Multiple Correlation Function Approach Library

I ntroduction

Multiple Correlation Function Approach Library (MBE) is developed for

numerical calculation of the NMR signal attenuabgdestricted diffusion of spins in
three confining domains: a slab, a cylinder angtzese. This library is implemented
as a set of functions for Matlab software on theebaf the Multiple Correlation
Function (MCF) approach by D. S. Grebenkov

The MCF approach allows one to study restrictetusibn underarbitrary magnetic
field. The moments of a random phase accumulated biyusidg spin were found in
a matrix form involving the Laplace operator eigasis in a confining domain.
Spatial inhomogeneities and time dependence of ritagnetic field enter as
functionals and weight factors to the multiple etation functions. Although the
primary aim of this approach was a theoretical woiddiffusive NMR phenomena, it
is an efficient numerical technique. This manwalintended to briefly explain the
functionality of the MCFAL and give several exangptd its use.

This library is free software; you can redistribittend/or modify it under the terms
of the GNU General Public License as publishedhgy Free Software Foundation;
either version 2 of the License, or (at your opfiamy later version. The author
disclaims ANY RESPONSIBILITY for malfunctioning, rers or technical problem
of any kind. Users are Kkindly invited to commun&atby email
(denis.grebenkov@polytechnigue.gdachnical or scientific problem related to this
product. Suggestions or/and critics are surely arak

The author would be pleased to receive a notificatvhenever the MCFAL is used.
In particular, users are kindly requested to seneference to a scientific publication
where the MCF approach was involved. This infororativould help to evaluate the
usefulness of this web page and its further maantee.

1 D. S. GrebenkoWMR survey of the reflected Brownian motion, Rev. Mod. Phys. (submitted).



Brief mathematical description

In this section, we briefly explain the mathemdttzasis of the numerical technidue
This is an extension of the approach suggestednalig by Robertson and further
developed by Barzykin

The signal attenuation due to restricted diffusiora confining domairt2 can be
found in the following way. The magnetizationrnt) is known to satisfy the Bloch-
Torrey equation

(

((T)f — DA+ in iff{fj]Blir}) m(r.t) =0
where D is the free diffusion coefficiem,the Laplace operatoy,the gyromagnetic
ratio, andpf(t)B(r) the diffusion-sensitizing magnetic field. Hgtds the maximum
intensity, while f(tf) and B( are normalized temporal and spatial profiles,
respectively. The Neumann boundary condition

Jd :

— m(r,f) =0

on '
is imposed on the bounda?® of the confining domain. This condition can bedige
there is no surface relaxation. At t=0, the magmaion density is supposed to be
uniform:

mir.t=0)=—
V being the volume of the confining domain. A mgeneral case of the Fourier (or
mixed) boundary condition and non-uniform initiabrgity was considered in
Grebenkov (2006). This feature is not implementetky the MCFAL.

For the moment, let us consider the case f(t)=he magnetization mft) can be
expanded over the basis of eigenfunctiopé& uof the Laplace operator (with the
Neumann boundary condition):

X

mir,t) = Z Co 1) (1)

m'=l}
The macroscopic signal E would be obtained by natiggg m¢,T) overQ:
0

E= / dr m(r,T) = Z e (1) / dr u,, (r) = V"¢, (T)

0 m'=l 0

To find the coefficient §T), one substitutes the above expansion into tleeH3
Torrey equation, multiplies it by the eigenfunctiop*(r) and integrates oveq.
These operations lead to a set of ordinary diffemeaquations:

2 B. RobertsonSpin-echo decay of spins diffusion in a bounded region, Phys. Rev151, 273-277
(1966); A. V. Barzykin,Theory of Spin Echo in Restricted Geometries under a Sep-wise Gradient
Pulse Sequence, J. Magn. Resorl.39, 342 (1999).

