
Multiple Correlation Function Approach Library 
 
Introduction 
 
Multiple Correlation Function Approach Library (MCFAL) is developed for 
numerical calculation of the NMR signal attenuated by restricted diffusion of spins in 
three confining domains: a slab, a cylinder and a sphere. This library is implemented 
as a set of functions for Matlab software on the base of the Multiple Correlation 
Function (MCF) approach by D. S. Grebenkov1. 
 
The MCF approach allows one to study restricted diffusion under arbitrary magnetic 
field. The moments of a random phase accumulated by a diffusing spin were found in 
a matrix form involving the Laplace operator eigenbasis in a confining domain.  
Spatial inhomogeneities and time dependence of the magnetic field enter as 
functionals and weight factors to the multiple correlation functions. Although the 
primary aim of this approach was a theoretical study of diffusive NMR phenomena, it 
is an efficient numerical technique.  This manual is intended to briefly explain the 
functionality of the MCFAL and give several examples of its use. 
 
This library is free software; you can redistribute it and/or modify it under the terms 
of the GNU General Public License as published by the Free Software Foundation; 
either version 2 of the License, or (at your option) any later version. The author 
disclaims ANY RESPONSIBILITY for malfunctioning, errors or technical problem 
of any kind. Users are kindly invited to communicate by email 
(denis.grebenkov@polytechnique.edu) technical or scientific problem related to this 
product. Suggestions or/and critics are surely welcome. 
 
The author would be pleased to receive a notification whenever the MCFAL is used. 
In particular, users are kindly requested to send a reference to a scientific publication 
where the MCF approach was involved. This information would help to evaluate the 
usefulness of this web page and its further maintenance. 
 
 
 

                                                 
1 D. S. Grebenkov, NMR survey of the reflected Brownian motion, Rev. Mod. Phys. (submitted). 
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Brief mathematical description 
 
In this section, we briefly explain the mathematical basis of the numerical technique1. 
This is an extension of the approach suggested originally by Robertson and further 
developed by Barzykin2.  
 
The signal attenuation due to restricted diffusion in a confining domain Ω can be 
found in the following way.  The magnetization m(r,t) is known to satisfy the Bloch-
Torrey equation3, 

 
where D is the free diffusion coefficient, ∆ the Laplace operator, γ the gyromagnetic 
ratio, and βf(t)B(r) the diffusion-sensitizing magnetic field. Here β is the maximum 
intensity, while f(t) and B(r) are normalized temporal and spatial profiles, 
respectively. The Neumann boundary condition 

 

 
is imposed on the boundary ∂Ω of the confining domain. This condition can be used if 
there is no surface relaxation. At t=0, the magnetization density is supposed to be 
uniform: 

 
V being the volume of the confining domain. A more general case of the Fourier (or 
mixed) boundary condition and non-uniform initial density was considered in 
Grebenkov (2006). This feature is not implemented yet to the MCFAL. 
 
For the moment, let us consider the case f(t)=1.  The magnetization m(r,t) can be 
expanded over the basis of eigenfunctions um(r) of the Laplace operator (with the 
Neumann boundary condition): 

 
The macroscopic signal E would be obtained by integrating m(r,T) over Ω: 

 
To find the coefficient c0(T), one substitutes the above expansion into the Bloch-
Torrey equation, multiplies it by the eigenfunction um*(r) and integrates over Ω. 
These operations lead to a set of ordinary differential equations: 

                                                 
2 B. Robertson, Spin-echo decay of spins diffusion in a bounded region, Phys. Rev. 151, 273-277 
(1966); A. V. Barzykin, Theory of Spin Echo in Restricted Geometries under a Step-wise Gradient 
Pulse Sequence, J. Magn. Reson. 139, 342 (1999). 
3 H. C. Torrey, Bloch Equations with Diffusion Terms, Phys. Rev. 104, 563 (1956). 
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where the infinite-dimension matrix B is defined as 

 
The initial condition implies cm(0) = V-1/2 

δm,0. 
 
The coefficients cm(t) can be thought as components of an infinite-dimension vector 
C(t), and the above set of equations gives 

 
where the diagonal infinite-dimension matrix Λ is defined as 

 
The two dimensionless parameters p and q are defined as 

 
where L is the characteristic dimension of the confining domain. 
 
