multiple propagator approach. In particular, it justifies
the convergence of this method for 7 — 0 which was not
proved earlier. On the other hand, the direct relation
between the multiple propagator approach and the series
expansion may be fruitful for further investigation. Note
that a very similar analysis allows one to derive the series
expansion (46) from the approximate relation (133) in the
limit 7 — 0.

APPENDIX F: Even order moments in the narrow-pulse
approximation

The compact form (166) of the even order moments
can be used to study their dependence on the dimension-
less diffusion coefficient p. For this purpose, the Green
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function G'rjs(r1,r2) is represented by the spectral de-
composition (25)

& ¢2n N §2n i e*p/\m/Qx
2n)! ] (2n)! =

x /drl/drg w,(v1) i (r2) (B(r1) — B(rz)) ™"
Q Q

(F1)

To obtain the leading term, the function e ?*=/2 can be
formally developed in a power series up to order n:

P 0 = (p/2)
E{@}_(%)!ZZ i
/drl/drg (=1)7M, ul, (r1) i (r2)(B(r1) — B(ra))™"

Q Q

(F2)

As earlier, (—1)7\J, can be considered as multiple (j
times) application of the Laplace operator to w,(ry).
Then the Green formula is used to differentiate by parts.
For instance, for j = 1, one has

Arl (B(I‘l) - B(I'Q))2" = 2n(2n — 1)(3(1’1) _ B(rQ))Qn—QX

IVB(ry)|? + 2n(B(r1) — B(r2)) " 'AB(ry).
(F3)

The summation over m gives d(r; —rz), and the integral
vanishes due to the term (B(r1) — B(rs))?" =2 if 2n —2 >
0. In a similar way, all terms vanish for j < n. The
case j = n leads to the relation (166). A renormalization
procedure would be of course required to operate with the
“divergent” terms of orders higher than n and to derive
the correction terms.

APPENDIX: List of symbols

By constant magnetic field
diffusion-sensitizing magnetic field
matrix elements of the magnetic field
in the Laplace operator eigenbasis, (39)
Cck binomial coefficients, C* = (n_"ik'),k,
free self-diffusion coefficient

apparent or effective diffusion coefficient
expectation

macroscopic signal (notation M

can be also found in the literature)

(t) auxiliary notation, f(t) = F(tT)

+(r,r’) Green function in the confining domain
x)  Bessel functions of the first kind

surface relaxation rate or permeability



g, 91

O, Qpk

Bma ﬁnk

SRS

m,m

d(r—r')

Ck

Legendre polynomials

total surface area

echo time or gradient duration

auxiliary infinite-dimension vectors, (31), (32)
volume of the confining domain

reflected Brownian motion, X; = r(¢t7T')
b-value or b-coefficient, see subsection VI.D
structure-dependent coefficients, see Table 11
time-dependent coefficient in Eq. (123)
dimension of the space (d = 3 by default)
effective temporal profile of magnetic field
gradient intensity

intensity of for the parabolic magnetic field
dimensionless relaxation rate

imaginary unity, i = —1

spherical Bessel functions

magnetization, solution of Eq. (9)
dimensionless diffusion coefficient, (28)
dimensionless magnetic field intensity, (43)
stochastic trajectory of a diffusing nucleus
radial coordinate, radius

time or dimensionless time

eigenfunctions of the Laplace operator

in the confining domain

boundary of the confining domain

normal derivative at the boundary
(directed towards the bulk)

gradient

f-weighted time average of a function, (48)
cumulant average, see subsection VI.C
factorial, n! =1-2-...-n

Euler gamma-function

Laplace operator, A = V?

Heaviside step function,

©(t) =1 for t > 0, and 0 otherwise
diagonal matrix formed by eigenvalues A,
confining domain

positive roots of the equations representing
the boundary condition, see Table I
magnetic field intensity

normalization constants for eigenfunctions,
see Table I

gyromagnetic ratio

(normalized) duration of gradient pulses
Kronecker symbol, d,,,» = 1, and 0 otherwise
Dirac delta-function (distribution)
coefficients, g = 1 and €, = V2 for m >0
structure-dependent coefficients, (67)
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0 azimuthal angle, 0 < 6 < m
dimensionless eigenvalues of the Laplace
operator in the confining domain

¢ nuclear magnetic moment

e structure-dependent coefficient,
see subsection IV
p(r) initial density of nuclei

small time step
ramp time for the trapezoidal profile, Fig. 2(d)

-
-

¢  normalized total phase, ¢ = q¢

¢ total phase of a diffusion nucleus, (1)
¥

polar angle, 0 < ¢ < 27
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