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Abstract
Fractional dynamics has experienced a firm upswing during the past few
years, having been forged into a mature framework in the theory of stochastic
processes. A large number of research papers developing fractional dynamics
further, or applying it to various systems have appeared since our first review
article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a,
Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a
cohesive perspective. In this review we cover both the theoretical modelling of
sub- and superdiffusive processes, placing emphasis on superdiffusion, and the
discussion of applications such as the correct formulation of boundary value
problems to obtain the first passage time density function. We also discuss
extensively the occurrence of anomalous dynamics in various fields ranging
from nanoscale over biological to geophysical and environmental systems.

PACS numbers: 87.15.−v, 05.40.Fb, 05.60.Cd, 36.20.−r, 82.37.−j, 87.14.Gg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For seven and a half million years, Deep Thought computed and calculated, and
in the end announced that the answer was in fact Forty-two—and so another, even
bigger, computer had to be built to find out what the actual question was3.

The notions and concepts of anomalous dynamical properties, such as long-range spatial
or temporal correlations manifested in power laws, stretched exponentials, 1/f α-noises,

3 Douglas Adams, The Restaurant at the End of the Universe, Tor Books, 1988.
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or non-Gaussian probability density functions (PDFs), have been predicted and observed
in numerous systems from various disciplines including physics, chemistry, engineering,
geology, biology, economy, meteorology, astrophysics and others. Apart from other standard
tools to describe anomalous dynamics such as continuous time random walks (Blumen et al
1986a, Bouchaud and Georges 1990, Hughes 1995, Klafter et al 1996, Shlesinger et al 1993),
fractional dynamical equations have become increasingly popular to model anomalous
transport (Barkai 2001, Hilfer 2000, Metzler and Klafter 2000a, 2001, Sokolov et al 2002).
In the presence of an external force field, in particular, the fractional Fokker–Planck equation
provides a direct extension of the classical Fokker–Planck equation, being amenable to well-
known methods of solution.

This review updates and complements with new and different perspectives the ‘Random
walk’s guide to anomalous diffusion’ (Metzler and Klafter 2000a). Since its publication, a
large volume of research covering recent developments in the fractional dynamics framework
and its applications has been conducted, most of which is brought together herein. We refrain
from a repetition of the historical context and the mathematical details presented in Metzler
and Klafter (2000a, 2001), and we build on the material and notation introduced there. What
we wish to point out is the framework character: just as the regular Fokker–Planck equation
renders itself to the description of a plethora of processes, so does the fractional analogue in
all those systems whose statistics is governed by the ubiquitous power laws. The breadth of
such potential applications, at the same time, may indeed encourage the usage in many new
fields.

We start with a collection of systems, in which have been observed anomalous processes
with long-range correlations, covering both experimental and theoretical evidence. Having set
the scene, we divide the introduction of fractional dynamics concepts between subdiffusive
and superdiffusive processes, and for the latter we distinguish between Lévy flights and walks
(Klafter et al 1996, Shlesinger et al 1993). Finally, we discuss various applications of the
framework, in particular, the formulation and solution of first passage time problems and
fractional diffusion–reaction processes. In the appendix, we collect some important concepts
and definitions on fractional operators.

2. Processes of anomalous nature

As already mentioned, processes deviating from the classical Gaussian diffusion or exponential
relaxation patterns occur in a multitude of systems. The anomalous features usually stretch
over the entire data window, but there exist examples when they develop after an initial period
of sampling (finite size/time effects), or they may be transient, i.e., eventually the anomalous
process nature turns into normal transport or relaxation dynamics. In the anomalous regime,
possibly the most fundamental definition of anomaly of the form we have in mind is the
deviation of the mean squared displacement

〈(�r)2〉 = 〈(r − 〈r〉)2〉 = 2dKαtα (1)

from the ‘normal’ linear dependence 〈(�r)2〉 = 2dK1t on time. Here, d is the (embedding)
spatial dimension, and K1 and Kα are the normal and generalized diffusion constants of
dimensions cm2 s−1 and cm2 s−α , respectively. The anomalous diffusion exponent α �= 1
determines whether the process will be categorized as subdiffusive (dispersive, slow) if
0 < α < 1, or superdiffusive (enhanced, fast) if 1 < α. Usually, the domain 1 < α � 2 is
considered, α = 2 being the ballistic limit described by the wave equation, or its forward and
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Table 1. Comparison of different anomalous diffusion models to normal Brownian
motion (BM) (Lévy 1965, van Kampen 1981): PDFs of fractional Brownian motion (FBM)
(Mandelbrot and van Ness 1968, Lim and Muniandy 2002, Lutz 2001b, Kolmogrov 1940),
generalized Langevin equation with power-law kernel (GLE) (Kubo et al 1985, Lutz 2001b,
Wang et al 1994, Wang and Tokuyama 1999); continuous time random walk (CTRW) of types
subdiffusion (SD), Lévy flights (LF) and Lévy walks (Klafter et al 1987, 1996, Shlesinger et al
1993); as well as time-fractional dynamics (TFD), which covers both subdiffusion (in this case it
corresponds to SD) and sub-ballistic superdiffusion (Metzler and Klafter 2000a, 2000d). The ci

are constants.

PDF Comments

BM P(x, t) = (4πKt)−1/2 exp(−x2/(4Kt))

FBMa P(x, t) = (4πKαtα)−1/2 exp(−x2/(4Kαtα)) 0 < α � 2
GLEb P(x, t) = (4πKαtα)−1/2 exp(−x2/(4Kαtα)) 0 < α < 2, α �= 1
SDc P(x, t) ∼ c1t

−α/2ξ−(1−α)/(2−α) exp(−c2ξ
1/(1−α/2)), 0 < α � 1

ξ ≡ |x|/tα/2 ∴ ψ(t) ∼ τα/t1+α

LFd P(x, t) = F−1{exp(−Kµt |x|µ)} ∼ Kµt/|x|1+µ 0 < µ � 2
LWe P(k, u) = 1

u
ψ(u)/[1 − ψ(k, u)] ∴

ψ(x, t) = 1
2 |x|−µδ(|x| − vν t

ν) νµ > 1
TFDf P(x, t) ∼ c1t

−α/2ξ−(1−α)/(2−α) exp(−c2ξ
1/(1−α/2)), 0 < α < 2

ξ ≡ |x|/tα/2

a Note that there are various definitions of FBM. However, the Gaussian nature is common to all
versions. The behaviour of FBM is antipersistent for 0 < α < 1, and persistent for 1 < α � 2
(Mandelbrot 1982).
b The GLE is in some sense more fundamental than the FBM. For instance, it occurs naturally in
hydrodynamic backflow (Kubo et al 1985, Landau and Lifshitz 1987), and generally includes an
external force. The case α = 1 leads to a logarithmic correction of the form 〈x2(t)〉 ∼ t log t in
the GLE formulation chosen in Wang and Tokuyama (1999).
c Same (asymptotic) PDF as in the TFD case with 0 < α � 1.
d The symmetric Lévy stable law of index µ, with diverging variance 〈x2(t)〉 = ∞. LFs
correspond to the space-fractional diffusion equation (34).
e For appropriate exponents µ and ν, LWs lead to the SD and to the TFD, while for superdiffusion
they exhibit δ-spikes that spread apart (with constant velocity for ν = 1), continuously spanning a
Lévy stable-like propagator between them (Klafter and Zumofen 1994a). Superdiffusive LWs are
described in terms of the fractional material derivative (55). Compare also section 4.3.
f Stretched (0 < α < 1) and compressed (1 < α < 2) Gaussian governed by equation (9) for
0 < α < 1, and by a fractional wave equation for 1 < α < 2 (Schneider and Wyss 1989, Metzler
and Klafter 2000a, 2000d).

backward modes (Landau and Lifshitz 1984)4. Processes with α > 2 are known, such as the
Richardson pair diffusion (〈R2(t)〉 ∼ t3) in fully developed turbulence (Richardson 1926).
However, we will restrict our discussion to sub-ballistic processes with α < 2 explicitly5. An
exception to equation (1) is unconfined Lévy flights, for which we observe a diverging mean
squared displacement6. We will concentrate on the one-dimensional case, to keep notation
simple, in particular, for the case of Lévy flights.

Before we continue, we stop to highlight the parallels and main differences between
fractional dynamics and other dynamical models, as compiled in table 1 for force-free

4 Note that the diffusion equation can be rephrased with a half-order derivative in time and first-order derivative in
space. This is exact in d = 1 and d = 3 (Oldham and Spanier 1972), and asymptotically correct in general fractal
dimension (Metzler et al 1994).
5 It was shown that the restriction to sub-ballistic motion guarantees for all non-pathological processes fulfilling
equation (1) that the fluctuation–dissipation theorem holds (Costa et al 2003, Morgado et al 2002).
6 As will be discussed below, in the presence of steep external potentials, the mean squared displacement of Lévy
flights becomes finite.
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anomalous diffusion. Thus, Brownian motion (BM) can be generalized using the continuous
time random walk (CTRW) model to subdiffusion or dispersive transport (SD), to Lévy flights
(LF), or to Lévy walks (LW); see the table caption for more details. All of these models can be
mapped onto the corresponding fractional equations, as discussed in the following sections.
These descriptions differ from fractional Brownian motion (FBM) or the generalized Langevin
equation (GLE). Despite being Gaussian in nature such as the PDF in Brownian dynamics,
fractional Brownian motion, and generalized Langevin equation descriptions, the subdiffusion
PDF has an asymptotic stretched Gaussian shape, Lévy flights are characterized by a long-
tailed Lévy stable law, and Lévy walks exhibit spikes of finite propagation velocity, in between
which an approximate Lévy stable PDF is being spanned continuously. As we will see from the
fractional dynamical equations corresponding to SD, LFs and LWs, they are highly non-local,
and carry far-reaching correlations in time and/or space, represented in the integro-differential
nature (with slowly decaying power-law kernels) of these equations. In contrast, FBM and
GLE on the macroscopic level are local in space and time, and carry merely time- or space-
dependent coefficients. We also note that anomalous diffusion can be modelled in terms of
non-linear Fokker–Planck equations based on non-extensive statistical approaches (Borland
1998). However, we intend to consider linear equations in what follows.

To build our case, let us continue by presenting a list of examples from different areas for
which the anomalous character has been demonstrated.

2.1. Geophysical and geological processes

The seasonal variations of rivers, and the water balance in general, have been studied
extensively over many decades, in particular, due to their environmental importance. Thus,
for the water discharge variations of Lake Albert during his studies of the time variations
of the Nile river, Hurst found that they cannot fall into the class of statistically independent
processes, but can only be explained by a process which is correlated in time. Similar effects
were reported on rainfall statistics and tree rings (Hurst 1951, Hurst et al 1951, Feder 1988).
More recently, drought duration and rain duration as well as rain size of localized rain events
have in fact been confirmed to obey power-law statistics (Dickman 2003, Peters et al 2002),
which also enter earthquake aftershocks dynamics (Helmstetter and Sornette 2002). But also
the ‘products’ of dynamical processes are often non-trivial, such as the fractal nature of
coastline, also known as the ‘Coastline-of-Britain’ phenomenon based on data collected by
Richardson (Mandelbrot 1967a), or the anomalous scaling between drainage area and river
network length discovered originally by Hack (1957).

Considerable attention is paid to the investigation of tracer diffusion in subsurface
hydrology, primarily for its obvious environmental implications. Thus, large-scale field
experiments were undertaken, such as at the Borden site in Ontario, Canada (Sudicky 1986), at
Cape Cod, Massachusetts (LeBlanc et al 1991), or during the MAcro-Dispersion Experiment
(MADE) at Columbus Air Force Base, Mississippi (Boggs et al 1993, Adams and Gelhar
1992, Rehfeldt et al 1992), indicating that tracer dispersion is controlled by strong non-
locality causing highly non-Gaussian PDFs (in this context often called plumes) seen as
‘scale-dependent dispersion’ (Gelhar et al 1992). It has been shown that long-tailed waiting
time distributions with a comparably small number of fit parameters can well account for
the observed behaviour (Berkowitz et al 2002, Berkowitz and Scher 1995, 1997, Scher et al
2002a); however, also space-fractional models were used to account for the anomalies
(Benson et al 2001). In a similar study, long-time catchment data of chloride tracer in
rainwater recorded in Wales, UK, were shown to follow 1/f statistics in the power spectrum
(Kirchner et al 2000), which might indicate strongly non-local correlations in time, which
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Figure 1. Top: power spectra of chloride tracer originally contained in rainwater, and as measured
at the outflow to the Hafren stream after crossing the catchment. Chloride spectra of rainfall (dotted
lines) resemble white noise; those of stream flow (solid lines) resemble 1/f-noise, with spectral
power increasing proportionally to wavelength across the entire range of scales (data measured
daily for 3 years, and weekly for 14 years). Bottom: response of stream-flow concentrations
to a δ-function pulse input of contaminants. Because of the long-tailed nature in comparison to
conventional models, contaminant concentrations are sustained substantially for much longer time
spans. The logarithmic concentration scale emphasizes the persistence of low-level contamination
of the Gamma-fit ∝ tα−1 e−t/τ ( α � 0.5; τ � 1.9 years is close to the edge of the data window
such that essentially all data follow the power law t−1/2) used in the original work (Kirchner et al
2000). The inset depicts δ-function contaminant input.

was later interpreted from an anomalous dynamics point of view, indicating that the data are
perfectly consistent with a power-law form for the sticking time distribution of tracer particles
in the catchment, causing extremely long retention times (Scher et al 2002a). Any contaminant
getting into an aquifer fostering such anomalous dynamics will take considerably longer to
leave the aquifer than the advecting water, in which it diffuses. This is, for instance, illustrated
in figure 1, contrasting the drift-dominated behaviour of the water with the tracer outflow.
According to the modelling brought forth in Scher et al (2002a), the mean retention time for
the tracer becomes infinite, and is possibly due to sticking effects or trapping of the tracer in
side channels off the aquifer backbone. We note that even on the laboratory scale, fairly simple
systems were found to exhibit anomalous tracer dispersion (Berkowitz et al 2000a, 2000b), a
problem still lacking a deeper understanding. In a similar manner, on-bed particle diffusion
in gravel bed flows was recently shown to exhibit different transport regimes, ranging from
ballistic to subdiffusion (Nikora et al 2002).
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Figure 2. Mean squared displacement of engulfed microspheres in the cytoskeleton of a living
cell. Active, motor-driven transport with exponent 3/2 turns to subdiffusion with exponent 3/4
(occasionally normal diffusion) (Caspi et al 2000).