 
The solution of the above differential equation is simply 

 
Bringing together the above relations, one can write the macroscopic signal as the first 
diagonal element of the matrix 

 
We stress that this is an exact result for the case f(t)=1. 
 
If the temporal profile f(t) is not constant, the time interval [0,T] can be divided into a 
large number K of subintervals of duration τ=T/K. On the kth subinterval, the function 
f(t) is approximated by a constant f(kτ). The signal can be numerically found with 

 
The last relation is used to calculate the signal in the MCFAL. For this purpose, one 
first calculates the matrices B and Λ for a chosen confining domain Ω and spatial 
profile B(r). The time dependence of the magnetic field is then approximated. 
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Description of the functions 
 
� After each launching Matlab, it is recommended to start the use of MCFAL by the 
initialization function: 
 
function [] = MCF_ini; 
 
This function initializes several global variables used by other functions. In particular, 
it sets on the flag ‘warning’ in order to show warning messages. 
 
 
� The main function calculating the signal is declared as 
 
function [E] = MCF(Gradient, Time, Length, Diffusion, Gamma, Domain, Sprofile, 
Tprofile); 
 
Input parameters: 
 
Gradient Value (or array of values) of the diffusion-sensitizing magnetic field 

intensity, e.g., the gradient strength (in Tesla per meter, T/m). 
Time Echo time (in seconds, s). 
Length Characteristic dimension of the confining domain: separation width for 

a slab geometry and radius for a cylinder and a sphere (in meters, m). 
Diffusion Free (self-)diffusion coefficient (in square meters per second, m2/s). 
Gamma Nuclear gyromagnetic ratio (in radians per Tesla per second, rad T-1s-1). 

By default, 'Gamma' is equal to 2.675·108 rad T-1s-1 that corresponds to 
protons. 

Domain Confining domain:  
− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, a slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field 
(see below). By default, a steady profile is considered. 

 
The function MCF returns the value E (array of values) of the NMR signal calculated 
for the set of input parameters (number of values in E is determined by the length of 
the input vector ‘Gradient’). 
 
The signal E is normalized in such a way that E=1 if there is no diffusion-sensitizing 
magnetic field. 
 
It is MANDATORY to use the SI units as described above.  
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Examples: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
E = MCF(1e-2, 1e-1, 1e-4, 2.3e-9, 2.675e8, 'plane', 'linear', Tprofile) 
 
E =  
    0.3561 
 
Returns the signal attenuated by restricted diffusion of protons (water molecules) 
confined between parallel planes of separation 0.1 mm under steady magnetic field of 
linear gradient 10 mT/m and duration 0.1 s. 
 
The same result could be obtained by writing simply  
 
E = MCF(1e-2, 1e-1, 1e-4, 2.3e-9) 
 
E =  
    0.3561 
 
To study the dependence of the signal on the intensity of the magnetic field, one can 
write 
 
g = 0:0.001:0.01; 
E = MCF(g, 1e-1, 1e-4, 2.3e-9) 
 
E =  
 Columns 1 through 8  
 
    1.0000    0.9891    0.9573    0.9066    0.8405    0.7632    0.6791    0.5927 
 
  Columns 9 through 11  
 
    0.5081    0.4285    0.3561 
 
This function returns a vector E of 11 elements containing the signal for the gradient 
varying between 0 and 10 mT/m. 
 
 
 
� Although a number of physical parameters are involved, the signal attenuation is 
determined by two dimensionless parameters p=DT/L2 and q=γβT (or q=γgLT for a 
linear gradient). The following function calculates the signal for given values of these 
two parameters 
 
function [E] = MCF_pq(p, q, Domain, Sprofile, Tprofile); 
 
Input parameters: 
 
p Value (or array of values) of the dimensionless diffusion coefficient. 
q Value (or array of values) of the dimensionless magnetic field intensity. 
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Domain Confining domain:  
− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, a slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field 
(see below). By default, a steady profile is considered. 

 
The function MCF_pq returns the value E (or array of values, or matrix) of the NMR 
signal calculated for the set of input parameters (the size of the matrix E is determined 
by the lengths of the input vectors ‘p’ and ‘q’). Although this function is a bit more 
general than MCF, the calculation is identical for both cases.  
 
