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Strange kinetics

Michael F. Shlesinger, George M. Zaslavsky & Joseph Klafter

The once abstract notions of fractal space and time now appear naturally and inevitably in chaotic
dynamical systems and lead to ‘strange kinetics' and anomalous transport properties. An understand-
ing of this kind of dynamical behaviour should provide insights into, for example, turbulent fluid

dynamics and particle random-walk processes.

IT is now widely appreciated that complex, seemingly random
behaviour can be governed by deterministic nonlinear equations.
Such complex deterministic behaviour has been termed chaotic.
But rather than being a harbinger of the demise of random
processes, nonlinear dynamics has opened up a host of new
challenges for statistical physics. These challenges focus on
characterizing, predicting and controlling the evolution of com-
plex nonlinear processes in space and time. The statistical nature
of the problem stems from the possibly intricate, hierarchical
and fractal nature of trajectories in nonlinear dynamical systems,
and the concomitant extreme sensitivity of the solutions to initial
conditions, variation of parameters and system energy.

Here we will mainly investigate hamiltonian (energy-
conserving) dynamical systems that exhibit such rich and varied
behaviour, particularly looking at problems which were pre-
viously overshadowed or unknown. Although it is difficult to
predict what will be the future central problem in chaotic
dynamics, it is safe to select particle and field kinetics as provid-
ing a foundation for problems of importance. An ultimate goal
is a kinetic description of chaotic dynamics which will generate
insights into the nature of associated random processes
(especially random walks), and their link to the theory of
dynamical systems. Some aspects of kinetics in hamiltonian
systems with chaos will be discussed below in detail. As we will
show, simple nonlinearities in the hamiltonian can induce fractal
motions with nonstandard statistical properties. We term such
behaviour ‘strange kinetics’.

Real orbits in dynamical systems are always theoretically
predictable because they represent solutions of simple system
of equations (for example Newton’s equations). Under condi-
tions for dynamical chaos, however, these orbits are highly
unstable. Generally for chaotic motion the distance between
two initially close orbits grows exponentially with time as

d(t)=d(0) exp (ot) (1)

where the rate o is called a Lyapunov exponent. This depen-
dence holds for sufficiently long times. Local instabilities,
described by equation (1), lead to a rapid mixing of orbits within
the time interval 7, = 1/ 0. Nevertheless, some properties of the
system remain fairly stable and their evolution occurs at a
significantly longer timescale 7, > 7, as a result of averaging
(possibly only partially) over the fast process of mixing, caused
by the instability in equation (1). Kinetic equations arise as a
consequence of such averaging. The well-known gaussian and
poissonian statistics (for diffusion in space and temporal
measures, respectively) can under certain conditions give a valid,
albeit approximate, description of the apparent randomness of
chaotic orbits. It has been realized, however, that behaviours
much more complex than standard diffusion can occur in
dynamical hamiltonian chaos. For hamiltonian chaos we will
emphasize parameter regimes where Lévy statistics (describing
fractal processes) apply and strange kinetics rules. Lévy statistics
can appear both in space and time, and the fractal processes
they describe lie at the heart of complex processes such as
turbulent diffusion, chaotic phase diffusion in Josephson junc-
tions, and slow relaxation in glassy materials.
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Lévy statistics can be generated by random processes that are
scale-invariant. This means that a trajectory will possess many
scales, but no one scale will be characteristic and dominate the
process. Geometrically, this implies the fractal property that a
trajectory, viewed at different resolutions, will look self-similar.
One example of a scale-invariant random process is a random
walk with infinite mean-squared jump distances (R?) (the second
moment of the jump distance probability, p(R)). A finite second
moment would set a scale and lead to gaussian behaviour. The
scale-invariant random walk is equivalent to studying the addi-
tion of random variables with infinite moments. Early examples
of scale invariance were treated as paradoxes (see Box 1), but
the general mathematics for determining probability distribu-
tions for the addition of random variables with infinite moments
were developed by Paul Lévy in the 1920s and 1930s. Lévy’s
study of random processes with (R?) =0 did not readily find
physical applications because measurements of time-dependent
relationships were generally required, of the form

(R¥(1))~ t” (2)

where ¢ is time and v is a constant. Lévy’s ideas at first did not
seem to address such problems, as time does not enter explicitly
into the original Lévy process. To make the connection, one
must take into account the time to complete a jump of the
random walk. Strange kinetics for chaotic hamiltonian systems
fall outside the domain of brownian motion, and their statistical
nature is reflected by values of y between unity (brownian
motion) and two (ballistic motion). Turbulent diffusion, in an
open system where energy is pumped in through mixing, is
characterized by the value of y=3.