% H. C. TorreyBloch Equations with Diffusion Terms, Phys. Rev104, 563 (1956).
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where the infinite-dimension matriis defined as

B = /(/r w, (r) Blr) ty

0
The initial condition implies§0) = V250

The coefficients g(t) can be thought as components of an infiniteasigion vector
C(t), and the above set of equations gives

d o
T— Olt) = ~(pA+ igB)C(1)

where the diagonal infinite-dimension matixs defined as
‘__.\”“”2! = '{}m‘m‘ f'\,'.-,;-
The two dimensionless parameters p and q are defise

where L is the characteristic dimension of the con§ domain.

The solution of the above differential equatiosimaply
C'(t) = exp[—(pA + igB)t/T]C(0)

Bringing together the above relations, one canewhie macroscopic signal as the first
diagonal element of the matrix

E = |exp[—(pA + !qb’é]} |

We stress thahisis an exact result for the case f(t)=1.

If the temporal profile f(t) is not constant, thaé interval [0,T] can be divided into a
large number K of subintervals of duratiorl /K. On the K subinterval, the function
f(t) is approximated by a constantf{kThe signal can be numerically found with

W
E~ Hoxp[—r[’ pA+iq flkT) B)]
f=0 0,0

The last relation is used to calculate the signahe MCFAL. For this purpose, one
first calculates the matricd® and A for a chosen confining domai and spatial
profile B(r). The time dependence of the magnetic field is tygoroximated.



Description of the functions

@ After each launching Matlab, it is recommendedttot the use of MCFAL by the
initialization function:

function [] = MCF_ini;

This function initializes several global variablesed by other functions. In particular,
it sets on the flag ‘warning’ in order to show wiaghnmessages.

<@ The main function calculating the signal is desthas

function [E] = MCF(Gradient, Time, Length, Diffusip Gamma, Domain, Sprofile,
Tprofile);

Input parameters

Gradient Value (or array of values) of the diffus®ensitizing magnetic field
intensity, e.g., the gradient strength (in Teslampeter, T/m).

Time Echo time (in seconds, S).

Length Characteristic dimension of the confiningndin: separation width far
a slab geometry and radius for a cylinder and argpfin meters, m).

Diffusion Free (self-)diffusion coefficient (in sgte meters per second?/s).

Gamma Nuclear gyromagnetic ratio (in radians peiaper second, rad's%).
By default, ‘Gamma’ is equal to 2.675-18d T's™ that corresponds to
protons.

Domain Confining domain:

—'p' or '‘plane’ for a slab geometry;

—'c' or 'cylinder’ for a cylinder;

—'s' or 'sphere’ for a sphere.

By default, a slab geometry is considered.

[72)

Sprofile Spatial profile of the magnetic field. Rtve moment, only two profile|
are considered:

- 'I"or 'linear" for a linear gradient,

—'p' or '‘parabolic’ for a parabolic magnetic field.
By default, the linear gradient is used.

Tprofile Vector representing discretized temporadfie of the magnetic field
(see below). By default, a steady profile is coasd.

The function MCF returns the value E (array of ealuof the NMR signal calculated
for the set of input parameters (number of valuek is determined by the length of
the input vector ‘Gradient’).

The signal E is normalized in such a way that H=hare is no diffusion-sensitizing
magnetic field.

It is MANDATORY to use the Sl units as describedad.



Examples

Tprofile = MCF_Trectangle(5e-3, 0, 100);
E = MCF(1le-2, 1e-1, 1e-4, 2.3e-9, 2.675e8, 'pldimear’, Tprofile)

E =
0.3561

Returns the signal attenuated by restricted dibfusof protons (water molecules)
confined between parallel planes of separatiomtriunder steady magnetic field of
linear gradient 10 mT/m and duration 0.1 s.

The same result could be obtained by writing simply

E = MCF(1e-2, 1le-1, 1e-4, 2.3e-9)

E =
0.3561

To study the dependence of the signal on the inyeatthe magnetic field, one can
write

g = 0:0.001:0.01;
E = MCF(g, 1e-1, le-4, 2.3e-9)

E =
Columns 1 through 8

1.0000 0.9891 0.9573 0.9066 0.8405/632 0.6791 0.5927
Columns 9 through 11
0.5081 0.4285 0.3561

This function returns a vector E of 11 elementstammng the signal for the gradient
varying between 0 and 10 mT/m.