The signal E is normalized in such a way that E=1 if there is no diffusion-sensitizing 
magnetic field (q=0). 
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
p = 2.3e-9 * 1e-1/(1e-4*1e-4) 
 
p = 
        0.0230 
 
q = 2.675e8 * 1e-2 * 1e-4 * 1e-1 
 
q = 
        26.7500 
 
E = MCF_pq(p, q, 'plane', 'linear', Tprofile) 
 
E =  
        0.3561 
 
 
 
 
� The function MCF_BL returning the truncated matrices B and Λ for a given 
domain and spatial profile is  
 
function [B,Lam] = MCF_BL(Domain, Sprofile, N); 
 
Input parameters: 
 
Domain Confining domain:  
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− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

N Requested size of matrices B and Λ. In the case of a cylinder or a 
sphere, this truncation parameter must be smaller than 60. By default, N 
is equal to 50. 

 
 
The matrices B and Λ are formally of infinite dimension, but a rapid decrease of the 
Laplace operator eigenvalues allows one to truncate these matrices to a moderate size. 
This is a numerical parameter 'N' that controls the accuracy of calculations: for bigger 
'N', the calculation is more accurate. Of course, the increase of 'N' slows down the 
computation. In the most typical situations, 'N' around 20 is already sufficient for a 
very precise analysis. Except for a few cases, we never used 'N' bigger than 50. In the 
case of a cylinder or a sphere, the value of 'N' cannot exceed 60 for the function 
MCF_BL. This limitation is simply related to the fact that the matrices B and Λ were 
calculated once for 'N'=60 and then stored as binary files. The function MCF_BL 
merely reads data from these files. In the case of slab geometry, the matrices B and Λ 
are recalculated by the function MCF_BL. 
 
Example: 
 
[B,Lam] = MCF_BL('s', 'l', 2) 
 
B = 
 
         0    0.4448 
    0.4448         0 
 
 
Lam = 
 
         0         0 

0 4.3330 
 
One obtains the matrices B and Λ truncated to sizes 2x2 for a sphere under a linear 
gradient. Of course, such truncation is shown only for illustrative purpose, and it is 
not sufficient to calculate the signal.  
 
 
 
� The rectangular Stejskal-Tanner two-pulse profile is generated by function 
 
function [Tprofile] = MCF_Trectangle(Steady, Pause, K); 
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Input parameters: 
 
Steady Duration of a rectangular pulse (in seconds, s). 
Pause Delay between rectangular pulses (in seconds, s). 
K Discretization parameter (must lie between 10 and 10000). 
 
This function returns a vector of length K containing the discrete version of the 
rectangular Stejskal-Tanner two-pulse profile. The accuracy is better for bigger value 
of K, but the computation is slower. For typical calculations, K=100 ensures quite 
accurate results.  
 
Example: 
 
Tprofile = MCF_Trectangle(2e-3, 6e-3, 100); 
 
generates the temporal profile f(t) with two rectangular pulses of duration 2 ms with 
time inverval 6 ms. 
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Tprofile = MCF_Trectangle(2e-3, 0, 100); 
 
generates a steady profile. 
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� The trapezoidal Stejskal-Tanner two-pulse profile is generated by function 
 
function [Tprofile] = MCF_Ttrapeze(Up, Steady, Down, Pause, K); 
 
Input parameters: 
 
Up Ramp increasing time (in seconds, s). 
Steady Duration of plateau (in seconds, s). 
Down Ramp decreasing time (in seconds, s). 
Pause Delay between trapezoidal pulses (in seconds, s). 
K Discretization parameter (must lie between 10 and 10000). 
 
This function returns a vector of length K containing the discrete version of the 
trapezoidal Stejskal-Tanner two-pulse profile. The accuracy is better for bigger value 
of K, but the computation is slower. For typical calculations, K=100 ensures quite 
accurate results.  
 
Example: 
 
Tprofile = MCF_Ttrapeze(2e-3, 1e-3, 2e-3, 5e-3, 100); 
 
generates the temporal profile f(t) with two trapezoidal pulses of total duration 5 ms 
with time inverval 5 ms. Note that the last linear segment (14-15 ms) is an artifact of 
rounding. This artifact is suppressed at higher discretization (e.g., K=1000). 
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Tprofile = MCF_Ttrapeze(2.2e-3, 0.6e-3, 2.2e-3, 0, 100); 
 
generates the temporal profile f(t) with two trapezoidal pulses of total duration 5 ms 
without time inverval. 
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Tprofile = MCF_Ttrapeze(0, 2e-3, 0, 6e-3, 100); 
 
generates the same rectangular profile as previous function MCF_Trectangular. 
 