Here we explore stochastics and dynamics leading to equation
(2) and tie both worlds together through the common thread of

BOX 1 The St Petersburg paradox

THis classic paradox provides us with a beautiful example of a kind of
scaling. The problem involves a game of chance. The game is to flip a
coin until a head appears. There is a probability of 3 that this occurs on
the first flip, and a probability of 1/2" that the first head appears on
the nth flip. Suppose you win 2" coins if n—1 tails occur before the
first head, Then your expected winnings are (1X3)+(2x3)+---+
(27/2"™) +- - -=00, This game was introduced by Nicolaas Bernouilli
(the nephew of Jacob and John) in the early 1700s, and is known as the
St Petersburg paradox because Daniel Bernouilli wrote about it in the
Commentary of the St Petersburg Academy. The question is how many
coins a player has to risk (the ante) to play. Ideally, in a fair game, the
ante should be to equal the expected winnings. The banker requires the
player to ante an infinite number of coins because this is his expected
loss. The player, however, favours a small ante because he will only win
one coin half of the time, two coins or fewer with probability 2, four
coins or fewer with probability Z, and so on. The two parties cannot
come to an agreement because they are trying to determine a charac-
teristic scale from a distribution which does not possess one. An infinite
number of possible scales of winning (in powers of two) enter, but no
scale is dominant. The discovery of this paradox was to cast doubt on
the firm mathematical foundations of probability theory. Today, we see
this paradox as a rich example of scaling with all its inherent exponents,
fractal dimensions, and renormalization scaling properties.
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fractal trajectories. First we discuss briefly the problem of a
kinetic description of dynamical systems with chaotic behaviour,
and mention some important topological properties of the phase
portrait of the system. Then, within the context of the history
of probability theory, we describe random processes (Lévy
flights and Lévy walks) that are relevant to dynamical systems
whose orbits possess fractal properties. We consider several
examples of dynamical systems with ‘symptoms’ of Lévy-like
processes. Finally we present a phenomenology of a kinetic
description of dynamical systems undergoing chaotic motion
(‘strange kinetics’) with fractal properties.

From chaotic dynamics to strange kinetics

An early step to describe kinetics in hamiltonian systems was
the introduction of the Fokker-Planck-Kolmogorov (FPK)
equation (or its equivalent). It seemed suitable as a natural tool
for the description of the slow evolution of system variables'.
The reason for this can be qualitatively explained by considering
the ‘standard map’ of Chirikov-Taylor’. This map is obtained
when considering the periodically kicked rotor

xn+1:xn+pn+1 (3)

where p and x are rotational momentum and phase of the rotor
and n corresponds to the n-th instance of a kick, so n plays a
role of discrete time. After each kick the rotor’s momentum
changes by Ap = p, 41— p,, which is proportional to the ampli-
tude K,, of the kick, and the changing of phase Ax = x,,,; — x,,.
The map of equation (3) is typical of many physical problems
and models many features of the occurrence of chaos. If Ky>» 1,
then phase x, taken always in the interval (0,2s), changes
randomly. Averaging over the phase, one can get easily from
equation (3) the moments {Ap) =0, {(Ap)*) = K}/2 where { - )
means averaging over x in the interval (0, 27r). These simple
expressions lead eventually to the diffusion (FPK) equation

dF(p) 1 _4°F(p)
ot 2 ap*

which describes the slow evolution of the momentum distribu-
tion function F(p). This is the simplest manner in which a
kinetic description arises in a dynamical system with chaotic
behaviour. It is due to the randomness of the fast variable phase,
generated by nonrandom equations such as (3) above.
Realistic physical systems appear to be more peculiar because
of the inhomogeneity of their phase space where regions of both
chaotic dynamics and regular (or quasiperiodic) dynamics are
present. This phenomenon is often referred to as a ‘stochastic
sea’ with ‘islands’ of stable nonrandom orbits (see Fig. 1 with
explanations). The existence of such islands and their borders
alters the pattern of diffusion dynamics, and early studies led

Pns1=Pn + KO Sin Xps

. D=((p)*)=Ki/2 4)
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to a different expression from that of equation (4) for the
diffusion coefficient D (ref. 3).