2.2. Biological systems

Within a single biological cell, the motion of microspheres was found to have a transient
superdiffusive behaviour with α = 3/2 (motor-driven motion), an exponent suspiciously
close to the motion in random velocity fields (Matheron and de Marsily 1980, Zumofen et al
1990)7. This active superdiffusion is followed by a subdiffusive (in some instances also
normal diffusive) scaling (Caspi et al 2000, 2002, 2001). Some typical experimental results
are depicted in figure 2. Similar subdiffusive behaviour in cells is known from lipid granular
inclusions in the cytoskeleton of E. coli cells (Tolic-Nørrelykke et al 2003). We note that such
presumably cytoskeleton-mediated anomalous diffusion patterns are consistent with findings
from diffusion assays of microspheres in polymer networks (Amblard et al 1996, 1998a,
1998b), and time anomalies are also known from fluorescence video-microscopy assays
(LeGoff et al 2002), and microrheology experiments on semiflexible polymers (Wong et al
2003, Tseng and Wirtz 2002), and from regular polymer melts (Fischer et al 1996, Kimmich
1997). The subdiffusive phenomenon may in fact be related to caging-caused subdiffusion
(Weeks and Weitz 2002, Weeks et al 2000).

7 We note that anomalous diffusion-assisted ratchet transport was studied to some detail in Bao (2003) and Bao
and Zhuo (2003); compare the fractional generalization of the Kramers problem, which was originally formulated in
Metzler and Klafter (2000f ), see also So and Liu (2004).
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In proteins, a detailed analysis based on Fourier transform infrared spectroscopy
data (Iben et al 1989, Austin et al 1974, 1975) demonstrated that ligand rebinding to
myoglobin follows an asymptotic power-law decay. Data analysis showed that the entire
measured rebinding curve follows fractional dynamics with Vogel–Fulcher-type temperature
activation (Glöckle and Nonnenmacher 1995). Measurements of single ion gating channels
using the patch clamp technique show logarithmic oscillations around a power-law trend
(Blatz and Magleby 1986), which was demonstrated to correspond to a power-law distribution
of characteristic times and amplitudes of individual exponential relaxation contributions
(Nonnenmacher and Nonnenmacher 1989). Similarly, the passage of a single bio-oligo-
or macromolecule through a membrane pore (Meller 2003) was recently shown to have
a priori unexpected long-time contributions (Bates et al 2003, Metzler and Klafter 2003,
Flomenbom and Klafter 2003, 2004). While for short chains anomalous time behaviour is most
likely caused by chain–pore interactions (sticking) (Bates et al 2003), in the case of long chains
the anomalous nature follows a forteriori from the polymer relaxation time (Chuang et al
2002). We note that long passage times were also found in fluorescence microscopy single-
molecule assays of DNA uptake into the cell nucleus (Salman et al 2001). Compelling
evidence for broad time-scale distributions in protein conformational dynamics was reported
recently, and modelled on the basis of the fractional Fokker–Planck equation (Yang et al 2003,
Yang and Xie 2002). In figure 3, we reproduce the fluorescence autocorrelation function
fitted by various functions, showing the superior quality of the anomalous diffusion model, as
well as a reconstruction of the energy landscape of the protein conformation, see figure 3 for
details.

In a double-stranded DNA heteropolymer made up of the nucleotides (bases) A(denine),
G(uanine), C(ytosine) and T(hymine), the entropy-carrying, flexible single-stranded bubbles,
which open up due to thermal fluctuations, are preferentially located in areas rich in the
weaker AT bonds (Altan-Bonnet et al 2003, Hanke and Metzler 2003). On diffusion along
the DNA backbone, the bubbles have to cross tighter GC-rich regions, an effect which was
shown to produce subdiffusion (Hwa et al 2003). Similarly, the motion of DNA-binding
proteins along DNA due to differences in the local structure is subdiffusive (Slutsky et al
2003). In contrast, the points at which a random walker on a polymer chain can jump to
another chain segment, which is close by in 3D (three-dimensional) space but distant in
terms of the chemical coordinate, are distributed like an LF (Brockmann and Geisel 2003b,
Sokolov et al 1997), which may contribute to fast target localization of (regulatory) proteins
along DNA (Berg et al 1981); in particular, with respect to situations of overwhelming non-
specific binding (Bakk and Metzler 2004a, 2004b), compare the on-DNA investigation in
Slutsky and Mirny (2004). We note that such dynamical features may be employed for
DNA sequencing, which is in turn related to Lévy signatures (Scafetta et al 2002). A particle
attached to a (biological) membrane and confined to an harmonic potential (as fulfilled to good
approximation in an optical tweezers field) displays anomalous relaxation behaviour related
to Mittag-Leffler functions (Granek and Klafter 2001). Also the boundary layer thickness
around a membrane exhibits subdiffusive behaviour (Dworecki et al 2003, Kosztołowicz and
Dworecki 2003).

On somewhat larger scales, NMR field gradient measurements of biological tissues
(Köpf et al 1996) could be shown to reveal anomalous diffusion behaviour in cancerous
regions in both time and space resolution (Köpf et al 1998). Finally, the trajectories between
turning or resting points of biological species within their habitats have been found to follow
power-law statistics, such observations pertaining from bacteria (Shlesinger and Klafter 1990,
Levandowsky et al 1997) and plankton (Visser and Thygesen 2003), over spider-monkeys
(Ramos-Fernandez et al 2003) and jackals (Atkinson et al 2002), to the famed flight of an
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Figure 3. Top: fit of the experimental autocorrelation function of fluorescence lifetime fluctuations
by stretched exponential and anomalous diffusion models, in comparison to the rather bad fits by a
Brownian diffusion model. Bottom: potential of mean force calculated from measurements. The
dashed line is a fit to a harmonic potential with variance of 0.19 Å2. Inset: a sketch of a rugged
‘transient’ potential resulting from the short-time projection of 3D motions of the protein to the
experimentally accessible coordinate (Yang et al 2003).

albatross (Viswanathan et al 1996, 1999). As an example, we show typical trajectories of
spider-monkeys in the forest of the Mexican Yucatan peninsula in figure 4. In parts (c) and (d )
of this figure, a zoom into the trajectory reveals a self-similar behaviour. Statistical analysis
reveals a Lévy walk with an exponent in the mean squared displacement (1) of magnitude
α ≈ 1.7 (Ramos-Fernandez et al 2003).

2.3. Small and large: other systems with anomalous dynamics

In subrecoil laser cooling, ‘velocity selective coherent population trapping’ leads to a broadly
distributed waiting time of particles close to zero momentum, the Lévy stable nature of
which can, in principle, be measured. Moreover, its dynamical description exactly leads to a
Riemann–Liouville fractional operator (Kondrashin et al 2002, Schaufler et al 1999a, 1999b,
Bardou et al 2002). Similarly, anomalous diffusion occurs in optical lattices (Lutz 2003).
Power-law statistics were observed for the histograms of on- and off-times in single quantum
dots (Shimizu et al 2001), see figure 5. Signatures of Lévy statistics were impressively
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Figure 4. Daily trajectories of adult female (a), (b) and male (c) spider monkeys. In panel (d ), a
zoom into the inset of (c) is shown (Ramos-Fernandez et al 2003).

Figure 5. Off-time statistics of blinking (on–off cycles) quantum dots, exhibiting power-law
statistics over several decades. For details see Shimizu et al (2001).

documented in the study of the position of a single ion in a one-dimensional optical lattice,
in which diverging fluctuations could be observed in the kinetic energy (Katori et al 1997).
Lévy statistics have been identified in random single-molecule line shapes in glass-formers
(Barkai et al 2000a, 2003). Already in Kenty (1932) it was concluded that in radiation
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diffusion the rapidity of escape of resonance radiation from a gas leads to anomalous statistics
according to which the fraction of emitted quanta traversing at least a given distance before
absorption decays approximately linearly with the distance. Classical intermittency, expressed
in terms of continuous time random walks and the fractional Fokker–Planck equation for LFs
can be related to the quantum Anderson transition (Garcı́a-Garcı́a 2003), and LF signatures
were proposed to underlie the fracton excitations in certain ‘unconventional’ superconductors
(Milovanov and Rasmussen 2002).

Lévy-type random walks were recognized in the evolution of comets from the Oort
cloud (Zhou et al 2002, Zhou and Sun 2001), and anomalous diffusion was diagnosed in
the cosmic ray spectrum (Lagutin and Uchaikin 2003). It has recently been argued that the
terrestrial temperature anomalies are inherited through a Lévy walk memory component from
intermittent solar flares (Scafetta and West 2003). From radio signals received from distant
pulsars, it has been proposed that the interstellar electron density fluctuations obeys Lévy
statistics (Boldyrev and Gwinn 2003). A non-linear fractional equation was proposed for the
kinetic description of turbulent plasma and fields at the nonequilibrium stationary states of
the magnetotail of Earth (Milovanov and Zelenyi 2002, 2001). Finally, ion motion along
the direction normal to the magnetopause has been diagnosed to be of Lévy walk nature
(Greco et al 2003).

Anomalous diffusion was proposed to account for the hydrogen effect on the morphology
of silicon electrodes under electrochemical conditions (Goldar et al 2001), as well as in the
context of non-linear electrophoresis (Baskin and Zilberstein 2002). Fractional analysis tools
were applied in the analysis of anomalous diffusion patterns found in amorphous electroactive
materials (Bisquert et al 2003, Bisquert 2003). Anomalous diffusion of cations was found
as the mechanism in the growth of surface molybdenum oxide patterns (Lugomer et al
2002), and similarly the electron transfer kinetics in PEDOT8 films (Randriamahazaka et al
2002) and atomic transport and chemical reaction processes in high-k dielectric films
(de Almeida and Baumvol 2003).

Fractional dynamics may underlie the statistics of the joint velocity–position PDF of a
single particle in turbulent flow (Friedrich 2003). A fractional generalization of Richardson’s
law was proposed for the description of water transport in unsaturated soils (Pachepsky et al
2003). Lévy-type PDFs of particle velocities in soft-mode turbulence were studied in
electroconvection (Tamura et al 2002). From a phenomenological point of view, LFs have
been used to describe the dynamics observed in plasmas (Chechkin et al 2002b, Gonchar et al
2003, Bakunin 2003), or in molecular collisions (Carati et al 2003). Stochastic collision
models and their natural relation to Lévy velocity laws are discussed in Barkai (2003a). A
fractional diffusion approach to the force distribution in static granular media was brought
forth recently (Vargas et al 2003). Anomalous diffusion properties of heat channels have been
investigated in Denisov et al (2003) and Reigada et al (2002)9. Surface growth under certain
circumstances requires a generalization of the classical Kardar–Parisi–Zhang model. Recent
discussion involves a space-fractional KPZ equation (Katzav 2003, Mann and Woyczynski
2001); compare the discussion of anomalous surface diffusion in Naumovets and Zhang
(2002) and Vega et al (2002), fractal growth (Leith 2003), and of travelling fronts in the
presence of non-Markovian processes (Feodotov and Mendez 2000).

Dielectric susceptibilities in glassy systems are of strong non-Debye form (compare
Déjardin 2003, Metzler and Klafter 2002) and can in some systems be studied over some 15
decades in frequency10 (Hilfer 2002a, 2002b, Schneider et al 1999, Lunkenheimer and Loidl

8 Poly-3,4-ethylenedioxythiophene.
9 Also compare to Li and Wang (2003) and the Comment on that paper (Metzler and Sokolov 2004).
10 Similar to master curves from rubbery systems (Glöckle and Nonnenmacher 1991, Metzler et al 1995).
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Figure 6. Survival probability for BUND futures from September 1997. The Mittag-Leffler
function (full line) is compared with a stretched exponential (dashed-dotted line) and a power law
(dashed line) (Mainardi et al 2000).