 
 
� Coefficients ζk containing averaged information about the spatial profile of the 
magnetic field in a confining domain are defined as 

 
and given by  
 
function [z] = MCF_zeta(Domain, Sprofile, k); 
 
Input parameters: 
 
Domain Confining domain:  

− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

k Index (an integer number which must not exceed 1). 
 
For three basic domains, the coefficients ζk are convergent for k≤1. For k = 1, 0, -1, or 
–2, the values of ζk are simply tabulated for a slab, a cylinder and a sphere with linear 
gradient and parabolic magnetic fields. When k<-2, these coefficients are computed 
numerically, and they may be not very accurate. The function is used to theoretically 
study the slow diffusion and motional narrowing regimes. 
 
Examples: 
 
MCF_zeta('c', 'l', 1) 
 
returns 1 since ζ1 is equal to 1 in any confining domain under a linear gradient. 
 
MCF_zeta('p', 'l', -1) 
 
returns 0.0083 (=1/120) for a slab geometry. 
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� The f-weighted time average <(t2-t1)
α>2 is defined as 

 
and numerically calculated for a given temporal profile f(t) by  
 
function [Ta] = MCF_Taverage(Tprofile, alpha); 
 
Input parameters: 
 
Tprofile Vector representing discretized temporal profile of the magnetic field 

(see below). By default, a steady profile is considered. 
Alpha Arbitrary positive exponent. 
 
The f-weighted time average is approximated by a sum over discretized temporal 
profile. This calculation is more accurate for bigger length of Tprofile. Please note 
that the result of this function is dimensionless, the usual factor T3 is not taken into 
account. Since <(t2-t1)

α>2 is negative, the function MCF_Taverage explicitly changes 
its sign for convenience.  
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
Ta = MCF_Taverage(Tprofile, 1) 
 
Ta = 
 
    0.0834 
 
This is a good approximation to <(t1-t2)>2=1/12 for a steady temporal profile. 
 
 
 
 
 
� The integral of squared temporal profile 

 
is calculated by 
 
function [Ta] = MCF_T2average(Tprofile); 
 
Input parameters: 
 
Tprofile Vector representing discretized temporal profile of the magnetic field. 

By default, a steady profile is considered. 
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This integral is approximated by a sum over discretized temporal profile. This 
calculation is more accurate for bigger length of Tprofile. Please note that the result of 
this function is dimensionless, the usual factor T3 is not taken into account. 
 
Example: 
 
Tprofile = MCF_Trectangle(2e-3, 6e-3, 100); 
Ta = MCF_T2average(Tprofile) 
 
Ta = 
 
    0.4000 
 
This is an exact result for two rectangular pulses of duration 2 ms with delay 6 ms. 
 
 
 
 
 
� The second moment E{ φ2/2} of the accumulated phase φ for steady temporal 
profile is defined as 

 
and calculated by 
 
function [E] = MCF_phi2(p, Domain, Sprofile); 
 
Input parameters: 
 
p Value (or array of values) of the dimensionless diffusion coefficient. 
Domain Confining domain:  

− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

 
The function returns the value (or array of values) of the second moment. Since this 
calculation is based on the exact formula, the result is very accurate. 
 
Example: 
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p = [0.1, 1, 10]; 
E = MCF_phi2(p, 'cylinder', 'linear') 
 
E = 
 
    0.0064    0.0235    0.0066 
 
Three values of the second moment are shown for p=0.1 (slow diffusion), p=1 
(intermediate regime) and p=10 (fast diffusion). 
 
 
 
� In the previous function, the second moment E{ φ2/2} was found for steady 
temporal profile by means of an exact formula, whatever the value of p is. Although 
similar formula could be in principle derived for any temporal profile, its practical 
realization is difficult. A theoretical approximation may be then useful to find the 
second moment for a given temporal profile. In the slow diffusion regime (p<<1), the 
second moment can be approximated as 

 
where coefficients c1+k/2 depend on the confining domain and the magnetic field 
spatial profile. The approximate relation is implemented by 
 
function [E] = MCF_phi2slow(p, Domain, Sprofile, Tprofile, Kmax); 
 
Input parameters: 
 
p Value (or array of values) of the dimensionless diffusion coefficient. 
Domain Confining domain:  

− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field. By 
default, a steady profile is considered. 