D = K3/2{1-2J5(Ko)}

where J, is a Bessel function. The cause of the change in the
D(K,) dependence is more important than the change itself: it
arose from the discovery of a new topological object in phase
space*® which Percival called a cantorus. A cantorus can be
imagined as a closed curve except for an infinite number of
gaps, immersed in the stochastic sea. The gaps have different
sizes so that the measure of the cantorus is zero (therefore a
cantorus is fractal, rather than a typical curve which has the
measure one). All points of a cantorus belong to the only orbit
if the initial condition has been chosen from the cantorus mani-
fold. Motion along cantori is periodic and unstable. Every island
or set of islands (see Fig. 1) is enclosed with an infinite set of
cantori.

The discovery of cantori changed the understanding of phase
space structure and the transport within it. Particle transport
takes place within the area of the stochastic sea and corresponds
to a wandering amidst the islands. The wandering particle can
pass through the gaps of cantori, which creates effective barriers
for diffusion. The cantori closest to the island boundaries seem
to be the most important, because their barriers are the widest
and their gaps are the narrowest. The passage through the
intervals between the islands is complicated by the fact that the
nearest cantorus blocks the escape of the particle from the
boundary layer in the vicinity of the island. The particle gets
trapped inside the area between the island border and the nearest
cantorus (or cantori) and this is the reason why one can observe
higher densities of dots in the stochastic sea of Fig. 1. We cannot
see cantori in Fig. 1, but they disclose themselves as boundaries
of dark strips inside the stochastic sea domain.

This tendency to get trapped has been called ‘stickiness’, and
it is the existence of ‘sticky’ orbits that makes the kinetics of
the particle strange. Let us describe this in more detail. Consider
a particle wandering in the stochastic sea area which passes
through a gap of a cantorus very close to an island boundary.
The particle now experiences a new kind of motion and almost
regularly rotates around the island or around a set of islands.
The rate of instability (Lyapunov exponent) near the island’s
boundary is small, so the motion is close to a quasiperiodic one.
In addition, this cantorus (or cantori) blocks the possibility of
escaping from the boundary layer area. As a whole it works as
a trap for the particle. Thus trapping of the particle in the (x, p)
plane corresponds to a ‘flight’ along the curve A A; in Fig. 1.
In the multidimensional case, flight can be perpendicular to the
(x, p) plane direction. In other words, trappings and flights
are complementary features of anomalous excursions of the

FIG. 1 lllustration of the topology of dynamical system orbits in the phase
space (x, p). Starting from some initial conditions, the orbit is generated by
an infinite set of iterations, equation (2), and each iteration gives a dot on
the (x, p) plane. Such a procedure is called a Poincaré section. Instead of a
continuous curve, the orbit is represented on the (x, p) plane by the set of
values (x,, p,) taken at special set of time instants. We piot a typical part
of the (x p) plane for equation (2) with K,=1.2. The regular orbits
(By, By, B3, By, . . .) describe quasiperiodic motion. In contrast to them, there
is an orbit which fills the domain A=(A,, A,, A3, A4, As) (except for some
area in its central part). There is no possibility of fitting all of these points
onto one curve. This orbit represents chaotic motion. The area A is a
‘stochastic sea’. Inside A there is a set of ‘islands’ in which the motion is
regular. Domain A borders a big island along the curve AgA; (there is only
a part of the island in the figure and the orbits B, B,,. . . are closed in this
island). The density of points in the ‘stochastic sea’ area (or distribution
function) displays how often this part of the phase space has been visited.
The density is inhomogeneous and the most visited parts are narrow strips
close to island boundaries. Dark strips of high density points are distributed
along the border (A, As) of the big island, around the smailer island and its
five satellite sub-islands.
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random-walk particle orbit. Such behaviour is not new in phys-
ics. In the theory of turbulence it is known as intermittency,
and there are many examples of intermittent behaviour of dis-
sipative dynamical system’; as well as of hamiltonian systems®,
Actually the analogy with turbulence may be even deeper as
will be seen later.