2002), and by NMR both subdiffusion in percolation clusters and Lévy walks in porous media
have been verified (Kimmich 2002, Stapf 2002, 1995). In Klemm et al (2002), the PDF of
fractional diffusion is shown to account for the measured, projected self-diffusion profiles on
a fractal percolation structure. 1/f -noise and correlated intermittent behaviour were reported
from molecular dynamics simulations of water freezing (Matsumoto et al 2002).

In economical contexts, it has been revealed that Lévy statistics are present in the
distribution of trades (Mandelbrot 1963, 1966, 1967b, Mantegna and Stanley 1996, 2000,
Bouchaud and Potters 2000, Matia et al 2002). Similarly, it was shown that ‘fat tails’ appear
in the return of the value of a given asset to a fixed level (Jensen et al 2003, Simonsen et al
2002). For the waiting time between two transactions power-law statistics were observed
(Kim and Yoon 2003, Raberto et al 2002, Scalas et al 2000, Mainardi et al 2000). Figure 6
shows a Mittag-Leffler fit to the BUND futures traded in September 1997, in which the initial
≈2.5 decades in time are nicely fitted by the Mittag-Leffler function (which has a point of
inflection on the log–log scale for index larger than 1/2, afterwards the data appear to oscillate
around the Mittag-Leffler trend).

Finally, we note that ageing in glasses and other disordered systems
(Monthus and Bouchaud 1996, Rinn et al 2000, Pottier 2003) as well as in dynamical systems
(Barkai and Cheng 2003, Barkai 2003b) involves power-law non-locality in time; compare the
discussion in Sokolov et al (2001) and Allegrini et al (2003).

3. Subdiffusive processes

Subdiffusive dynamics is characterized by strong memory effects on the (fluctuation-averaged)
level of the PDF P(x, t), i.e., unlike in a Markov process the now-state of the system depends
on the entire history from its preparation (Barkai 2001, Hughes 1995, Metzler and Klafter
2000a). This contrasts generalized Langevin equations, whose fluctuation average produces
equations for P(x, t), which carry time-dependent transport coefficients but are local in time
(Wang et al 1994, Wang and Tokuyama 1999, Lutz 2001b, Bazzani et al 2003). Subdiffusion
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is classically described in terms of the CTRW (see the appendix) with a long-tailed waiting
time PDF of the asymptotic form

ψ(t) ∼ τα/t1+α 0 < α < 1 (2)

for t 
 τ . In fact, subdiffusive processes are directly subordinated to their analogous
Markovian system through a waiting time PDF ψ(t) of the above form. Such waiting times are
distinguished by the divergence of the characteristic waiting time, T = ∫ ∞

0 ψ(t)t dt = ∞, and
they reflect the existence of deep traps, which subsequently immobilize the diffusing particle.
The seminal case study for such processes is amorphous semiconductors (Pfister and Scher
1977, 1978, Scher and Montroll 1975).

3.1. Fractional diffusion equation

From expression (2), we can immediately obtain the equation for P(x, t) in the force-free
case. To this end, we combine the long-tailed ψ(t) with a short-range jump length PDF λ(x)

and the known expression (A.1) for the PDF P(x, t) in the continuous time random walk
model (see Metzler and Klafter 2000a and the appendix). With the asymptotic behaviour

ψ(u) ≡ L{ψ(t); u} =
∫ ∞

0
ψ(t) exp(−ut) dt ∼ 1 − (uτ)α (3)

of the Laplace transform L{ψ(t); u} of ψ(t), and the analogous expansion of a typical,
short-range jump length PDF, λ(k) ∼ 1 − σk2 (k → 0) for the Fourier transform of λ(x), we
obtain

P(k, u) � 1/u

1 + u−αKαk2
(4)

where we identified the anomalous diffusion constant as Kα ≡ σ/τα . By the symbol � we
indicate that the result for P(k, u) is based on expansions for ψ(u) and λ(k). However, similar
to the limit in going from the master equation to the continuum limit, we can choose τ and σ

small enough (keeping Kα finite), such that P(k, u) essentially covers the entire time–space
range. In this sense, we will drop the � sign in the following.

In the Brownian limit α = 1, expression (4) after multiplication by the denominator leads
to the standard diffusion equation ∂P (x, t)/∂t = K1∂

2P(x, t)/∂x2, making use of the integral
theorem L

{ ∫ t

0 f (t) dt
} = u−1f (u) and the differentiation theorem F {d2g(x)/dx2} =

−k2g(k) of the Laplace and Fourier transformations, respectively (Wolf 1979). By partial
differentiation of the obtained integral equation, the diffusion equation yields. For the
subdiffusive case 0 < α < 1, in contrast, a term of the form u−αf (u) occurs. Its Laplace
inversion is indeed feasible, due to the property

L
{

0D
−α
t f (t)

} ≡
∫ ∞

0
dt e−ut

0D
−α
t f (t) = u−αf (u) (5)

of the Riemann–Liouville fractional integral,

0D
−α
t f (t) ≡ 1

�(α)

∫ t

0
dt ′

f (t ′)
(t − t ′)1−α

(6)

defined for any sufficiently well-behaved function f (t) (Miller and Ross 1993, Oldham
and Spanier 1974, Podlubny 1998, Samko et al 1993). Thus, from equation (4) we
obtain the fractional diffusion equation in the so-called integral form (Balakrishnan 1985,
Schneider and Wyss 1989),

P(x, t) − P0(x) = 0D
−α
t Kα

∂2

∂x2
P(x, t) (7)
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where we have written a general initial condition P0(x) instead of the δ-condition P0(x) = δ(x)

corresponding to (4). By partial differentiation and with the Riemann–Liouville fractional
differential operator

0D
1−α
t ≡ ∂

∂t
0D

−α
t (8)

we arrive at the usual form of the fractional diffusion equation

∂

∂t
P (x, t) = 0D

1−α
t Kα

∂2

∂x2
P(x, t). (9)

The solution of this equation can be obtained in closed form in terms of the Fox H-function
(Hilfer 1995, Metzler and Klafter 2000a, 2000d, Schneider and Wyss 1989). Moreover, due to
the definition of this H-function as a Mellin–Barnes integral, the spectral functions
of P(x, t) such as P(k, t), P (k, ω) etc can be obtained in closed form, as well
(Metzler and Nonnenmacher 1997). As we are mainly interested in processes in the presence
of an external force field, we only stop to note that the asymptotic behaviour of the propagator
P(x, t) of the fractional diffusion equation (9) corresponds to the stretched Gaussian shape
listed in table 1. The PDF of such a subdiffusive diffusion process has a softer decay than that of
normal diffusion. In return, the Fourier transform, P(k, t), bears asymptotic power-law decay
characteristics of a Lévy stable law (Metzler and Klafter 2000a, Metzler and Nonnenmacher
1997).

We should point out that it is important to keep track of the initial condition in the fractional
diffusion equation (9). Thus, one can by the standard property 0D

α
t 1 = t−α/�(1 − α) of the

Riemann–Liouville operator retrieve the equivalent equation to (9) in the form

0D
α
t P (x, t) − P0(x)

�(1 − α)
t−α = Kα

∂2

∂x2
P(x, t). (10)

Neglecting the initial condition would lead to a wrong equation, as can easily be seen by
calculating the average on both sides.

We can now also compare the memory form of equation (9) with the dynamical equation
for FBM (Lutz 2001b),

∂

∂t
PFBM(x, t) = αKαtα−1 ∂2

∂x2
PFBM(x, t) (11)

which is perfectly local in time. This equation for FBM can be derived from the force-free
GLE (Lutz 2001b)

m
d2

dt2
x(t) + mηα 0D

α
t x(t) = �(t) (12)

where �(t) is Gaussian random noise with variance 〈�(t)�(0)〉 ∝ t−α . This GLE then also
gives rise to Mittag-Leffler-type correlation functions, see Lutz (2001b) for more details.

3.2. Fractional Fokker–Planck equation

The incorporation of an external force can be achieved by choosing an explicitly space-
dependent form for the jump length PDF, such that one can account for the spatial
inhomogeneity due to a general force field F(x) = −dV (x)/dx. From this model one
infers the fractional Fokker–Planck equation, as detailed in Barkai et al (2000b) and Metzler
et al (1999b). However, here we prefer to present a somewhat more fundamental derivation
leading to a fractional Fokker–Planck equation in phase space.

To this end, we come back to the idea of interpreting the subdiffusion process as a
subordination to a Brownian process, in the following sense. This subordination is intuitively
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described by the adjunct microscopic multiple trapping process. As detailed in Metzler
and Klafter (2000b, 2000c) and Metzler (2000), based on the continuous time version of
the Chapman–Kolmogorov equation, the motion events in this multiple trapping picture are
based on a regular, Markovian random walk process, governed through the Langevin equation
(Langevin 1908, Chandrasekhar 1943, van Kampen 1981)

m
d2x

dt2
= −ηm

dx

dt
+ F(x) + m�(t) (13)

where �(t) denotes a δ-correlated Gaussian noise, i.e., �(t)�(t ′) = 2Kδ(t − t ′), and the
noise characteristic function is ϕ(k) = ∫ ∞

−∞ exp(ik�)p(�) d� = exp(−Kk2).11 Each motion
event governed through the Langevin equation (13) is supposed to last an average time
span τ ∗, and each such single motion event is interrupted by immobilization (trapping)
of a duration governed by the broad waiting time PDF (2). Averaging over many
such motion–immobilization events, one obtains the multiple trapping scenario leading to
subdiffusion in the external field F(x) (Metzler and Klafter 2000b, 2000c, Metzler 2000),
which may be viewed as a direct consequence of the generalized central limit theorem
(Gnedenko and Kolmogorov 1954, Lévy 1954). In the Markov limit, the waiting time PDF
ψ(t) possesses a finite characteristic waiting time T, and may for instance be given by the
exponential ψ(t) = τ−1 exp(−t/τ ), or a sharp distribution such as ψ(t) = δ(t −τ). Note that
in Laplace space, ψ(u) � 1 − (uτ)α (uτ � 1), both subdiffusive (0 < α < 1) and Markov
(α = 1) limits appear unified.

In phase space spanned by velocity v and position x, a test particle governed by the above
multiple trapping process is described in terms of the fractional Klein–Kramers equation
(FKKE)

∂P

∂t
= 0D

1−α
t

(
−v∗ ∂

∂x
+

∂

∂v

(
η∗v − F ∗(x)

m

)
+

η∗kBT

m

∂2

∂v2

)
P(x, v, t) (14)

with the abbreviations v∗ ≡ vτ ∗/τα, η∗ ≡ ητ ∗/τα and F ∗(x) ≡ F(x)τ ∗/τα

(Metzler and Klafter 2000b, 2000c, Metzler 2000). Note that the Stokes operator
(

∂
∂t

+ v ∂
∂x

)
from the standard Klein–Kramers equation (Chandrasekhar 1943) is replaced by the operator(

∂
∂t

+ 0D
1−α
t v∗ ∂

∂x

)
which shows the non-local drift response due to trapping.

For both the Langevin equation (13) and the FKKE (14) one can consider the under-
(velocity equilibration) and overdamped (large friction constant) limits. The former limit
corresponds to the fractional version of the Rayleigh equation (van Kampen 1981),

∂P

∂t
= 0D

1−α
t η∗

(
∂

∂v
v +

kBT

m

∂2

∂v2

)
P(v, t) (15)

in the force-free limit (Metzler and Klafter 2000b, 2000c). This is the subdiffusive
generalization of the Ornstein–Uhlenbeck process, see also below. Conversely, in the
overdamped case, the FKKE (14) corresponds in position space to the fractional Fokker–
Planck equation (FFPE) (Metzler et al 1999a, 1999b, Metzler and Klafter 2000b, 2000c)

∂P

∂t
= 0D

1−α
t

(
− ∂

∂x

F (x)

mηα

+ Kα

∂2

∂x2

)
P(x, t), (16)

where ηα ≡ ητα/τ ∗ and Kα ≡ kBT /(mηα). We note that all fractional equations (14)–(16)
reduce to their Markov counterparts in the limit α → 1, which can be seen from both the
reduction of the multiple trapping process to the regular random walk, and the properties of
the Riemann–Liouville fractional operator. We also note that in the general case of 0 < α < 1,

11 We denote fluctuation averages by an overline, ·, and coordinate averages by angular brackets, 〈·〉.
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initial conditions are strongly persistent due to the slow decay of the sticking probability of not
moving φ(t) = 1− ∫ t

0 ψ(t) dt , i.e., one observes characteristic cusps at the location of a sharp
initial PDF, e.g., P(x, 0) = δ(x − x0); compare figure 8 and Metzler and Klafter (2000a) for
more details. The fractional equations following from the multiple trapping model with broad
waiting time PDF give rise to a generalized Einstein–Stokes relation

Kα = kBT /(mηα) (17)

and fulfil linear response in the presence of a constant field F0 (Metzler et al 1999a, Metzler
and Klafter 2000a):

〈x(t)〉F0 = kBT

2
〈x2(t)〉F=0. (18)

The calculation of moments from fractional equations of the FFPE (16) kind can be
straightforwardly obtained by multiplying the dynamical equation with the moment variable
and integration over the coordinate, e.g., calculating

∫
xm · dx where · acts on the dynamical

equation (Metzler and Klafter 2000a). More-point correlation functions are somewhat more
difficult to obtain due to the strongly non-local character in time. Three-point correlation
functions have recently been obtained on the basis of the FFPE by introducing the associated
backward equation (Barsegov and Mukamel 2004).