<@ Although a number of physical parameters are weal the signal attenuation is
determined by two dimensionless parameters p=D@fid 3BT (or q=ygLT for a
linear gradient). The following function calculatis® signal for given values of these
two parameters

function [E] = MCF_pq(p, g, Domain, Sprofile, Tpile);

Input parameters

Value (or array of values) of the dimensionleffsision coefficient.

p
q Value (or array of values) of the dimensionlesgnetic field intensity.




Domain

Confining domain:

—'p' or '‘plane’ for a slab geometry;

—'c' or 'cylinder’ for a cylinder;

—'s' or 'sphere’ for a sphere.

By default, a slab geometry is considered.

Sprofile

Spatial profile of the magnetic field. Rble moment, only two profile]
are considered:

—'I"or 'linear" for a linear gradient,

—'p' or 'parabolic’' for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

Tprofile

Vector representing discretized temporaifie of the magnetic fielg

(see below). By default, a steady profile is coasad.

The function MCF_pq returns the value E (or arriyalues, or matrix) of the NMR
signal calculated for the set of input parametttrs §ize of the matrix E is determined
by the lengths of the input vectors ‘p’ and ‘q’)ltWough this function is a bit more
general than MCF, the calculation is identicaldoth cases.

The signal E is normalized in such a way that H=thare is no diffusion-sensitizing
magnetic field (g=0).

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
p =2.3e-9* le-1/(1le-4*1e-4)

p:

0.0230

g=2.675e8 * 1le-2 * 1le-4 * 1le-1

q:

26.7500

E = MCF_pq(p, g, 'plane’, 'linear’, Tprofile)

E =

0.3561

@ The function MCF_BL returning the truncated masi® and A for a given
domain and spatial profile is

function [B,Lam] = MCF_BL(Domain, Sprofile, N);

Input parameters

| Domain

| Confining domain: \




—'p' or 'plane’ for a slab geometry;

—'c' or 'cylinder’ for a cylinder;

—'s' or 'sphere’ for a sphere.

By default, slab geometry is considered.

Sprofile Spatial profile of the magnetic field. Rtve moment, only two profile|
are considered:

—'I"or 'linear" for a linear gradient,

—'p' or 'parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

N Requested size of matric& and A. In the case of a cylinder or|a
sphere, this truncation parameter must be smailéar 60. By default, N
is equal to 50.

The matriceB and A are formally of infinite dimension, but a rapidcdease of the
Laplace operator eigenvalues allows one to trunitetee matrices to a moderate size.
This is a numerical parameter 'N' that controlsabeuracy of calculations: for bigger
'N', the calculation is more accurate. Of courke, increase of 'N' slows down the
computation. In the most typical situations, 'Ndward 20 is already sufficient for a
very precise analysis. Except for a few cases, ewemnused ‘N' bigger than 50. In the
case of a cylinder or a sphere, the value of 'Mhot exceed 60 for the function
MCF_BL. This limitation is simply related to thectathat the matriceB andA were
calculated once for 'N'=60 and then stored as pifiles. The function MCF_BL
merely reads data from these files. In the casdatif geometry, the matric8sandA
are recalculated by the function MCF_BL.

Example
[B,Lam] = MCF_BL('s', 'I', 2)
B=
0 0.4448
0.4448 0
Lam =

0 0
0 4.3330

One obtains the matricésand A truncated to sizes 2x2 for a sphere under a linear

gradient. Of course, such truncation is shown dalyillustrative purpose, and it is
not sufficient to calculate the signal.

* The rectangular Stejskal-Tanner two-pulse pradilgenerated by function

function [Tprofile] = MCF_Trectangle(Steady, Pausg,



Input parameters

Steady Duration of a rectangular pulse (in secosids,
Pause Delay between rectangular pulses (in secsnds,
K Discretization parameter (must lie between 10 Hd@OO0).

This function returns a vector of length K contamithe discrete version of the
rectangular Stejskal-Tanner two-pulse profile. Bleeuracy is better for bigger value
of K, but the computation is slower. For typicalccgations, K=100 ensures quite
accurate results.