The crucial questions are what the probabilities are of
anomalous orbits with strong intermittent dynamics, or how
often one chaotic orbit will happen to exhibit intermittent bursts.
It seems that the ability of dynamical chaos to have anomalous
statistical properties is general, although sometimes it is difficult
to observe. There are many examples of anomalous kinetics of
particles due to flights and trappings: simulations of passive
scalar dynamics in fluids®"!, charged particle multidimensional
dynamics'?, particle dynamics in two-dimensional periodical
and quasiperiodical potentials'***) and experiments on trans-
port in the presence of convective cells'® or in the presence of
regular patterned capillary waves'®. Correspondingly, for flight
observations there is evidence of anomalous diffusion of parti-
cles, so that in the expression for particle displacement R after
time t (averaged over a number of orbits)

(RDp~e* (1<) (5)

the exponent w#%, which would be the value for normal
diffusion (we are using the form of equation (5) instead of
equation (2) for convenience). Sometimes x can be close to
one, corresponding to enormously strong enhancement of the
transport (‘ballistic motion’). Applications of this phenomenon
include plasma fusion and understanding the spread of environ-
mental pollution.

It seems now that the ‘strange kinetics’ described above are
similar to the ‘Lévy process’’” which appeared as an alternative
to the gaussian law of large numbers or the usual brownian
motion. It is worth giving this story separately because it helps
when trying to understand its deep relationship to dynamical
chaos.

From St Petersburg to strange kinetics

We have mentioned that the complexity of chaotic orbits near
the boundaries of islands resides in their self-similar behaviour
on a small scale. To reflect such a property one cannot use a
correlation length or a characteristic size. One has to introduce
many scales, expecting a self-similarity among all of them. The
history of probability theory has already provided us with an
example of this type of scaling.

An example of random walk, formulated in the eighteenth
century and known now as the St Petersburg paradox, has shown

FIG. 2 The connected lines a show the trajectory of aLévy walk. The isolated
dots b show the points visited by a Lévy flight which represents the turning
points of the Lévy walk in a. The trafectory is plotted from a two-dimensional
version of equation () in Box 2 with @ =In 2/In 3. Number of points is 350.
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the existence of infinite moments (Box 1). Lévy generalized'’
the central-limit theorem to take such possibilities into account.
He considered the distribution of sums of random variables
with infinite moments. Let us add up several identically dis-
tributed random variables X;. The value of each variable X; can
be thought of as a step in a random walk. Each jump length is
chosen from a distribution p(x). Lévy asked when the distribu-
tion of the sum of n steps p,(x) (up to some scale factors)
would be the same as the distribution of any term in the sum,
p(x). This is basically the question of fractals: when does the
whole (the sum) look like one of its parts? One answer to this
question is well known: a sum of gaussians is a gaussian. The
distribution of the X; is p(x) = (27) V% exp (—x?/2), the distri-
bution of p,(x), the properly scaled sum (n)""?Y, X, is
(27n) "2 exp (—x*/2n). So p(x) and p,(x) have the same distri-
bution up the scale factor n. In Fourier space (x - k) p,(k) has
a simple form

pn(k)=J Pa(x) exp (ikx) dx = exp (—nk?/2) (6)
Note that the second moment of p.(x) is given by —4°p, (k=
0)/0k*=n. Lévy discovered that other solutions existed such
that p,(x) and p(x) had the same distribution. He found this
to be the case when

pn(k) = exp (—constant x n|k|*) (for0<a=2) (7)

The « =2 case is the gaussian which we have just studied. For
@ <2, we note that (x?)=—3°p,(k=0)/9k? is infinite. These
random walks with steps with infinite second moments are
known as Lévy flights. It now seems obvious that to have
scale-invariant distributions, we would need to sum up random
variables with no scale. Indeed, applying an inverse Fourier
transform to equation (7) gives