Fractional equations of the above linear, uncoupled kind can be solved by the method of
separation of variables. Thus, for instance, the FFPE (16) can be separated through the ansatz
P(x, t) = X(x)T (t) to produce a spatial eigenequation, which has the same structure as its
Markov analogue, and a temporal eigenequation,

dTn(t)

dt
= −λn 0D

1−α
t Tn(t) (19)

for a given eigenvalue λn (Metzler et al 1999a, Metzler and Klafter 2000a). Its solution yields
in terms of the Mittag-Leffler function (Mittag-Leffler 1903, 1904, 1905, Erdélyi 1954)

Eα(−λnt
α) ≡

∞∑
j=0

(−λnt
α)j

�(1 + αj)
∼

{
exp

(− λnt
α

�(1+α)

)
t � λ1/α

(λnt
α�(1 − α))−1 t 
 λ1/α

(20)

where we also indicated the interpolation property of the Mittag-Leffler function, connecting
between an initial stretched exponential (KWW) pattern and a terminal inverse power-law
behaviour (Metzler and Klafter 2000a, Glöckle and Nonnenmacher 1991, 1994); compare
figure 7. As for a non-trivial external field F(x), the lowest eigenvalue vanishes, λ1 = 0, and
thus 0 < λ2 < · · · , the PDF P(x, t) relaxes towards the equilibrium solution given by the
lowest eigenvalue λ1 which is identical to the Boltzmann solution and fulfils the stationarity
condition ∂P (x, t)/∂t = 0 (Metzler et al 1999a, Metzler and Klafter 2000a). Finally, we note
that these exists a Laplace space scaling relation (Metzler et al 1999a, Metzler and Klafter
2000a)

P(x, u) = 1

u

ηαuα

η1
PM

(
x,

ηαuα

η1

)
(21)

for the same initial condition P0(x) between the solution of the FFPE (16), P(x, t), and
its Markov counterpart PM(x, t) (α = 1). Equation (20) is equivalent to the integral
transformation (Barkai and Silbey 2000),

P(x, t) =
∫ ∞

0
dsEα(s, t)PM(x, s) (22)
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which corresponds to a generalized Laplace transformation from t to ηα

η1
uα . The kernel

Eα(s, t) is defined in terms of the inverse Laplace transformation Eα(s, t) = L−1{ ηα

η1u1−α

exp
(− ηα

η1
uαs

)}
, the result being the modified one-sided Lévy distribution12 L+

1−α/2

Eα(s, t) = t

(1 − α/2)s
L+

1−α/2

(
t

(s∗)1/(1−α/2)

)
s∗ ≡ ηαs/η1 (23)

which is everywhere positive definite. Consequently, the transformation (22) guarantees the
existence and positivity of Pα(x, t) if (and only if) the Brownian counterpart, PM(x, t),
is a proper PDF. We note that the solution of certain classes of fractional equations is
intimately related to the Fox H-function and related special functions (Mathai and Saxena
1978, Srivastava et al 1982, Saxena and Saigo 2001). Also the kernel Eα(s, t) can be
expressed as an H-function (Metzler and Klafter 2000a). It should be noted once more
that fractional diffusion in the above-defined Riemann–Liouville sense is fundamentally
different from fractional Brownian motion (Mandelbrot and van Ness 1968, Lévy 1953,

12 In this review, we use symmetric Lévy stable laws with characteristic function ϕ(z) = ∫ ∞
−∞ eikx−σµ|k|µ dk/(2π).

The definition of Lévy laws is more general. Thus, one-sided Lévy stable laws exist, which are defined only on the
positive semidefinite axis, i.e., in our case on the causal time line t � 0. In terms of the general characteristic function
ϕ of a Lévy stable law, defined through

log ϕ(z) = −|z|α exp
(

i
πβ

2
sign(z)

)
the one-sided laws exist for 0 < α < 1 and β = −α. For instance, the one-sided stable law for α = 1/2 and
β = −1/2 is given by

f1/2,−1/2 = 1

2
√

π
x−3/2 exp(−1/[4x])

where, in general, we have

fα,β ≡ 1

π
Re

∫ ∞

0
exp

(
−ixz − zα exp

{
i
πβ

2

})
.

The parameter space of Lévy stable laws can be represented by the ‘Takayasu diamond’ (Takayasu 1990):

CL H N

OS

α

β

All pairs of indices inside and on the edge of the diamond shape refer to proper stable laws. The double line denotes
one-sided stable laws (OS). The letters represent the normal or Gaussian law (N), the Holtsmark distribution (H) and
the Cauchy–Lorentz distribution (C) (Feller 1968, Gnedenko and Kolmogorov 1954, Lévy 1954, Takayasu 1990).
We note that the connection of the fractional integral with stable distributions was recently investigated explicitly in
(Stanislavsky 2004).
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t/sec
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Figure 7. Interpolative nature of the Mittag-Leffler function, in an example from stress relaxation
at constant strain (the image shows two different initial conditions). In the upper curve, we compare
the Mittag-Leffler function (full line), with the initial stretched exponential and the terminal inverse
power-law behaviour. (From Nonnenmacher (1991).)

Lim and Muniandy 2002, Kolmogorov 1940, Lutz 2001b) and generalized Langevin equation
approaches (Kubo et al 1985, Wang et al 1994, Wang and Tokuyama 1999); compare table 1,
as well as non-linear (fractional) Fokker–Planck equations (Borland 1998, Lenzi et al 2003b,
Tsallis and Lenzi 2002).

3.3. The fractional Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process corresponds to the motion in a harmonic potential V (x) =
1
2mω2x2 giving rise to the restoring force field F(x) = −mω2x, i.e., to the dynamical equation

∂

∂t
P (x, t) =

(
∂

∂x

ω2x

ηα

+ Kα

∂2

∂x2

)
P(x, t). (24)

From separation of variables, and the definition of the Hermite polynomials
(Abramowitz and Stegun 1972), one finds the series solution for the fractional Fokker–Planck
equation with the Ornstein–Uhlenbeck potential (Metzler et al 1999a),

P(x, t) =
√

mω2

2πkBT

∞∑
n=0

1

2nn!
Eα

(
−nω2tα

ηα

)
Hn

(√
mωx0√
2kBT

)

×Hn

( √
mωx√
2kBT

)
exp

(
−mω2x2

2kBT

)
(25)

plotted in figure 8. Individual position space modes follow the ordinary Hermite polynomials
of increasing order, while their temporal relaxation is of Mittag-Leffler form, with decreasing
internal time scale (ηα/[nω2])1/α . Numerically, the solution (25) is somewhat cumbersome
to treat. In order to plot the PDF P(x, t) in figure 8, it is preferable to use the closed form
solution (we use dimensionless variables)

P(x, t) = 1√
2π(1 − e−2t )

exp

(
− (x − x0 e−t )2

2(1 − e−2t )

)
(26)

of the Brownian case, and the transformation (22) to construct the fractional analogue.
Figure 8 shows the distinct cusps at the position of the initial condition at x0 = 1. The

relaxation to the final Gaussian Boltzmann PDF can be seen from the sequence of three
consecutive times. Only at stationarity, the cusp gives way to the smooth Gaussian shape
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Figure 8. Time evolution of the PDF of the fractional Ornstein–Uhlenbeck process (α = 1/2).
The initial condition was chosen as δ(x − 1). Note the strongly persistent cusp at the location of
the initial peak. Dimensionless times: 0.02, 0.2, 2. The dashed line corresponds to the Boltzmann
equilibrium, to which the PDF relaxes.
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Figure 9. Time evolution of the PDF of the fractional Ornstein–Uhlenbeck process with superposed
constant force of dimensionless strength V = −4 (α = 1/2). The initial condition was chosen
as δ(x − 4). Dimensionless times: 0.02, 0.2, 2. The dashed lines correspond to the Brownian
solution at times 0.5 and 50 (in essence, the stationary state). Again, note the cusps due to the
initial condition, causing a strongly asymmetric shape of the PDF in contrast to the Gaussian nature
of the Brownian counterpart.

of the Boltzmann equilibrium PDF. By adding an additional linear drift V to the harmonic
restoring force, the drift term in the FFPE (17) changes to −∂(x − V )P (x, t)/∂x, and the
exponential in expression (26) takes the form exp(−[x −V − (x0 −V ) e−t ]/[2(1−e−2t )]). As
displayed in figure 9, the strong persistence of the initial condition causes a highly asymmetric
shape of the PDF, whereas the Brownian solution shown in dashed lines retains its symmetric
Gaussian profile. Let us note again that a generalized Langevin picture would give rise to time-
dependent coefficients, but would not change the Gaussian nature of the connected process in
the harmonic potential.

Let us finally address the moments of the fractional Ornstein–Uhlenbeck process,
equation (25). These can be readily obtained either from the Brownian result with the integral



Topical Review R179

-4 -2 2 4
log t

-2

-1.5

-1

-0.5

log <x(t)>, log <x(t)**2>

Figure 10. First (x0 = 2, dashed line) and second (x0 = 0, full line) moment of the fractional
Ornstein–Uhlenbeck process (α = 1/2), in comparison to the Brownian case. log10 – log10 scale.
The dotted straight lines show the initial (sub)diffusive behaviour with slopes 1/2 and 1, in the
special case x0 = 0 chosen for the second moment.

transformation (22), or from integration
∫

dxxn· of the FFPE (17). For the first and second
moments one obtains

〈x(t)〉 = x0Eα

(
−ω2tα

ηα

)
(27)

and

〈x(t)2〉 = x2
th +

(
x2

0 − x2
th

)
Eα

(
−2ω2tα

ηα

)
(28)

respectively. The first moment starts off at the initial position, x0, and then falls off in a
Mittag-Leffler pattern, reaching the terminal inverse power law ∼ t−α . The second moment
turns from the initial value x2

0 to the thermal value x2
th = kBT /(mω2). In the special case

x0 = 0, the second moment measures initial force-free diffusion due to the initial exploration
of the flat apex of the potential. We graph the two moments in figure 10 in comparison to their
Brownian counterparts.

We note in passing that by optical tracking methods, it is, in principle, possible to obtain
precise results for the Gaussian PDF of a single random walker in the equilibrium state, as
demonstrated by Oddershede et al (2002). It should therefore be possible to obtain more
information also on anomalous processes than through measurements of the mean squared
displacement alone (particularly, due to the slow power-law relaxation of FFPE-governed
processes it might be possible to monitor transient PDFs during the relaxation towards the
Boltzmann equilibrium). We also note that for a particle connected to a membrane and
experiencing in addition optical tweezers potential, the relaxation dynamics is closely related
to the Mittag-Leffler decay (Granek and Klafter 2001). Finally, we mention that the fractional
Ornstein–Uhlenbeck process was investigated from the point of view of a time-dependent
potential in Tofighi (2003).

3.4. Fractional diffusion equations of distributed order

There exist physical systems with the so-called ultraslow diffusion of the logarithmic form

〈x2(t)〉 ∼ logκ t κ > 0 (29)

such as the famed Sinai diffusion (κ = 4) of a particle moving in a quenched random force
field (Sinai 1982), the motion of a polyampholyte hooked around an obstacle (Schiessel et al
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1997), and similarly in aperiodic environments (Igloi et al 1999), in a family of iterated maps
(Dräger and Klafter 2000), as well as in a parabolic map (Prosen and Žnidaric 2001).

Within the continuous time random walk theory, such ‘strong anomalies’ (Dräger and
Klafter 2000) can be described in terms of a waiting time PDF of the form (Havlin and Weiss
1990)

ψ(t) ∼ τ

t logκ+1(t/τ )
. (30)

Obviously, the characteristic waiting time T for this ψ(t) diverges, although it is normalized.
The corresponding propagator exhibits asymptotic exponential flanks of the form

P(x, t) ∼ exp

(
−A

|x|
logκ/2 t

)
. (31)

For such strongly anomalous processes running off under the influence of an external
potential, one would again like to have a description in terms of a dynamical equation. In
fact, on the basis of distributed-order fractional operators (Caputo 1969, 2001, Chechkin et al
2003d), the fractional equation∫ 1

0
τβ−1p(β) 0D

β
t P (x, t) =

(
∂

∂x

V ′(x)

mηdo
+ Kdo

∂2

∂x2

)
P(x, t) (32)

was shown to lead to the desired logarithmic behaviour (30) in the force-free limit and with
p(β) = κβκ−1 (Chechkin et al 2002c). Note that in the generalized Fokker–Planck operator
we include properly generalized units of friction and diffusion coefficient.

The model equation (32), by construction, controls system relaxation towards the
Boltzmann equilibrium, and fulfils the generalized Einstein–Stokes relation Kdo =
kBT /(mηdo). Moreover, one can show that it fulfils the linear response behaviour (18). We
note that the mode relaxation, which is of Mittag-Leffler nature in the case of the regular (non-
distributed) FFPE (16), for the distributed order case includes a logarithmic time dependence
(Chechkin et al 2002c)13.