Example
Tprofile = MCF_Trectangle(2e-3, 6e-3, 100);
generates the temporal profile f(t) with two regpalar pulses of duration 2 ms with

time inverval 6 ms.
L f(t)

0.5-

-0.5¢

-1t | I I | t, ms

Tprofile = MCF_Trectangle(2e-3, 0, 100);

generates a steady profile.

f(t)
1

0.5¢

-0.5+

-1c . . . . I T T t, ms




<@ The trapezoidal Stejskal-Tanner two-pulse prasilgenerated by function
function [Tprofile] = MCF_Ttrapeze(Up, Steady, DowRause, K);

Input parameters

Up Ramp increasing time (in seconds, S).

Steady Duration of plateau (in seconds, s).

Down Ramp decreasing time (in seconds, S).

Pause Delay between trapezoidal pulses (in secehds,

K Discretization parameter (must lie between 10 Hd@0O0).

This function returns a vector of length K contamithe discrete version of the
trapezoidal Stejskal-Tanner two-pulse profile. Hoeuracy is better for bigger value
of K, but the computation is slower. For typicalctdations, K=100 ensures quite
accurate results.

Example
Tprofile = MCF_Ttrapeze(2e-3, 1le-3, 2e-3, 5e-3,)100

generates the temporal profile f(t) with two trapieal pulses of total duration 5 ms
with time inverval 5 ms. Note that the last linsagment (14-15 ms) is an artifact of

rounding. This artifact is suppressed at higheerdiszation (e.g., K=1000).
f(t)
i ‘ ‘

it, ms
15

Tprofile = MCF_Ttrapeze(2.2e-3, 0.6e-3, 2.2e-31@);

generates the temporal profile f(t) with two trapieal pulses of total duration 5 ms

without time inverval.
(1)
iF

1t, ms
10




Tprofile = MCF_Ttrapeze(0, 2e-3, 0, 6e-3, 100);

generates the same rectangular profile as prefumasion MCF_Trectangular.

o Coefficients{x containing averaged information about the spairafile of the
magnetic field in a confining domain are defined as

0
. '. .
Kf- = Z l';'i,l..'.'; /\:,, l-“m.(
=1

and given by
function [z] = MCF_zeta(Domain, Sprofile, k);

Input parameters

Domain | Confining domain:

—'p' or 'plane’ for a slab geometry;

—'c' or 'cylinder' for a cylinder;

—'s' or 'sphere’ for a sphere.

By default, slab geometry is considered.

Sprofile | Spatial profile of the magnetic field. Rtye moment, only two profile
are considered:

- 'I"or 'linear" for a linear gradient,

—'p' or 'parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

k Index (an integer number which must not exceed 1)

For three basic domains, the coefficiefitgre convergent fordd. Fork =1, 0, -1, or
-2, the values ofi are simply tabulated for a slab, a cylinder arspplaere with linear
gradient and parabolic magnetic fields. When k&h2se coefficients are computed
numerically, and they may be not very accurate. flinetion is used to theoretically
study the slow diffusion and motional narrowinginegs.

Examples

MCF_zeta('c', 'I', 1)

returns 1 sincé; is equal to 1 in any confining domain under adingradient.
MCF_zeta('p', 'I', -1)

returns 0.0083 (=1/120) for a slab geometry.

10



* The f-weighted time average x(i)">, is defined as
1 |

< (fz _fqu o= /dfl f(flj /dfﬁ f(fz] (fz — flj-t

]J t1
and numerically calculated for a given temporafiped(t) by

function [Ta] = MCF_Taverage(Tprofile, alpha);

Input parameters

Tprofile Vector representing discretized temporadfie of the magnetic field
(see below). By default, a steady profile is coasad.
Alpha Arbitrary positive exponent.

The f-weighted time average is approximated by @& swer discretized temporal
profile. This calculation is more accurate for @gdength of Tprofile. Please note
that the result of this function @imensionless, the usual factor is not taken into
account. Since <fit;)*>, is negative, the function MCF_Taverage explicithanges
its sign for convenience.