Ppn(x)~constantx n/x'* (8)

BOX 2 Welerstrass random walks

To obtain a deeper understanding of the new kind of the characteristic
function p(k) in equation (7) in the text, consider a special example of
random walk which can be written in the form

(=R
pw(x) =¥ jzo a_'r(sxﬁ_bj"'a_‘_b-’) (*)

where §,, means the Kronecker symbol. Jumps of size +1, &b, +b2 and
S0 on can occur, but jumps an order of magnitude longer in base b occur
an order of magnitude less often in base a. We make about a jumps
of length unity before, on the average, a jump of length b occurs, and
so on, until in a hierarchical fashion patchy clusters of all sizes are
formed. Taking the Fourier transform of p,(x), we arrive at

a—1=® .
pK)=—— ¥ a™’ cos (bk)
a j=o0

which is the Weierstrass function. The important part of this result is
that the random walk process (*) describes a situation that reflects the
scaling of the St Petersburg paradox. This process is related to the
Weierstrass function which possesses the scaling property:

pulk)=a""p,(bk) + [57—1] cos (k)

The detailed analysis of this equation*®** gives the final result in the form
P (k) ~1 — |k|™ ~exp (—|k|*)
with @=In a/ln b when b®>a so (x?) is infinite. Value « represents
the fractal dimension of a random walk path*®'®%3, This exponential
form with the fractional power comprises the non-gaussian solution to
Lévy's question addressed in equation (7). If one wants to add random
variables (take a random walk) and have the probability distribution after
n steps look like the probability distribution after one step (except for
a change of scale), then your random variables are either gaussian or
have infinite second moments. This means the solution is either gaussian
or fractal. The process p,(x) is used to illustrate Lévy flights in Fig. 2.

33

© 1993 Nature Publishing Group



REVIEW ARTICLE

where the power law for the tail of the distribution indicates
the absence of a characteristic size unlike the gaussian distribu-
tion, where a = 2. We emphasize that sums governed by equation
(8) with a <2 are dominated by their largest terms, and thus
by rare intermittent events. It can also be seen from equation
(8) that the power-law behaviour of the tail of the distribution
function defines the appreciable probability of large values of
displacement x, explaining the reason for ‘Lévy flights’. The
exponent a will turn out to be the dimension of the point set
visited by a Lévy flight. For Lévy flights this dimension is fractal
(0 < a <2). Mandelbrot has connected the fractal properties of
random walks with Lévy flights'® (see also ref. 19). This may
be important especially for turbulence problems, discussed
below.

A non-poissonian distribution is the forerunner of the concept
of fractal time where the waiting times between jumps occur on
all scales, but with order of magnitude longer waits occurring
an order of magnitude less often. For fractal time the average,
(t), between events is infinite. This does not mean that the
duration between every event is infinite, just as in the coin game
of the St Petersburg paradox not every player wins an infinite
amount of money just because the expected winning is infinite.

It is not so difficult now to introduce fractal time®®?! into
random walks. In some sense it could be done in a similar
manner to the fractal space random walk. Indeed, let the time
sequence fo, 1, . . .= {;} be the sequence of moments when steps
of the random walk are performed. Formally there are no
restrictions on the structure of the {¢,}, especially in a dynamical

2 1 :
I
k)
% .
T »
-
AR
Ha” ke
1%
1
§ el
& M
a *

—-104 -50x10° 0  5.0x10°

i c
:
12} B :
10 P
6F : :
g2 B R it o
ol -
I . N B ', - "
e T 2f .
. . ol R W e NN .
-5.0x102 0 5.0x102 00 0 2 4 6 8§ 10 12 14