4. Superdiffusive processes

Subdiffusive processes of the above kind can be physically understood in terms of the
subordination to the corresponding Markov process, immanent in the multiple trapping model
with long-tailed waiting time PDF of the form (2). The solution corresponds to re-weighting
of the Brownian solution with a sharply peaked kernel. In particular, the obtained PDFs
relax towards the Boltzmann equilibrium, and they possess all moments if only the Brownian
counterpart does (i.e., constant or confining potentials). Thus, the presence of the diverging
characteristic waiting times does not change the quality (basin of attraction in a generalized
central limit theorem sense) of the process in position (x) space. In contrast, we will show
in this section that for random processes with non-local jump lengths of the Lévy type,
a priori surprising multimodal PDFs may arise and one observes a breakdown of the method
of images. If the external potential is not steep enough, the moments diverge. Questions
about the physical and thermodynamic interpretation of such processes arise. These points
are addressed in the following. We will first introduce the concept of Lévy flights (LFs)
and discuss their formulation in terms of fractional equations. We then proceed to elaborate
on some details concerning the above-mentioned surprising features of LFs, before briefly
addressing first results of a dynamic formulation of Lévy walks (LWs), the spatiotemporally
coupled version of superdiffusive random processes, and their fractional formulation.

13 We should stress that the physics of equation (32) differs from Sinai diffusion, cf Chechkin et al (2002c).
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Figure 11. Lévy flight (right) of index µ = 1.5 and Gauss walk (left) trajectories with the same
number (�7000) of steps. The long sojourns and clustering appearance of the LF are distinct.

4.1. Lévy flights

LFs are Markov processes with broad jump length distributions with the asymptotic inverse
power-law behaviour

λ(x) ∼ σµ

|x|1+µ
(33)

such that its variance diverges, X2 = ∫ ∞
−∞ λ(x)x2 dx = ∞. This scale-free14 form gives rise

to the characteristic trajectories of LFs as shown in figure 11: in contrast to the ‘area-filling’
nature of a regular (Gaussian) random walk, an LF has a fractal dimension with exponent
µ (Blumenthal and Getoor 1960, Hughes 1995, Rocco and West 1999), and consists of a
self-similar clustering of local sojourns, interrupted by long jumps, at whose end a new cluster
starts, and so on. This happens on all length scales, i.e., zooming into a cluster in turn
reveals clusters interrupted by long sojourns. Thus, LFs intimately combine the local jump
properties stemming from the centre part of the jump length distribution around zero jump
length with strongly non-local, i.e., long-distance jumps, thereby creating slowly decaying
spatial correlations, a signature of non-Gaussian processes with diverging variance (Hughes
1995, Bouchaud and Georges 1990, Lévy 1954, van Kampen 1981). Of course, also the
Gaussian trajectory is self-similar, however, its finite variance prohibits the existence of long
jumps separating local clusters.

Following along the lines pursued in the case of force-free subdiffusion, we describe LFs
with a sharply peaked waiting time PDF ψ(t) (α = 1) with finite characteristic waiting time
T and ψ(u) ∼ 1 − uτ . The Fourier transform λ(k) = exp(−σµ|k|µ) ∼ 1 − σµ|k|µ of a Lévy
stable jump length PDF λ(x) with asymptotic form (33) by means of expression (A.1) produces
a dynamical equation in Fourier–Laplace space, in which occurs the expression |k|µP (k, u)

instead of the standard term k2P(k, u) in Gaussian diffusion. Let us for the moment define the
fractional derivative in space through F

{ dµg(x)

d|x|µ
} ≡ −|k|µg(k) for 1 � µ < 2,15 such that we

infer the Lévy fractional diffusion equation (Compte 1996, Fogedby 1994a, Honkonen 1996,
Saichev and Zaslavsky 1997)16

∂

∂t
P (x, t) = Kµ ∂µ

∂|x|µ P (x, t) (34)

where we define in the analogous sense as above the generalized diffusion constant Kµ ≡ σµ/τ

of (formal) dimension cmµ s−1.17 Again, equation (34) can be solved in closed form in

14 In the sense that there does not exist a variance of the jump length distribution.
15 We do not pursue the case 0 < µ < 1 in what follows, although it follows the same reasoning.
16 Note that here we differ from our previous notation −∞D

µ
x used in Metzler and Klafter (2000a). We follow here

the convention which seems to have become a standard for the space-fractional case, the Riesz–Weyl operators.
17 Nb: the waiting time PDF has the Laplace transform ψ(u) ∼ 1 − uτ for this Markovian case.
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terms of Fox H-functions (Jespersen et al 1999, Metzler and Klafter 2000a). Let us show
that indeed equation (34) defines a Lévy stable law: Fourier transforming leads to the
equation ∂P (k, t)/∂t = −|k|µKµP (k, t), which is readily integrated to yield P(k, t) =
exp(−Kµ|k|µt), the characteristic function of a Lévy stable law (Gnedenko and Kolmogorov
1954, Lévy 1954). From the fractional operator (defined below) in equation (34), the
symmetric, strongly non-local character of LFs becomes obvious. LFs were originally
described by Mandelbrot, and formally the Fourier space analogue of equation (34) was
discussed in Seshadri and West (1982) on the basis of a Langevin equation with Lévy noise,
see below.

We note that due to the Markovian nature of LFs, a constant force/velocity V can
immediately be incorporated in terms of a moving wave variable, i.e., the solution of the LF
in the presence of the drift V defined by the equation

∂

∂t
P (x, t) =

(
∂

∂x
V + Kµ ∂µ

∂|x|µ
)

P(x, t) (35)

is the solution PV =0(x, t) of equation (34) taken at position x − V t , i.e., PV (x, t) =
PV =0(x−V t, t) (Jespersen et al 1999, Metzler and Compte 2000, Metzler and Klafter 2000a).

4.1.1. Lévy fractional Fokker–Planck equation. LFs in the presence of an external potential
V (x) = − ∫ x

F (x ′) dx ′ are described in terms of a different fractional Fokker–Planck
equation, which we will call the Lévy fractional Fokker–Planck equation (LFFPE) in the
following. It has the simple form (Fogedby 1994a, 1994b, 1998, Peseckis 1987)

∂P

∂t
=

(
− ∂

∂x

F (x)

mη
+ Kµ ∂µ

∂|x|µ
)

P(x, t) (36)

where we encounter the fractional Riesz derivative defined through (Podlubny 1998,
Samko et al 1993)

dµf (x)

d|x|µ =
{

−Dµ
+ f (x)+Dµ

−f (x)

2 cos(πµ/2)
µ �= 1

− d
dx

Hf (x) µ = 1
(37)

(
Dµ

+ f
)
(x) = 1

�(2 − µ)

d2

dx2

∫ x

−∞

f (ξ, t) dξ

(x − ξ)µ−1
(38)

and

(Dµ
−f )(x) = 1

�(2 − µ)

d2

dx2

∫ ∞

x

f (ξ, t) dξ

(ξ − x)µ−1
(39)

for, respectively, the left and right Riemann–Liouville derivatives (1 � µ < 2); for µ = 1,
the fractional operator reduces to the Hilbert transform operator (Mainardi et al 2001)

(Hf )(x) = 1

π

∫ ∞

−∞

f (ξ) dξ

x − ξ
. (40)

The Riesz operator has the convenient property

F

{
∂µ

∂|x|µ f (x); k

} ∫ ∞

−∞
eikx ∂µ

∂|x|µ f (x, t) dx ≡ −|k|µf (k). (41)

It should be noted that according to the LFFPE (36), it is only the diffusive term which is
affected by the Lévy noise. In contrast, the character of the drift remains unchanged, i.e., the
external force is additive (Fogedby 1994a, 1994b, 1998, Metzler et al 1999b, Metzler 2000),
as noted above for the case of a constant drift V .
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Starting from the Feynman–Vernon path integral formulation of the influence functional
(Feynman and Vernon 1963), a characteristic functional, whose classical analogue corresponds
to the Caldeira–Leggett equation for quantum Brownian motion, was established. By a Wigner
transform for a Lévy source in the influence functional, the following Lévy fractional Klein–
Kramers equation emerges (Lutz 2001a)18:

∂

∂t
P (x, v, t) = − v

m

∂P

∂x
+ V ′(x)

∂P

∂v
+

γ

m

∂

∂v
vP + γ kBT

∂µP

∂|v|µ . (42)

A similar equation was derived from a Langevin equation with Lévy noise in Peseckis (1987).
On the basis of a so-called quantum Lévy process, a Lévy fractional Klein–Kramers equation
was obtained through random matrix methods in Kusnezov et al (1999), however, it carries
a different friction term, as discussed in Lutz (2003). Equation (42) was derived in Metzler
(2000) from the generalized Chapman–Kolmogorov equation.

In equation (42), the fractional derivative is attached to the velocity v of the particle.
Thus, the corresponding LF-Rayleigh equation corresponds to a Lévy motion in a harmonic
potential. As obvious from the result for the Lévy Ornstein–Uhlenbeck process reported in the
next subsection, the solution P(v, t) features a diverging mean squared displacement and in
fact always remains a Lévy law with the same exponent µ (Jespersen et al 1999). In particular,
the stationary state is a Lévy stable law of the same index µ (Seshadri and West 1982). We
note, however, that this extreme Lévy behaviour is solely due to the linear friction inherent
in equation (42). Due to the extremely large velocities attained by a Lévy flyer described
by equation (42), i.e., to the divergence of the kinetic energy (Seshadri and West 1982), the
linear friction is in fact non-physical, and should be replaced by an expansion of the friction
to higher order terms, γ = γ (v) = γ0 + γ1v

2 + · · · (Chechkin et al 2004). Such a velocity-
dependent friction was already discussed by Klimontovich and called dissipative non-linearity
(Klimontovich 1991). As we will see below, already the next higher term would produce a
finite mean squared displacement of this more physical Lévy process. We also mention that
another way to regularize Lévy flights is the spatiotemporal coupling of Lévy walks, which
are briefly discussed below. We finally note that the velocity average of equation (42) reduces
directly to the LFFPE (36).

Although for the diverging moments, LFs may appear somewhat artificial19, processes
with diverging kinetic energy have been identified (Katori et al 1997), and from a physics
point of view are permissible in certain connections such as diffusion in energy space
(Barkai and Silbey 1999, Zumofen and Klafter 1994), or as a description for the random
path (trajectory) of such a random process. Moreover, LFs may be considered paradigmatic
in the generalized central limit theorem sense and therefore deserve investigation. Not least,
they correspond to approximate schemes to more complex processes, like LWs.

4.1.2. Novel features of Lévy flights in superharmonic potentials. In Jespersen et al (1999),
it was derived that the solution of the LFFPE in a harmonic potential field, V (x) = 1

2ωx2, in
Fourier space takes the form

P(k, t) = exp

(
−ηmKµ|k|µ

µω
[1 − e−µωt/(ηm)]

)
(43)

i.e., it is still a Lévy stable density, with the identical Lévy index µ as in the corresponding
solution without external potential, and the stationary solution is Pst(x) ∼ Kµηm/(µω|x|1+µ),

18 In fact, the equation derived in Lutz (2001a) also contains a term appearing in the case of asymmetric Lévy laws,
which we do not consider herein.
19 Note, however, that fractional moments 〈|x|δ〉 of order δ < µ can be defined, and easily obtained from H-function
properties in the case of free LFs (Metzler and Nonnenmacher 2002).
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in particular. Thus, a harmonic potential is not able to confine an LF such that its variance
becomes finite, pertaining both to the time evolution and the stationary behaviour of the PDF.
Equation (43) corresponds to the Lévy analogue of the Ornstein–Uhlenbeck process defined
in equation (42) in phase space.

From this perspective, it might seem a priori surprising that as soon as the external
potential becomes slightly steeper than harmonic, the variance of the underlying LF becomes
finite. However, this was demonstrated by Chechkin et al (2002a, 2003b, 2003c) both
analytically and numerically. We now briefly review the main features connected to such
confined LFs. Before addressing these features for general 1 < µ < 2, we regard the case of
a Cauchy flight (µ = 1) in a quartic potential

V (x) = b

4
x4 (44)

whose stationary solution is exactly analytically solvable (for the more general cases we
will draw on asymptotic arguments corroborated by numerical results). Thus, rewriting
equation (36) with the quartic potential (44) in dimensionless coordinates (Chechkin et al
2002a),

∂P

∂t
=

(
∂

∂x
x3 +

∂µ

∂|x|µ
)

P(x, t) (45)

one can immediately derive the stationary (dPst(x)/dt = 0) solution

Pst(x) = π−1 1

1 − x2 + x4
(46)

which is remarkable in two respects: (i) the asymptotic power law Pst(x) ∼ x−4 falls off
steeper than the Lévy stable density with index µ, and the variance in fact converges, i.e.,
the process leaves the basin of attraction of the generalized central limit theorem; and (ii)
the PDF (46) is bimodal, i.e., it exhibits two maxima at xmax = ±1/

√
2 (Chechkin et al

2002a), see figure 12. This bimodality becomes increasingly pronounced when the Lévy
index approaches the Cauchy case, µ = 1 (Chechkin et al 2002a). We note that the numerical
solution procedures we employ for determining the PDF defined by the LFFPE are mainly
based on the Grünwald–Letnikov representation of the fractional Riesz derivative (Podlubny
1998, Gorenflo 1997, Gorenflo et al 2002a), details of which are also described in Chechkin
et al (2003b); see also Lynch et al (2003)20.