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
Ta = MCF_Taverage(Tprofile, 1)

Ta=
0.0834

This is a good approximation to «{b)>,=1/12 for a steady temporal profile.

< The integral of squared temporal profile
l

/ dt f2(t)

is calculated by
function [Ta] = MCF_T2average(Tprofile);

Input parameters

Tprofile Vector representing discretized temponadfile of the magnetic field,
By default, a steady profile is considered.

11



This integral is approximated by a sum over diszeet temporal profile. This
calculation is more accurate for bigger length pfdfile. Please note that the result of
this function isdimensionless, the usual factor Tis not taken into account.

Example

Tprofile = MCF_Trectangle(2e-3, 6e-3, 100);
Ta = MCF_T2average(Tprofile)

Ta=
0.4000

This is an exact result for two rectangular pulsiedguration 2 ms with delay 6 ms.

* The second momerE{¢/2} of the accumulated phasg for steady temporal
profile is defined as

e—p)\m . 48—;3)\m_;"'2 + 3
) Iz Zbi) m br? 0 ( )\ - p‘f)\‘f )

m=1

and calculated by
function [E] = MCF_phi2(p, Domain, Sprofile);

Input parameters

p Value (or array of values) of the dimensionlafsision coefficient.

Domain | Confining domain:
—'p' or 'plane’ for a slab geometry;
c' or 'cylinder' for a cylinder;
—'s' or 'sphere’ for a sphere.
By default, slab geometry is considered.

Sprofile | Spatial profile of the magnetic field. Rtye moment, only two profile
are considered:

- 'I"or 'linear" for a linear gradient,

- 'p’ or ‘parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

The function returns the value (or array of valugfsjhe second moment. Since this
calculation is based on the exact formula, thelréswuery accurate.

Example

12



p=1[0.1, 1, 10];
E = MCF_phi2(p, ‘cylinder’, 'linear’)

E =
0.0064 0.0235 0.0066

Three values of the second moment are shown forlpfflow diffusion), p=1
(intermediate regime) and p=10 (fast diffusion).

« |n the previous function, the second momé&iif/2} was found for steady
temporal profile by means of an exact formula, what the value of p is. Although
similar formula could be in principle derived fonyatemporal profile, its practical
realization is difficult. A theoretical approximati may be then useful to find the
second moment for a given temporal profile. Indhmv diffusion regime (p<<1), the
second moment can be approximated as

Kmax

| k2 Tk
E{o7/2} = Z Crypa < [ty = 1) T >y ptt

k=0
where coefficients Gy» depend on the confining domain and the magnesld fi
spatial profile. The approximate relation is impeted by
function [E] = MCF_phi2slow(p, Domain, Sprofile, figfile, Kmax);

Input parameters

p Value (or array of values) of the dimensionlafsision coefficient.

Domain Confining domain:

- 'p' or ‘plane’ for a slab geometry;

—'c' or 'cylinder' for a cylinder;

—'s' or 'sphere’ for a sphere.

By default, slab geometry is considered.

Sprofile | Spatial profile of the magnetic field. Rtye moment, only two profile
are considered:

- 'I" or 'linear" for a linear gradient,

—'p' or 'parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

Tprofile | Vector representing discretized temponaifile of the magnetic field. By
default, a steady profile is considered.

Kmax Number of correction terms (Kmax=0 for the dieg term alone
Kmax=1 for the classical *f-correction; Kmag2 for higher orde
terms).

The function returns the value (or array of valuEghe approximate second moment.
There is no verification whether the input parametés small enough or not. If this
condition failed, the result may be incorrect oremwnphysical (e.g., negative).

13



Consequently, this is the user who has to pay apatiention to the accuracy and
applicability of this function.

The accuracy of the slow diffusion approximationpeieds on the number of
correction terms considered in the series of powdfs The parameter Kmax

determines the highest considered powdf>2 Using different values of Kmax,

one can investigate the role of these correctiomgeneral, the leading term alone
(Kmax=0) is very rough approximation, insufficiefdr typical values of p. The

classical f*correction (Kmax=1) considerably improves it. Higtorder terms can

still be required when p is not small enough. Her moment, the corrections are
limited® to Kmax=3. Note that bigger Kmax does not increasecomputational time,

so that the maximum value can be always used.