Kmax Number of correction terms (Kmax=0 for the leading term alone; 
Kmax=1 for the classical p3/2-correction; Kmax≥2 for higher order 
terms). 

 
The function returns the value (or array of values) of the approximate second moment. 
There is no verification whether the input parameter p is small enough or not. If this 
condition failed, the result may be incorrect or even unphysical (e.g., negative). 
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Consequently, this is the user who has to pay special attention to the accuracy and 
applicability of this function.  
 
The accuracy of the slow diffusion approximation depends on the number of 
correction terms considered in the series of powers pn/2. The parameter Kmax 
determines the highest considered power p1+Kmax/2.  Using different values of Kmax, 
one can investigate the role of these corrections. In general, the leading term alone 
(Kmax=0) is very rough approximation, insufficient for typical values of p. The 
classical p3/2-correction (Kmax=1) considerably improves it. Higher order terms can 
still be required when p is not small enough. For the moment, the corrections are 
limited4 to Kmax=3. Note that bigger Kmax does not increase the computational time, 
so that the maximum value can be always used. 
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
p = [0.1, 1, 10]; 
E = MCF_phi2slow(p, 'cylinder', 'linear', Tprofile, 2) 
 
E = 
 
    0.0064    0.0121   -2.4866 
 
The comparison with previous exact calculation for a steady temporal profile shows 
that this function is accurate for the slow diffusion (p=0.1), but it gives invalid values 
for p=1 and p=10 (where the slow diffusion approximation apparently fails). 
 
 
 
� In the motional narrowing regime (p>>1), the second moment E{ φ2/2} can be 
found as 

 
This approximate relation is implemented by 
 
function [E] = MCF_phi2fast(p, Domain, Sprofile, Tprofile); 
 
Input parameters: 
 
p Value (or array of values) of the dimensionless diffusion coefficient. 
Domain Confining domain:  

− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  

                                                 
4 For slab geometry under linear gradient, the series of corrections in powers pn/2 is naturally truncated 
to the classical p3/2-correction (higher correction is exponential). In this case, Kmax cannot exceed 1. 
Similarly, for slab geometry under parabolic field, Kmax is limited to 2 [see (Grebenkov, 2006) for 
details]. 
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− 's' or 'sphere' for a sphere.  
By default, slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field. By 
default, a steady profile is considered. 

 
The function returns the value (or array of values) of the approximate second moment. 
There is no verification whether the input parameter p is big enough or not. If this 
condition failed, the result may be incorrect. Consequently, this is the user who has to 
pay special attention to the accuracy and applicability of this function. In contrast with 
the function MCF_phi2slow, only the leading term is calculated by this function since 
the form of correction terms sensitively depends on the temporal profile.  
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
p = [0.1, 1, 10]; 
E = MCF_phi2fast(p, 'cylinder', 'linear', Tprofile) 
 
E = 
 
       0.7292    0.0729    0.0073 
 
The last value (for p=10) is relatively close to the exact value 0.0066 of the second 
moment (see function MCF_phi2). In opposite, the first two values (for p=0.1 and 
p=1) are invalid since the condition p>>1 is failed. 
 
 
 
� The result of the previous function can be significantly improved by correction 
term.  For the steady temporal profile, the approximate relation 

 
is implemented by  
 
function [E] = MCF_phi2fast_steady(p, Domain, Sprofile); 
 
Input parameters: 
 
p Value (or array of values) of the dimensionless diffusion coefficient. 
Domain Confining domain:  

− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
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By default, slab geometry is considered. 
Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 

are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

 
The function returns the value (or array of values) of the approximate second moment. 
There is no verification whether the input parameter p is big enough or not. If this 
condition failed, the result may be incorrect or even unphysical (e.g., negative). 
Consequently, this is the user who has to pay special attention to the accuracy and 
applicability of this function. In contrast with the function MCF_phi2f, the correction 
term is added to improve the accuracy. 
 