Let us pursue somewhat further the incapability of a harmonic potential to confine an
LF in contrast to a quartic potential and give rise to multimodal states, some of which are
transient. To this end, consider the combined potential (Chechkin et al 2003c)

V (x) = a

2
x2 +

b

4
x4. (47)

By rescaling the LFFPE (36) with the potential (47) according to x → x/x0, t → t/t0, with
x0 ≡ (mηD/b)1/(2+µ) and t0 ≡ x

µ

0

/
D, and a → at0/mη, we obtain the normalized form

∂P

∂t
=

(
∂

∂x
[x3 + ax] +

∂µ

∂|x|µ
)

P(x, t) (48)

for the LFFPE (36). A detailed analysis, both analytically and numerically, reveals that there
exists a critical magnitude of the relative harmonicity strength a, ac � 0.794, below which a
bimodal state exists (Chechkin et al 2003c, 2003b).

20 We note that bifurcation to a bimodal state may be obtained from a linear Langevin equation with multiplicative
noise term and time-dependent drift (Fa 2003), another, yet different scenario towards multimodal states. Compare
also section 4.2.
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Figure 12. Time evolution of the PDF governed by the LFFPE (36) in a quartic potential, starting
from P(x, 0) = δ(x), with Lévy index µ = 1.2. The dashed line indicates the Boltzmann
distribution from the Gaussian process in a harmonic potential.

Dynamically, starting from a monomodal initial condition such as a δ-peak in the centre
of the potential, it turns out that there exists a critical time tc at which the PDF develops
bimodality (figure 12). This turnover can be studied similarly as the critical harmonicity
strength, and the result is shown in figure 13 at the top: for times t > tc, a bimodal state
spontaneously comes into existence, corresponding to a dynamical bifurcation. However, for
all potentials V (x) containing a term ∝ |x|2+c with c > 0, the variance becomes finite for all
t > 0 (Chechkin et al 2002a).

Given the potential

V (x) = a

c
|x|c ∴ c � 2 (49)

there exists an additional, transient trimodal state in the case c > 4, an example of which is
depicted in figure 14. In this case, the relaxation of the peak of the initial condition overlaps
with the building up of the two side-maxima, which will eventually give rise to the terminal
bimodal PDF. In figure 13 at the bottom, the size of the maxima and their temporal evolution
are shown.

Similar a priori surprising effects of LFs were found in periodic potentials, in which LFs
turn out to be delicately sensitive. For instance, there has been revealed a rich band structure
in the Bloch waves described by an LFFPE and its associated fractional Schrödinger-type
equation (Brockmann and Geisel 2003a).
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Figure 13. Bifurcation diagrams. Upper panel: for the case c = 4.0, µ = 1.2, on the left the thick
lines show the location of the maximum, which at the bifurcation time t12 = 0.84 ± 0.01 turns
into two maxima; right part: the value of the PDF at the maxima location (thick line) and the value
at the minimum at x = 0 (thin line). Lower panel: for the case c = 5.5 and µ = 1.2, on the left
positions xmax of the maxima (global and local, thick lines); the thin lines indicate the positions of
the minima (at the first bifurcation time, there is a horizontal tangent at the site of the two emerging
off-centre maxima. The bifurcation times are t13 = 0.75 ± 0.01 and t32 = 0.92 ± 0.01. Right:
values of the PDF at the maxima (thick lines); the thin line indicates the value of the PDF at the
minima.

4.1.3. Lévy flights and thermal (Boltzmann) equilibrium. The above definition (36) of the
LFFPE describes a process far from thermal (Boltzmann) equilibrium. In particular, it does
not fulfil the linear response theorem in the form (18) known from Gaussian and subdiffusive
processes, due to the divergence of the second moment. However, it still underlies the physical
concept of additivity of drift and diffusive terms manifested in the fact that for a constant force
field F(x) = mηV , the solution of the LFFPE (36) is given by the propagator at zero force,
PF=0(x − V t, t), taken at the wave variable x − V t (Jespersen et al 1999, Metzler et al 1998,
Metzler and Klafter 2000a). Above, it was shown that this additive combination of drift
and diffusivity produces solutions with converging variance and multimodal properties in
superharmonic potentials.

It is interesting to see that one can consistently obtain an equation that describes LFs in
the absence of a force field, but which relaxes towards classical thermal equilibrium for any
non-trivial external field. This equation is based on a different weighting, introduced through
a subordination, leading to the ‘exponent-fractional’ equation (Sokolov et al 2001)21

∂

∂t
P (x, t) = −Kµ

(
− ∂2

∂x2
+

∂

∂x

F (x)

kBT

)µ

P (x, t) (50)

21 At least when F(x) is a constant, the stochastic process corresponding to equation (49) is X(T(t)) where X(t) is
the process behind equation (49) when µ = 1 and T(t) is the µ-stable subordinator, compare Bochner 1949; see also
the application in Baeumer et al 2001.
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Figure 14. Same as in figure 12, in a superharmonic potential (49) with exponent c = 5.5,
exhibiting a trimodal structure.

where the µth power of the Fokker–Planck operator is interpreted in Fourier–Laplace space,
i.e., equation (50) acquires the form ∂P/∂t = −Kµ(ikf/[kBT ] + k2)µP (k, t) (Sokolov et al
2001). As shown in Sokolov et al (2001), the PDF P(x, t) relaxes exponentially towards the
regular Boltzmann equilibrium PDF, and is therefore qualitatively different from the LFFPE
(36) discussed above. The eigenvalues of λef

n of equation (50) are related to those of the
regular Fokker–Planck equation (λn) by λef

n = −(−λn)
µ, the eigenfunctions coinciding, and

the relaxation of moments is exponential, ∝ exp(−const
∣∣λef

n

∣∣µt) (Sokolov et al 2001). In
particular, the process leading to the modified LF equation (50) does not possess a direct
interpretation of continuous time random walks (but it can be related to the Chapman–
Kolmogorov equation). An interesting question will be to determine the corresponding
Langevin picture of such a process.

4.2. Bi-fractional transport equations

The coexistence of long-tailed forms for both jump length and waiting time PDFs was
investigated within the CTRW approach in Zumofen and Klafter (1995b), discussing in detail
the laminar-localized phases in chaotic dynamics. In a similar way, the combination of the
long-tailed waiting time PDF (2) with its jump length analogue (33) leads to a dynamical
equation with fractional derivatives with respect to both time and space (Luchko et al 1998,
Mainardi et al 2001, Metzler and Nonnenmacher 2002, West and Nonnenmacher 2001):

∂

∂t
P (x, t) = Kµ

α 0D
1−α
t

∂µ

∂|x|µ P (x, t). (51)
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Figure 15. Subdiffusion for the neutral-fractional case α = µ = 1/2. Top: linear axes,
dimensionless times t = 2, 20. Bottom: double-logarithmic scale, dimensionless times, t =
0.1, 10, 1000. The dashed lines in the bottom plot indicate the slopes −1/2 and −3/2. Note the
divergence at the origin.

This equation can in fact be extended to cover the superdiffusive, sub-ballistic domain up
to the wave equation (for µ = 2) (Metzler and Klafter 2000d), and under the condition
1 � α � µ � 2 in general (Mainardi et al 2001). A closed form solution can be found in
terms of Fox H-functions (Metzler and Nonnenmacher 2002).

A special case of equation (51) is the ‘neutral-fractional’ case α = µ (Mainardi et al
2001). In this limit, one can obtain simple reductions of the H-function solution, in the
following three cases (Metzler and Nonnenmacher 2002):

(i) Cauchy propagator α = µ = 1,

P(x, t) = 1

2πK1
1 t

1

1 + x2
/(

K1
1 t

) (52)

with the long-tailed asymptotics P(x, t) ∼ (2π)−1x−2. The Cauchy propagator converges
to

(
2πK1

1 t
)−1

at x = 0.
(ii) The case α = µ = 1/2 (figure 15),

P(x, t) = 2

|x|
z1/2

√
2π + 2πz1/2 +

√
2πz

∴ z = |x|
2
(
K

1/2
1/2

)2
t
. (53)

At the origin, this PDF diverges ∼ |x|−1/2, while for large |x|, it decays like ∼ |x|−3/2.
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Figure 16. Superdiffusion for the neutral-fractional case α = µ = 3/2. Top: linear axes,
dimensionless times t = 1 and 2. Bottom: double-logarithmic scale drawn for the dimensionless
times 0.5, 1 and 2. The dashed lines in the bottom plot indicate the slopes 1/2 and −5/2. Note
the complete depletion at the origin.

(iii) The case α = µ = 3/2 (figure 16):

P(x, t) =
√

2

3π |x|
z3/2 + z3 + z9/2

1 + z6
∴ z = 21/3|x|(

K
3/2
3/2

)2/3
t
. (54)

In this case, the PDF shows complete depletion at the origin, exhibiting a ∼ |x|1/2

square root behaviour close to |x| = 0, and it has the inverse power-law decay ∼ |x|−5/2

for |x| → ∞. This solution also exhibits a bimodal PDF, known from equation (9)
in the superdiffusive sub-ballistic regime (1 < α < 2) (Metzler and Klafter 2000d,
West et al 1997). This superdiffusive feature comes from the interpretation of the
process as a memory version of the wave equation, i.e., to a propagative contribution
(Metzler and Klafter 2000d). It is therefore completely different from the bimodal
structure in confined LFs discussed above.

We note that bi-fractional diffusion equations were also discussed in Barkai (2002),
Saichev and Zaslavsky (1997), Baeumer et al (2003), Hughes (2002), Gorenflo et al (2002b)
and Uchaikin (2002); see also Meerschaert et al 2002a with a discussion of the connection
between fractional time derivatives and subordination to a process with Mittag-Leffler PDF.
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A bi-fractional Fokker–Planck equation with a power-law dependence ∝ |x|−θ (θ ∈ R) of the
diffusion coefficient was studied in Fa and Lenzi (2003) and Lenzi et al (2003a).

4.3. Lévy walks

Lévy walks (LWs) correspond to the spatiotemporally coupled version of continuous time
random walks. The waiting time and jump length PDFs are no longer decoupled but
appear as conditional in the form ψ(x, t) ≡ λ(x)p(t |x) (or ψ(t)p̃(x|t)) (Klafter et al 1987).
In particular, through the coupling p(t |x) = 1

2δ(|x| − vtν), one introduces a generalized
velocity v, which penalizes long jumps such that the overall process, the LW, attains
a finite variance and a PDF with two spiky fronts successively exploring space
(Zumofen and Klafter 1993, Klafter and Zumofen 1994a). Thus, LWs have properties
similar to generalized Cattaneo/telegraphers’ equation-type models (Compte and Metzler
1997, Metzler and Compte 1999, Metzler and Nonnenmacher 1998). In particular, for ν = 1,
the coupling p(t |x) = 1

2δ(|x| − vt) introduces a proper velocity v, and the PDF P(x, t) can
be expressed explicitly in the velocity model (Zumofen and Klafter 1993), see also Metzler
and Compte 1999. For the enhanced, sub-ballistic regime 〈x2(t)〉 ∼ t3−γ with 1 < γ < 2, the
asymptotic behaviour of this PDF is P(x, t) � t−1/γ f (ξ) with the scaling function (Zumofen
et al 1999):

f (ξ) ∼



t−1/γ Lγ (−cξ), |x| < vt

δ(|x| − vt)t−γ , |x| � vt

0, |x| > vt,

where ξ = |x|/t1/γ and Lγ (−cξ)′′ is the symmetric Lévy stable density of index γ . The
cutoff at |x| = vt is a consequence of the constant velocity v introduced in p(t |x).

On the basis of the latter fractional equations, formulations were obtained for the
description of LWs in the presence of non-trivial external force fields, with the same
restriction to lower order moments with respect to an LW process (Barkai and Silbey 2000,
Metzler and Sokolov 2002). Recently, however, a coupled fractional equation was reported
(Sokolov and Metzler 2003), which describes a force-free LW exactly. Thus, it was shown
that the fractional version of the material derivative ∂/∂t ± ∂/∂x,

d
β
±P(x, t) ≡ 0D

β
t P (x ± t, t) (55)

defined in Fourier–Laplace space through

F
{
L

{
d

β
±f (x, t); u

}; k
} ≡ (u ± ik)βf (k, u) (56)

(F acts on x and L on t) replaces the uncoupled fractional time operators introduced in
the previous work; compare also the detailed discussion of LW processes in Zumofen and
Klafter (1993). Although one may argue for certain forms (Sokolov and Metzler 2003), there
is so far no derivation for the incorporation of general external force fields in the coupled
formalism. A question of particular interest is whether LWs in non-trivial external fields relax
towards a stationary solution or not; compare Metzler and Sokolov (2002). We note that a
very similar fractional approach to LWs was suggested by Meerschaert et al (2002) virtually
simultaneously.

5. Applying fractional dynamics

The interesting quantity of many dynamical processes is the PDF and its associated mean
time, to arrive at or cross a certain point after having started somewhere else in the system.
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This is the problem of first passage, which for Brownian motion is identical to the problem
of first arrival. In the presence of subdiffusion, the first passage time problem corresponds to
a subordination of the analogous Brownian problem, and can be solved with the same tools.
The major difference is the divergence of the mean first passage time (MFPT) T. In contrast,
for LFs, we will report that the method of images breaks down, and the details of the process
(especially the Lévy index) enter only marginally into the first passage time density (FPTD).
Apart from the first passage, the nature of the underlying diffusion process naturally defines
the detailed properties of the associated diffusion–reaction problem. We will discuss these
two fundamental applications of (anomalous) diffusion processes in the following.