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
p =[0.1, 1, 10];
E = MCF_phi2slow(p, ‘cylinder', 'linear’, Tprofilg)

E =
0.0064 0.0121 -2.4866

The comparison with previous exact calculationdasteady temporal profile shows
that this function is accurate for the slow diffusi(p=0.1), but it gives invalid values
for p=1 and p=10 (where the slow diffusion approxiion apparently fails).

« |n the motional narrowing regime (p>>1), the setanomentE{/2} can be
found as
- I‘A
]E{ 4J:_J} ~ bt / dt T')Cﬂ + (,.)[lf.y_gj
P

0
This approximate relation is implemented by
function [E] = MCF_phi2fast(p, Domain, Sprofile, rofile);

Input parameters

p Value (or array of values) of the dimensionleffsision coefficient.

Domain Confining domain:
—'p' or ‘plane’ for a slab geometry;
—'c' or 'cylinder' for a cylinder;

* For slab geometry under linear gradient, the sesfecorrections in powers’pis naturally truncated
to the classical ¥#-correction (higher correction is exponential).this case, Kmax cannot exceed 1.
Similarly, for slab geometry under parabolic fiekinax is limited to 2 [see (Grebenkov, 2006) for
details].

14



—'s' or 'sphere’ for a sphere.
By default, slab geometry is considered.

Sprofile Spatial profile of the magnetic field. Fte moment, only two profile|
are considered:

- 'I"or 'linear" for a linear gradient,

—'p' or 'parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

Tprofile | Vector representing discretized temponaifile of the magnetic field. By
default, a steady profile is considered.

The function returns the value (or array of valu#ghe approximate second moment.
There is no verification whether the input paramgtes big enough or not. If this
condition failed, the result may be incorrect. Gamgently, this is the user who has to
pay special attention to the accuracy and applitabf this function. In contrast with
the function MCF_phi2slow, only the leading terntéculated by this function since
the form of correction terms sensitively dependshentemporal profile.

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
p=10.1, 1, 10];
E = MCF_phi2fast(p, ‘cylinder’, 'linear', Tprofile)

E =
0.7292 0.0729 0.0073

The last value (for p=10) is relatively close te tkxact value 0.0066 of the second
moment (see function MCF_phi2). In opposite, thetfiwo values (for p=0.1 and
p=1) are invalid since the condition p>>1 is failed

<@ The result of the previous function can be sigaifitly improved by correction
term. For the steady temporal profile, the appr@te relation

R B ;._ 'ﬂ_}
B2/~ oL 3

P P
is implemented by

function [E] = MCF_phi2fast_steady(p, Domain, Sgejf

Input parameters

p Value (or array of values) of the dimensionlafsision coefficient.

Domain | Confining domain:

—'p' or 'plane’ for a slab geometry;
—'c' or 'cylinder' for a cylinder;
—'s' or 'sphere’ for a sphere.

15



By default, slab geometry is considered.

Sprofile | Spatial profile of the magnetic field. Rtyve moment, only two profile
are considered:

- 'I"or 'linear" for a linear gradient,

—'p' or 'parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

The function returns the value (or array of valu#ghe approximate second moment.
There is no verification whether the input paramgtes big enough or not. If this

condition failed, the result may be incorrect oremwnphysical (e.g., negative).
Consequently, this is the user who has to pay apatiention to the accuracy and
applicability of this function. In contrast withéHunction MCF_phi2f, the correction

term is added to improve the accuracy.

Example

p=1[0.1, 1, 10];
E = MCF_phi2fast_steady(p, 'cylinder’, 'linear’)

E =
-5.7161 0.0085 0.0066

The last value (for p=10) is equal to the exactigd).0066 of the second moment (see

function MCF_phi2). In opposite, the first two vasi(for p=0.1 and p=1) are invalid
since the condition p>>1 is failed.