Example: 
 
p = [0.1, 1, 10]; 
E = MCF_phi2fast_steady(p, 'cylinder', 'linear') 
 
E = 
      -5.7161    0.0085    0.0066 
 
The last value (for p=10) is equal to the exact value 0.0066 of the second moment (see 
function MCF_phi2). In opposite, the first two values (for p=0.1 and p=1) are invalid 
since the condition p>>1 is failed. 
 
 
 
 
� In the slow diffusion regime (p<<1), the signal can be approximated by  
 
function [E] = MCF_slow(Gradient, Time, Length, Diffusion, Gamma, Domain, 
Sprofile, Tprofile); 
 
Input parameters: 
 
Gradient Value (or array of values) of the diffusion-sensitizing magnetic field 

intensity, e.g., the gradient strength (in Tesla per meter, T/m). 
Time Echo time (in seconds, s). 
Length Characteristic dimension of the confining domain: separation width for 

a slab geometry and radius for a cylinder and a sphere (in meters, m). 
Diffusion Free (self-)diffusion coefficient (in square meters per second, m2/s). 
Gamma Nuclear gyromagnetic ratio (in radians per Tesla per second, rad T-1s-1). 

By default, 'Gamma' is equal to 2.675·108 rad T-1s-1 that corresponds to 
protons. 

Domain Confining domain:  
− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
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By default, a slab geometry is considered. 
Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 

are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field 
(see below). By default, a steady profile is considered. 

 
The slow diffusion approximation of the signal is based on the computation of the 
second moment by function MCF_phi2s. There is no verification whether the input 
parameter p is small enough or not. In additional, the input parameter q should be 
small. If one of these conditions failed, the result may be incorrect. Consequently, this 
is the user who has to pay special attention to the accuracy and applicability of this 
function. 
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
E = MCF_slow(1e-2, 1e-1, 1e-4, 2.3e-9, 2.675e8, 'plane', 'linear', Tprofile) 
 
E =  
    0.3348 
 
This value is smaller than the exact result 0.3561 by function MCF (see above).  
 
 
 
� In the motional narrowing regime (p>>1), the signal can be approximated by  
 
function [E] = MCF_fast(Gradient, Time, Length, Diffusion, Gamma, Domain, 
Sprofile, Tprofile); 
 
Input parameters: 
 
Gradient Value (or array of values) of the diffusion-sensitizing magnetic field 

intensity, e.g., the gradient strength (in Tesla per meter, T/m). 
Time Echo time (in seconds, s). 
Length Characteristic dimension of the confining domain: separation width for 

a slab geometry and radius for a cylinder and a sphere (in meters, m). 
Diffusion Free (self-)diffusion coefficient (in square meters per second, m2/s). 
Gamma Nuclear gyromagnetic ratio (in radians per Tesla per second, rad T-1s-1). 

By default, 'Gamma' is equal to 2.675·108 rad T-1s-1 that corresponds to 
protons. 

Domain Confining domain:  
− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, a slab geometry is considered. 
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Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field 
(see below). By default, a steady profile is considered. 

 
The slow diffusion approximation of the signal is based on the computation of the 
second moment by function MCF_phi2f. There is no verification whether the input 
parameter p is big enough or not. In additional, the input parameter q should be small. 
If one of these conditions failed, the result may be incorrect. Consequently, this is the 
user who has to pay special attention to the accuracy and applicability of this function. 
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
E = MCF_fast(1e-2, 1e-1, 1e-4, 2.3e-9, 2.675e8, 'plane', 'linear', Tprofile) 
 
E =  
       2.5354e-113 
 
This value is obviously invalid since the condition p>>1 is failed (here p=0.023).  
 
 
 
� Two similar functions involving the dimensionless parameters p and q are 
introduced to consider the slow diffusion (p<<1) and the motional narrowing (p>>1) 
regimes: 
 
function [E] = MCF_pq_slow(p, q, Domain, Sprofile, Tprofile); 
 
function [E] = MCF_pq_fast(p, q, Domain, Sprofile, Tprofile); 
 
Input parameters: 
 
p Value (or array of values) of the dimensionless diffusion coefficient. 
q Value (or array of values) of the dimensionless magnetic field intensity. 
Domain Confining domain:  

− 'p' or 'plane' for a slab geometry;  
− 'c' or 'cylinder' for a cylinder;  
− 's' or 'sphere' for a sphere.  
By default, a slab geometry is considered. 