5.1. First passage time processes and boundary conditions

The firing of neurons (Ben-Yacov 2002, Gerstner and Kistler 2002), diffusion-limited
aggregation (Vicsek 1991), hydrological breakthrough (Kirchner et al 2000, Scher et al
2002a), the passage of a biomolecule through a membrane nanopore (Bates et al 2003,
Metzler and Klafter 2003), the fluctuation behaviour of single-strand bubbles in DNA double
helices (Hanke and Metzler 2003), the encounter of two independently diffusing particles
(von Smoluchowski 1916a, 1916b), the rebinding of a ligand to a protein (Iben et al 1989),
the switching of topological molecules (Metzler 2001b), or the electrical current caused by
anomalously moving charge carriers in amorphous semiconductors (Pfister and Scher 1977,
1978) etc, can be mapped onto the problem of calculating the FPTD, and the associated MFPT
(Redner 2001), an approach originally dating back to Schrödinger (1915).

In the regular, Brownian domain of diffusion, the unbiased passage for a process with
initial condition P0(x) = P(x, 0) = δ(x − x0) is described by the FPTD

p(t) = x0√
4πKt3

exp

(
− x2

0

4Kt

)
(57)

which defines the probability p(t) dt for the particle to arrive at x = 0 during the time interval
t, . . . , t + dt . Its long-time behaviour corresponds to the 3/2 power-law behaviour

p(t) ∼ x0√
K

t−3/2. (58)

In particular, we note that even for Brownian processes there are natural cases when the
characteristic time diverges. Here, the MFPT T = ∫ ∞

0 p(t)t dt = ∞.
In a finite box of size L, the Brownian first passage time problem has an exponential tail,

with increasingly quicker decay on increasing mode number,

pL(t) = πK

L2

∞∑
n=0

(−1)n(2n + 1) exp

(
−K

(2n + 1)2π2

4L2
t

)
. (59)

This solution for the FPTD corresponds to an initial condition in the centre of a box with two
absorbing boundaries. The MFPT becomes T = L2/(2K).

The third case of interest here is the first passage in a semi-infinite domain in the presence
of a constant bias V . In the corresponding FPTD

pV (t) = x0√
4πKt3

exp

(
− (x0 − V t)2

4Kt

)
(60)

the drift term V 2t2 in the exponential outweighs the diffusive 1/(Kt) part, and causes an
exponential decay. One finds the MFPT T = x0/V , i.e., the average first passage time
matches exactly the classical motion with constant velocity V .

Let us now investigate what changes come about in the presence of transport anomalies
of subdiffusive and LF nature.
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5.1.1. Subdiffusion. The first passage of a diffusing particle through a point xf in processes
characterized by a jump length PDF with finite variance X2 can always be mapped on
the problem of putting an absorbing boundary at that point xf and calculating the negative
time derivative of the survival probability. A natural way of constructing the FPTD in such a
case is the method of images (Redner 2001) going back to Lord Kelvin. For instance, on the
semi-infinite domain, this method prescribes to mirror the unrestricted propagator with initial
condition x0 at the point xf , and turning this image negative. The image solution is then the sum
of both PDFs. Thus, the part of the PDF which has imaginarily crossed the absorbing boundary
at xf at some time t, is subtracted from the original PDF. In our example of the semi-infinite
domain with xf = 0, the image solution becomes Q(x, t) = P(x, t; x0) − P(x, t;−x0).
Thus, one readily obtains Q(0, t) = 0, as it should. The integral S(t) = ∫ ∞

0 Q(x, t) dx is the
survival probability. Its negative derivative p(t) = −dS(t)/dt is then the FPTD. In a similar
manner, the images method can be employed to solve the (sub)diffusion in a box, or in the
presence of a constant bias (Metzler and Klafter 2000e, Redner 2001).

Another method is based on the generalized Laplace transformation (22), which is equally
valid for the position average of P(x, t), in the present language the survival probability. Thus,
we can relate the Markovian (SM) and subdiffusive (S) results through

S(u) = uα−1SM(uα) (61)

corresponding to the relation through equations (21) and (22). As the FPTD is the (negative)
time derivative of the survival probability S, the Brownian and subdiffusive FPTDs are not
connected by relation (22). However, it is straightforward to show that the latter fulfil the
scaling relation

pα(u) = pM(uα) (62)

in Laplace space. In the time domain, this corresponds to another generalized Laplace
transformation of the kind (22), but with the one-sided Lévy density L−1{exp(−suα); t} ∼
t−1−α as kernel.

The essential property of subdiffusive first passage time problems lies in the fact that the
long-tailed nature of the waiting time PDF translates into the FPTD itself. The MFPT diverges
both in the absence of a bias and under a constant drift, pertaining to both finite as well as
semi-infinite domains (Metzler and Klafter 2000e, Rangarajan and Ding 2000a, 2000b, 2003,
Scher et al 2002a, Barkai 2001)22. For the three cases of first passage time problems, we
obtain the following subdiffusive generalizations:

(i) For subdiffusion in the semi-infinite domain with an absorbing wall at the origin and
initial condition P(x, 0) = δ(x − x0) it was found that (Metzler and Klafter 2000e)

p(t) ∼ x0

|�(−α/2)|K1/2
α

t−1−α/2 (63)

i.e., the decay becomes a flatter power law than in the Markovian case (58).
(ii) Subdiffusion in the semi-infinite domain in the presence of an external bias V falls off

faster, but still in power-law manner (Barkai 2001, Metzler and Klafter 2003, Scher et al
2002a):

p(t) ∼ t−1−α. (64)

22 Note that for both subdiffusive (T diverges) and LF (X2 diverges) systems it may be dangerous to invoke results
from the x, t-scaling found in the mean squared displacement 〈�x2(t)〉 ∼ tα , from which erroneously a finite MFPT
could be predicted, or inferred at all, respectively. Compare Gitterman (2000), Yuste and Lindenberg (2004) and Li
and Wang (2003), Metzler and Sokolov (2004), as well as Denisov et al (2003), Reigada et al (2002).
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Figure 17. Universality of the electrical current shape as a function of time, for various driving
voltages as sample sizes. The slopes of the two power laws add up to 2. Note the impressive data
collapse after rescaling (Pfister and Scher 1977).

In strong contrast to the biased Brownian case, we now end up with a process whose
characteristic time scale diverges. This is exactly the mirror of the multiple trapping
model, i.e., the classical motion events become repeatedly interrupted such that the
immobilization time dominates the process.

(iii) Subdiffusion in a finite box (Metzler and Klafter 2000e)23:

p(t) ∼ t−1−α (65)

i.e., this process leads to the same scaling behaviour for longer times as found for the
biased semi-infinite case (ii). Effectively, the drift towards the absorbing boundary
outweighs the diffusion, as remarked in the Brownian case above, and acts as a reflecting
boundary.

The latter two results should be compared to the classical Scher–Montroll finding for
the FPTD of biased motion in a finite system of size L with absorbing boundary condition.
In that case, the FPTD exhibits two power laws (compare figure 17)

p(t) ∼
{
tα−1 t < τ

t−1−α t > τ
(66)

the sum of whose exponents equals −2 (Pfister and Scher 1977, 1978, Scher et al 2002a,
2002b). Here, τ is a system parameter dependent time scale (Pfister and Scher 1978).
In figure 17 we also find the anomalous diffusion modelling interestingly proved by
the experimental data (Pfister and Scher 1977, 1978, Scher and Montroll 1975). As
shown in figure 17, a Brownian drift–diffusion model could not reasonably reproduce
the data (which in that case would also be non-universal in the sense that it would
not exhibit the observed data collapsing). Note that the anomalous transport behaviour
also correctly describes other system features, such as the size-dependent mobility. These
investigations were the first, and highly successful, application of continuous time random
walk dynamics.

23 It does not matter whether both boundaries are absorbing, or one is reflective.
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5.1.2. Lévy flights. The first passage time problem for LFs might naively be considered
simpler than the corresponding subdiffusive problem, keeping in mind that LFs are Markovian.
Moreover, their dynamical equation is linear. It might therefore be tempting to apply the
method of images to infer the FPTD for an LF. Such an approach was in fact pursued in
Montroll and West (1976) for a finite domain, and with similar methods in Gitterman (2000).
In Buldyrev et al (2001), eigenfunctions of the full-space LFFPE were obtained, from which
the FPTD was determined. These methods lead to results for the FPTD in the semi-infinite
domain, whose long-time behaviour is explicitly dependent on the Lévy index, such that the
FPTD would actually decay faster than under Brownian conditions. Given the much quicker
exploration of space of LFs, this is an a priori intuitive result. In fact, it was shown by Sparre
Andersen that any symmetric jump length PDF gives rise to a decay ∼ n−3/2 of the FPTD with
number of steps n (Sparre Andersen 1953, 1954). For any Markov process, the analogous
continuous time behaviour can be obtained through n ∝ t , and is according to the Sparre
Andersen theorem given by equation (58). Thus, an LF necessarily has to fulfil the Sparre
Andersen universality, fully independent of the Lévy index24. We note that an analogous result
was proved in Frisch and Frisch (1995) for the special case in which an absorbing boundary
is placed at the location of the starting point of the LF at t > 0, and numerically corroborated
in Zumofen and Klafter (1995a).

The inadequacy of the images method can indeed be understood from the Lévy fractional
diffusion equation (34). There, reflecting the strongly non-local nature of LFs the fractional
Riesz operator stretches its integration from −∞ to +∞. However, given an absorbing
boundary condition at x = 0 with an initial condition at x0 > 0, the solution necessarily has
to vanish on the negative semi-axis. The correct dynamical equation in the presence of the
boundary condition should therefore read (Chechkin et al 2003a)

∂f (x, t)

∂t
= D

κ

∂2

∂x2

∫ ∞

0

f (x ′, t)
|x − x ′|µ−1

dx ′ ≡ ∂2

∂x2
F(x, t) (67)

in which the fractional integral is truncated to the semi-infinite interval and κ = 2�(2 −
µ)| cos πµ/2|. After Laplace transformation and integrating over x twice, one obtains25∫ ∞

0
K(x − x ′, s)f (x ′, s) dx ′ = (x − x0)�(x − x0) − xp(s) − F(0, s) (68)

where p(t) is the FPTD and the kernel K(x, s) = sx�(x) − (κ|x|µ−1). This equation is
formally of the Wiener–Hopf type of the first kind (Gakhov 1966). After some manipulations
similar to those applied in Zumofen and Klafter (1995a), we arrive at the asymptotic expression
p(s) � 1−Cs1/2, where C = const, in accordance with the universal behaviour (58) and with
the findings in Zumofen and Klafter (1995a). Thus, the dynamic equation (67) consistently
phrases the FPTD problem for LFs. A numerical analysis of an LF in the presence of
an absorbing boundary is shown in figure 18, nicely corroborating the Sparre Andersen
universality for various Lévy exponents (Chechkin et al 2003a). In these simulations, a
particle was removed when its jump would move it across the absorbing boundary. The
simulations also demonstrate that the measured FPTD cannot be described by the other two
(in this case inadequate) approaches, the images method and the direct definition addressed
now.

24 It is only for processes in which time t and number of steps n are not a linear function of each other that the Sparre
Andersen universality is broken (Feller 1968, Redner 2001, Sparre Andersen 1953, 1954, Spitzer 2001), for instance,
for subdiffusion or LWs.
25 This definition is thus significantly different from the Brownian case in which it does not matter whether the lower
integration limit is 0, or actually −∞.
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Figure 18. First passage time density for LFs with different index. The universal (Sparre Andersen)
decay with power-law index −3/2 is nicely fulfilled.

This direct definition of the FPTD for Brownian processes uses the chain rule (pfa(τ )

depends implicitly on x0) (Hughes 1995, Redner 2001)

P(−x0, t) =
∫ t

0
pfa(τ )P (0, t − τ). (69)

More precisely, this convolution, which corresponds to the algebraic relation pfa(u) =
P(−x0, u)/P (0, u) in Laplace space, is the PDF of first arrival. However, in Gaussian
processes (Brownian diffusion, subdiffusion), due to the local jumps, both notions are
equivalent. This is no longer true for an LF. Here, by long jumps the LF particle can repeatedly
hop across the point, until it eventually lands there. For an LF, the chain rule will therefore
produce a too slowly decaying FPTD (Chechkin et al 2003a). Equation (69) is equivalent to
a process with a δ-sink paraphrased by the dynamical equation

∂

∂t
f (x, t) = D

∂µ

∂|x|µ f (x, t) − pfa(t)δ(x). (70)

For an LF with index µ, one would therefore expect the PDF of first arrival to decay like

pfa(t) ∼ t−2+1/µ. (71)

This was investigated by numerical simulation, as shown in figure 19. A small interval w

around the sink was fixed, and any particle jumping into this zone was removed.
We note that LWs on a finite domain and in the presence of absorbing boundary

conditions were studied extensively in Drysdale and Robinson (1998). A one-sided Lévy
stable jump length PDF was investigated in Eliazar and Klafter (2004); due to its asymmetric
character, such a process is not subject to the Sparre Andersen theorem. Indeed, the detailed
analysis of this ‘shot-noise’ type process with one-sided, long-tailed λ(x) for the special case
µ = 1/2 reveals the FPTD a(πx0)

−1/2 exp(−a2t2/(4x0)) where a is the amplitude of the
Lévy stable law, and x0 is the distance of the absorbing barrier from the initial location
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Figure 19. First arrival PDF for µ = 1.2 demonstrating the t−2+1/µ scaling, for trap width w = 0.3.
For comparison, we show the same scaling for µ = 1.8, and the power law t−3/2 corresponding
to the FPTD. The behaviour for too large w = 1.0 shows a shift of the decay towards the −3/2
slope. Note that on the abscissa we plot lg tp(t). Note also that for the initial condition x0 = 0.0,
the trap becomes activated after the first step, consistent with Zumofen and Klafter (1995a).