< |n the slow diffusion regime (p<<1), the signahdse approximated by

function [E] = MCF_slow(Gradient, Time, Length, Rision, Gamma, Domain,
Sprofile, Tprofile);

Input parameters

Gradient Value (or array of values) of the diffusensitizing magnetic field
intensity, e.g., the gradient strength (in Teslarpeter, T/m).

Time Echo time (in seconds, S).

Length Characteristic dimension of the confiningndan: separation width far

a slab geometry and radius for a cylinder and ar&pfin meters, m).

Diffusion Free (self-)diffusion coefficient (in sgte meters per second?/s).

Gamma Nuclear gyromagnetic ratio (in radians peiaper second, rad's%).
By default, ‘Gamma’ is equal to 2.675-18d T's™ that corresponds to
protons.

Domain Confining domain:

—'p' or 'plane’ for a slab geometry;
—'c' or 'cylinder' for a cylinder,
—'s' or 'sphere’ for a sphere.

16



By default, a slab geometry is considered.

Sprofile Spatial profile of the magnetic field. Rtve moment, only two profile|
are considered:

—'I"or 'linear" for a linear gradient,

—'p' or '‘parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

Tprofile Vector representing discretized temporadfie of the magnetic field
(see below). By default, a steady profile is coasad.

The slow diffusion approximation of the signal iasbd on the computation of the
second moment by function MCF_phi2s. There is nafigation whether the input
parameter p is small enough or not. In additiotfa, input parameter g should be
small. If one of these conditions failed, the resuhy be incorrect. Consequently, this
is the user who has to pay special attention toatteiracy and applicability of this
function.

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
E = MCF_slow(le-2, 1e-1, 1le-4, 2.3e-9, 2.675e@ng| 'linear’, Tprofile)

E =
0.3348

This value is smaller than the exact result 0.3p6function MCF (see above).

< |n the motional narrowing regime (p>>1), the sigren be approximated by

function [E] = MCF_fast(Gradient, Time, Length, fiion, Gamma, Domain,
Sprofile, Tprofile);

Input parameters

Gradient Value (or array of values) of the diffus®ensitizing magnetic field
intensity, e.g., the gradient strength (in Teslampeter, T/m).

Time Echo time (in seconds, S).

Length Characteristic dimension of the confiningném: separation width fo
a slab geometry and radius for a cylinder and argpfin meters, m).

-

Diffusion Free (self-)diffusion coefficient (in sgte meters per second”/s).

Gamma Nuclear gyromagnetic ratio (in radians peiaper second, rad's").
By default, 'Gamma’ is equal to 2.675-t8d T's™ that corresponds to
protons.

Domain Confining domain:

—'p' or '‘plane’ for a slab geometry;

—'c' or 'cylinder' for a cylinder,

—'s' or 'sphere’ for a sphere.

By default, a slab geometry is considered.

17



Sprofile Spatial profile of the magnetic field. Rbe moment, only two profile|
are considered:

—'I"or 'linear" for a linear gradient,

—'p' or 'parabolic’ for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

Tprofile Vector representing discretized temporadfie of the magnetic field
(see below). By default, a steady profile is coasad.

The slow diffusion approximation of the signal iasbd on the computation of the
second moment by function MCF_phi2f. There is ndfieation whether the input
parameter p is big enough or not. In additionad,itiput parameter q should be small.
If one of these conditions failed, the result mayiticorrect. Consequently, this is the
user who has to pay special attention to the acgwmad applicability of this function.

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
E = MCF_fast(le-2, le-1, 1e-4, 2.3e-9, 2.675e8n4d| 'linear’, Tprofile)

E =
2.5354e-113

This value is obviously invalid since the conditips>1 is failed (here p=0.023).

* Two similar functions involving the dimensionlepsrameters p and g are
introduced to consider the slow diffusion (p<<l1pdhe motional narrowing (p>>1)
regimes:

function [E] = MCF_pg_slow(p, g, Domain, Sprofilgprofile);

function [E] = MCF_pqg_fast(p, q, Domain, Sprofilligyrofile);

Input parameters

p Value (or array of values) of the dimensionleffsision coefficient.
q Value (or array of values) of the dimensionlesgnetic field intensity.
Domain Confining domain:

—'p' or 'plane’ for a slab geometry;

—'c' or 'cylinder’ for a cylinder;

—'s' or 'sphere’ for a sphere.