Sprofile Spatial profile of the magnetic field. For the moment, only two profiles 
are considered:  
− 'l' or 'linear' for a linear gradient,  
− 'p' or 'parabolic' for a parabolic magnetic field.  
By default, the linear gradient is used. 

Tprofile Vector representing discretized temporal profile of the magnetic field 
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(see below). By default, a steady profile is considered. 
 
These functions return the value E (or array of values, or matrix) of the approximated 
signal. There is no verification whether the input parameter p is small (big) enough or 
not. In additional, the input parameter q should be small. If one of these conditions 
failed, the result may be incorrect. Consequently, this is the user who has to pay 
special attention to the accuracy and applicability of this function. 
 
Example: 
 
Tprofile = MCF_Trectangle(5e-3, 0, 100); 
p = 2.3e-9 * 1e-1/(1e-4*1e-4) 
 
p = 
        0.0230 
 
q = 2.675e8 * 1e-2 * 1e-4 * 1e-1 
 
q = 
        26.7500 
 
E = MCF_pq_slow(p, q, 'p', 'l', Tprofile) 
 
E = 
      0.3348  
 
E = MCF_pq_fast(p, q, 'p', 'l', Tprofile) 
 
E = 
      2.5354e-113 
 
 
 
 
There are several auxiliary functions required to make MCFAL operational. Since 
these functions are not supposed for an independent use, we only list them without 
specification: 
 
function [tp] = MCF_type(Domain, Sprofile); 
function [alpha]=MCF_BL0_cl; 
function [alpha]=MCF_BL0_sl; 
function [alpha]=MCF_BL0_cp; 
function [alpha]=MCF_BL0_sp; 
function [s]=MCF_func_steady(x); 
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Several useful remarks 
 
The present implementation of the MCF approach has been checked by independent 
Monte Carlo simulations. Of course, such a numerical test cannot ensure its validity in 
any situation. It may happen that experimental data do not follow numerical 
predictions. In this case, four different explanations may be suggested: 
 
− conceptual error or misprint in the MCF approach; 
 
− technical error in the numerical implementation of the MCF approach; 
 
− wrong use of the MCFAL; 
 
− physical artifact in experimental measurements. 
 
The author has certainly tried to avoid the first two causes by numerous tests. If there 
is a doubt in the functioning of the MCF approach or its numerical implementation, it 
is suggested to contact the author. The third reason can be related, for instance, to a 
wrong order of input parameters or non SI-units. It is strongly recommended to read 
carefully the description of the functions. At last, we should stress that the MCF 
approach is based on a classical description of restricted diffusion. It is merely a 
model that may or may not be valid for specific experimental conditions. We mention 
only a few possible deviations from this model: convectional transport, anisotropic 
diffusivity of the medium5, bulk relaxation, susceptibility effects, hardware 
imperfections, residual magnetic field gradients, spin interactions, etc. 
 
Please, do not try to “fake” the functions of MCFAL using deliberately wrong or 
unphysical parameters. This is not commercial software, there is only a few checks 
for appropriateness of the input parameters. 
 
For the localization regime (q>>1), it is suggested to perform the numerical 
computation for slab geometry only. In the case of a cylinder and a sphere, the 
truncation of matrices B and Λ to maximum available sizes 60×60 may be 
insufficient.6  This artificial limitation should be suppressed in the following release 
of the MCFAL. 

                                                 
5 Please, do not confuse anisotropic diffusivity (dependence of the “free” diffusion coefficient on the 
coordinates) with anisotropy of the confining domain. The last one is captured by the MCF approach. 
6 There are two reasons to prefer slab geometry. First, there is no limitation to the size of matrices B 
and Λ. The second and more important reason is that the Laplace operator eigenvalues λm increase as 
m2 for slab geometry, and roughly as m for a cylinder and a sphere. If an accurate computation for slab 
geometry requires the matrices B and Λ of size, for example, 30×30, the similar computation for a 
cylinder and a sphere would require matrices of size around 900×900. This technical problem appears 
only for the localization regime (q>>1) since the “oscillating” part iqB in exp[-(pΛ+iqB)] should be 
dumped by “decreasing” part pΛ. 