(Eliazar and Klafter 2004); compare also to the detailed discussion in Meerschaert and
Scheffler 2004.

5.2. Reaction–diffusion processes

The above result that for LFs the first arrival and the first passage are in fact different from each
other is expected to have profound implications for diffusion–reaction under Lévy jump length
conditions. Similarly, subdiffusion conditions will change the dynamics of reactive systems.
We note that the theoretical modelling of reaction–diffusion processes within a stochastic
framework goes back to von Smoluchowski (1916a, 1916b) in which the encounter of two
independently diffusing particles is considered. The simplest version, diffusing particles in
the presence of an immobile reaction centre C, at which particles undergo an annihilation
reaction A+C→0, is described by the first arrival time results obtained above: the decay of
the concentration of A follows ∼t−α/2 in subdiffusion with 0 < α < 1, and ∼t−1+1/α for an
LF of Lévy index 1 < α < 2. Note that in the latter case, the reaction becomes successively
stalled for α getting close to the Cauchy case α = 1, and that it approaches the Brownian
case ∼t−1/2 for α → 2.

In Yuste and Lindenberg (2001, 2002), the problem of subdiffusive reaction–diffusion of
the coagulation type A + A → A was considered. Thus, the quantity of interest, the density
function E(x, t) to find an interval of length x empty of any particle at time t, was shown to
be described by the fractional diffusion equation

∂

∂t
E(x, t) = 2 0D

1−α
t Kα

∂2

∂x2
E(x, t) (72)
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where we note the occurrence of the additional factor 2. For an initially random interparticle
distribution λ e−λx of the Poisson type, one can, for instance, obtain the concentration of
particles,

c(t) = λEα/2
(−λ

√
2Kαtα/2

)
(73)

which exhibits a temporal decay of the Mittag-Leffler kind, with scaling exponent α/2.
Similarly, an approximate expression for the time behaviour of the interparticle distance can
be obtained. The analysis in Yuste and Lindenberg (2001) highlights the advantages of having
at hand a formulation of the process in terms of a dynamical equation, i.e., the fractional
diffusion equation. Compare the derivation in Henry and Wearne (2000).

A fractional diffusion equation for the geminate reaction of a particle B, which starts a
distance r0 away from particle A, is given as follows. B moves subdiffusively towards A, until
it reaches the encounter distance within the range R, . . . , R + dr . This process was shown to
be controlled by the fractional diffusion–reaction equation (Seki et al 2003a, 2003b) (compare
Sung et al (2002))

∂

∂t
C(r, t) = 0D

1−α
t

(
Kα∇2 − kα

δ(r − R)

4πR2

)
C(r, t) (74)

for the concentration C(r, t), where we retained the spherical notation from Seki et al (2003a,
2003b). Here, the generalized rate constant is kα .

A systematic derivation of reaction–diffusion equations with distributed delays (memory
kernels), including their connection to fractional reaction–diffusion equations, is discussed,
and applied to the modelling of the (neolithic) transition from the hunting and gathering to the
agricultural society in Vlad and Ross (2002). In a two-species fractional reaction–diffusion
system Turing instabilities were identified by Henry and Wearne (2002).

In del-Castillo-Negrete et al (2003) the front dynamics in a reaction–diffusion system
based on an asymmetric jump distribution, of Gaussian nature to the left, say, and Lévy stable
to the right, related to the study of a birth–death process with similar jump rules (Sokolov
and Belik 2003), is investigated. In a similar study, superfast reaction front propagation was
observed in the presence of long-tailed increments (Mancinelli et al 2002), which is based
on a fractional version of the Fisher–Kolmogorov equation. The efficiency of Lévy statistics
in mixing of chemical reactions was shown in a numerical study of an A+B→0 reaction
(Zumofen et al 1996a, 1996b). Accordingly, Lévy walks under certain parametric conditions
can avoid the Ovchinnikov–Zeldovich segregation of the reactants, which under inefficient
mixing conditions impedes speedy reactions, refer to figure 20. Finally, subdiffusive reaction
dynamics was investigated in detail in Blumen et al (1986b).

6. Summary

Fractional dynamics ideas have been extensively explored during the past few years, both
theoretically and experimentally. It was therefore timely to update our review (Metzler and
Klafter 2000a), in order to provide a basic reference for colleagues who are either actively
working in the field of fractional dynamics, or who would like to get a quick overview. We
decided to write this new review in a self-contained manner. In particular, we gathered a
number of applications, and went more deeply into Lévy flight-type processes. Finally, we
discussed in detail first passage and reaction–diffusion problems under anomalous conditions.
In contrast, we did not repeat the historical and mathematical context from the earlier work
(Metzler and Klafter 2000a), and we refer to that work for details, in particular, how to obtain
explicit solutions in terms of Fox H-functions and via the method of separation of variables,
and for earlier references to papers on fractional dynamics.
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Figure 20. Top: Ovchinnikov–Zeldovich segregation for nearest-neighbour random walks under
A + B → 0 reaction conditions where the two colours symbolize the two reactant species.
Bottom: the same process under Lévy mixing conditions, the Ovchinnikov–Zeldovich segregation
is removed (Zumofen et al 1996a).

We concentrated on fractional integro-differential operators of the Riemann–Liouville
type (acting on time t) and the Riesz–Weyl (position x) type. These follow straightforwardly
from physical principles such as the continuous time random walk (Compte 1996,
Metzler et al 1999b), the generalized master equation (Metzler 2001a), the continuous
time Chapman–Kolmogorov equation (Metzler 2000), a multiple trapping model
(Metzler and Klafter 2000b, 2000c), the Langevin equation with a Lévy noise source
(Seshadri and West 1982, Fogedby 1994a, Peseckis 1987, Schertzer et al 2001), or
subordination (Sokolov). In particular, the equations obtained through these methods
(probabilistic approach!) define a proper PDF as their solution, compare the discussion
in Brockmann and Sokolov (2002), Sokolov (2002). There exist numerous other definitions
(Samko et al 1993, Srivastava and Saxena 2001, Hilfer 2000), whose potential relation to
concrete physical systems has not yet been fully explored. We note that there exist other
approaches to fractional equations, and connections to other physical processes. Thus,
it was shown that the FFPE emerges as the master equation for a Langevin process the
internal clock of which is the FPTD of a self-similar Markov process (Stanislavsky 2003)
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(compare to the fractional Langevin equation (Lutz 2001b, Picozzi and West 2002). Similarly,
a non-Markovian stochastic Liouville equation was recently discussed (Shushin 2003), and a
statistical functional method to derive LFs was explored in Vlad et al (2000). New aspects of
the relation between deterministic systems and anomalous transport (Zaslavsky 1999, 2002,
Klafter and Zumofen 1994b) have recently been discussed (Artuso and Cristadoro 2003), also
from a quantum perspective (Iomin and Zaslavsky 2002, Laskin 2002, Banerjee et al 2002),
and effects of memory in the sense of macroscopic time are discussed in Zaburdaev (2003).
LFs in quenched jump length fields are investigated in a renormalization group approach
in Schulz (2002) and Schulz and Reineker (2002). We also note that the potential conflict
between PDF and trajectory description of anomalous transport was considered in Bologna
et al (2002). Finally, it should be mentioned that finite sampling effects for LFs were
investigated in Condat et al (2002).

Apart from the solutions discussed herein, exact and approximate solutions of the FFPE
were established in a double-well potential for rotational dipoles (Kalmykov et al 2003), for
the fractional oscillator (Ryabov and Puzenko 2002), and for double-well anomalous diffusion
in Shushin (2001). Similarly, fixed axes dipoles rotating in an N-fold cosine potential
were investigated on the basis of the fractional Klein–Kramers equation in Coffey et al
(2003). The fractional Fokker–Planck equation on a comb structure was explored by Zahran
et al (2003), El-Wakil et al (2002). Experimentally, such predictions are being explored
in Jadżyn (2003). Cole–Cole-type relaxation patterns were studied in dielectric systems
(Ryabov et al 2003, Feldman et al 2002), and applied to seismic wave attenuation (Hanyga
2003). ‘Reverse engineering’, i.e., the exploration of how to design a Lévy noise-driven
Langevin system, which yields a given steady state behaviour, was studied in Eliazar and
Klafter (2003). Stationarity-conservation laws could be determined for fractional differential
equations with variable coefficients (Klimek 2002).

From the phase space or position space fractional dynamical equations, one can by
integration obtain the purely time-dependent relaxation behaviour of the system under
consideration. Given the anomalous diffusion behaviour described by such dynamics, also the
relaxation patterns will deviate from the classical exponential Maxwell–Debye form (Plonka
2001, Ramakrishnan and Raj Lakshmi 1987). Fractional relaxation models have inter alia been
discussed in Blumen et al (2002), Richert (2002), Schiessel et al (1995) and Uchaikin (2003).
Applications of such anomalous relaxation models have been impressively demonstrated over
some 10 to 15 decades in frequency for dielectric relaxation (Hilfer 2003) and polymeric
systems (Glöckle and Nonnenmacher 1991, Metzler et al 1995). A comparative study of
different anomalous relaxation models was undertaken in Talkner (2001). Compare also
to dynamical disorder models generalizing the KWW-stretched exponential form (Vlad et al
1998, 1996).
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Appendix A. Continuous time random walk approach to fractional dynamics

A standard textbook random walk process is assumed to perform a step of fixed length in a
random direction at each tick of a system clock, i.e., having constant spatial and temporal
increments, �x and �t . Such a process will give rise to the standard diffusion process in



R200 Topical Review

the long-time limit, i.e., after a sufficient number of steps, and the associated random variable
x(t) = N−1/2 ∑N

i xi , where xi is the position after the ith step, will be distributed by a
Gaussian due to the central limit theorem. A convenient generalization of this process is the
so-called continuous time random walk (CTRW) process, originally introduced by Montroll
and Weiss (1965), in which both jump length and waiting time are distributed according to
two PDFs, λ(x) and ψ(t). A CTRW therefore is based on a probabilistic concept. It is easy
to show that the propagator for such a CTRW process in the absence of an external force is
given in terms of the simple expression

P(k, u) = 1 − ψ(u)

u[1 − ψ(k, u)]
(A.1)

in Fourier–Laplace space (Klafter et al 1987). A detailed review is the book by Hughes
(1995). We note that this framework is based on a Euclidean space, and has to be modified for
transport on supports with fractal dimension (Ben-Avraham and Havlin 2000, Metzler et al
1994, Metzler and Nonnenmacher 1997, Kobelev et al 2002, 2003, Ren et al 2003a, 2003b,
Acedo and Yuste 1998).

The waiting time and jump length PDFs. A waiting time PDF of the long-tailed
inverse power-law form ψ(t) ∼ τα/t1+α (0 < α < 1), which enters the CTRW
propagator (A.1) via the Laplace expansion ψ(u) ∼ 1 − (uτ)α (u � τ), can be
completed, for instance, to a one-sided Lévy stable density L+

α,τ (t) whose characteristic
function in Laplace space is ϕ(u) = ∫ ∞

0 L+
α,τ (t) e−ut dt = exp(−[uτ ]α) (Lévy 1954,

Gnedenko and Kolmogorov 1954, Hughes 1995, Samorodnitsky and Taqqu 1994,
Re et al 2003). This complete, explicit representation for ψ(t) has the advantage that it
includes the limit α = 1, in which case ψ(u) = e−uτ ∼ 1−uτ , and ψ(t) = δ(t −τ). Another
possibility is to choose ψ(t) = (τα/t1−α)Eα,α(−[t/τ ]α), where Eα,α is the generalized Mittag-
Leffler function with the series expansion ψ(t) = (τα/t1−α)

∑∞
n=0(−[t/τ ]α)/�(αn + α), as

derived by Hilfer and Anton (1995). In this case, the limit α = 1 becomes ψ(t) = e−t/τ .
Similarly, the jump length PDF λ(x) can be assumed to be given by a symmetric Lévy

stable PDF defined in terms of its characteristic function, ϕ(k) ≡ ∫ ∞
−∞ λ(x) exp(ikx) dx =

exp(−[σ |k|]µ), where 0 < µ � 2. In the case µ = 2, we obviously recover the
Gaussian distribution, which corresponds to a standard jump length distribution. For
0 < µ < 2, λ(x) ∼ σµ/|x|1+µ, and in particular, its variance diverges (Hughes 1995, Lévy
1954).
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