By default, a slab geometry is considered.

Sprofile Spatial profile of the magnetic field. Rtve moment, only two profile|
are considered:

—'I"or 'linear" for a linear gradient,

—'p' or '‘parabolic’' for a parabolic magnetic field.

By default, the linear gradient is used.

[72)

Tprofile Vector representing discretized temporal profiletted magnetic fielc
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| (see below). By default, a steady profile is coesid. |

These functions return the value E (or array ofigg) or matrix) of the approximated
signal. There is no verification whether the inpatameter p is small (big) enough or
not. In additional, the input parameter g shouldsb®ll. If one of these conditions
failed, the result may be incorrect. Consequeritlis is the user who has to pay
special attention to the accuracy and applicabolitshis function.

Example

Tprofile = MCF_Trectangle(5e-3, 0, 100);
p=2.3e-9* le-1/(le-4*1e-4)

p =
0.0230

g=2.675e8 * 1le-2 * 1le-4 * le-1

q =
26.7500

E = MCF_pg_slow(p, q, 'p’, 'I', Tprofile)

E =
0.3348

E = MCF_pqg_fast(p, q, 'p', 'I', Tprofile)

E =
2.5354e-113

There are several auxiliary functions required taken MCFAL operational. Since
these functions are not supposed for an independentwe only list them without
specification:

function [tp] = MCF_type(Domain, Sprofile);
function [alpha]=MCF_BLO_cl;

function [alpha]=MCF_BLO_slI;

function [alpha]=MCF_BLO_cp;

function [alpha]=MCF_BLO_sp;

function [s]=MCF_func_steady(x);
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Several useful remarks

The present implementation of the MCF approachdesn checked by independent
Monte Carlo simulations. Of course, such a numketést cannot ensure its validity in
any situation. It may happen that experimental daoa not follow numerical
predictions. In this case, four different explaoas may be suggested:

— conceptual error or misprint in the MCF approach;

— technical error in the numerical implementatiorthef MCF approach;
—wrong use of the MCFAL,

— physical artifact in experimental measurements.

The author has certainly tried to avoid the fivgb ttauses by numerous tests. If there
is a doubt in the functioning of the MCF approaclit® numerical implementation, it
is suggested to contact the author. The third reaso be related, for instance, to a
wrong order of input parameters or non Sl-unitss Istrongly recommended to read
carefully the description of the functions. At laste should stress that the MCF
approach is based on a classical description dficesl diffusion. It is merely a
model thatmay or may not be valid for specific experimental conditions. Wention
only a few possible deviations from this model: weetional transport, anisotropic
diffusivity of the medium, bulk relaxation, susceptibility effects, hardware
imperfections, residual magnetic field gradiengsn snteractions, etc.

Please, do not try to “fake” the functions of MCFAising deliberately wrong or
unphysical parameters. This is not commercial sowthere is only a few checks
for appropriateness of the input parameters.

For the localization regime (g>>1), it is suggested perform the numerical
computation for slab geometmnly. In the case of a cylinder and a sphere, the
truncation of matricesB and A to maximum available sizes ®0 may be
insufficient® This artificial limitation should be suppressedtie following release

of the MCFAL.

® Please, do not confuse anisotropic diffusivityp@iedence of the “free” diffusion coefficient on the
coordinates) with anisotropy of the confining domdihe last one is captured by the MCF approach.

® There are two reasons to prefer slab geometrgt, Blrere is no limitation to the size of matrids
andA. The second and more important reason is thatapéce operator eigenvalukg increase as

m? for slab geometry, and roughly as m for a cylingled a sphere. If an accurate computation for slab
geometry requires the matricBsand A of size, for example, 3@0, the similar computation for a
cylinder and a sphere would require matrices of simund 90R900. This technical problem appears
only for the localization regime (g>>1) since thaséillating” part i@ in exp[-(pA+igB)] should be
dumped by “decreasing” parf\p
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