P

FIG. 3 Poincaré section of a streamline (or passive particle) with ¢ =2.3
(ref. 42). Each dot represents a crossing of the streamline (or particle orbit)
with the plane z2=0 (mod 2). This corresponds to anomalous transport
with u>1 (see Fig. 4). a A general impression of the particle’s wandering.
There are many tracks which represent flights. Some of them have length
of order 10*. b, Small-scale plot of the same orbit. The area is of order
47 X 44, They are a part of the stochastic web and many islands. The full
stochastic web can be obtained from b by its periodic continuation in x and
y directions. ¢, A special part of the orbit which corresponds to an initial
condition taken inside the circle in b. It is a very long flight of order of 10*.
If we plot all the points ¢ onto the small square x (mod 4), y (mod 47)
then we obtain a new visualization, d. Dark strips around some islands
correspond to frequent visits to these areas by the particle; they result
from trapping due to the stickiness of the islands’ boundaries. This picture
confirms that islands create the tracks for flights.
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system and {} is (for example) a set of crossing times of the
Poincaré section. A more detailed description is based on the
introduction of a time delay function (¢) which is the probabil-
ity density that the duration between events is t. The behaviour
of /() may be similar to the scaling of the Weierstrass function
(Box 2). As will be seen later, the combination of fractal time
and space for random walks can create essentially a new kind
of wandering which is the background of strange kinetics.

Lévy flights and walks

Our discussion has so far evolved from the observation that
chaotic diffusion in dynamical systems can be shown by particle
trajectories which are reminiscent of Lévy flights. (Evidence of
this will be given in the next section). Beautiful and elegant as
the mathematics of Lévy flights are, they are not directly appli-
cable to the kinetic description of real dynamical processes. One
must take into account the time to complete each jump of the
random walk. This process we have named the Lévy walk?.
One then looks at the displacement after a time ¢ rather than
an n steps. Even when the average jump distance is infinite (a
Lévy flight) the average displacement after a time ¢ (a Lévy
walk) will be characterized by a time-dependent growth, such
as t* in equation (5). Lévy walks are a modification of the
flights, preserving the spatial self-similarity. To overcome the
divergence in (R?), a time cost is introduced so that long steps
are penalized. The formulation of Lévy walks rests on a con-
tinuous time random walk (CTRW) approach. The nature of
the walks is entirely specified by the probability distribution
W(r, t) for a single step of r in time ¢ This probability density
has the following property.

J drdt¥(r,t)=1, W(r, t)=p(r)8(t—|r|/v(r)), ©)

pr) ~ ™

-0

The second property relates the step length to time in terms of
a length-dependent velocity. This space-time coupling is
mathematically essential to avoid the divergences of Lévy flights.
The third property is responsible for the self-similarity of trajec-
tories and by itself represents the Lévy flight. The ‘secret’ in
getting rid of the divergence typical of the flight’s mean-square
displacement lies in the space-time coupling of ¥(r, ¢) through
the &-function. Space-time fractal behaviour is introduced
directly through coupling on ¥(r, ¢). Figure 2 shows a two-
dimensional realization of a Lévy walk where v(r)=constant
and the fractal dimension is In 2/1n 3. The self-similar aspect of
the picture is important: a series of small steps is followed by
larger ones, which are then followed by larger ones still; further-
more, no particular length scale dominates. These features of
the Lévy walk make them attractive in simulating momentum
mixing over large distances, and they are therefore candidates
for turbulent diffusion and turbulent flows™. In fact, Hayot™*
was able to take advantage of this picture and calculate the
velocity profile for inertial range turbulent pipe flow, and tur-
bulent flow past a cylinder.

Phase rotation in Josephson junctions provides an example
of a Lévy walk. For a constant voltage across a junction, the
phase difference between current and voltage will rotate at a
constant rate. Under certain conditions, however, involving the
amplitude of a driving force, the phase can switch back and
forth intermittently between clockwise and counterclockwise
rotations®-?’. One can consider the distribution of times spent
in a given rotation state. If the phase rotates n times in the
clockwise sense we consider this as a step of length n to the
right in a one-dimensional random walk. The junction can be
operated such that the distribution p(n) for having n consecutive
rotations in the same direction will be a Lévy distribution
possessing an infinite second moment. But the mean value of
(x*(t)), where x is the phase difference, will not be infinite. This
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is because each rotation takes a finite time to be completed, so
by time t only a finite number of rotations can occur. The scaling
of the mean squared displacement (x(1)) is a function of time
and can exhibit the accelerated behaviour (x*(¢)) = t* with 1<
w<2 (ref. 26).

Even more accelerated motion is possible and the law
(R*(t))~ £* is well known for turbulent diffusion, as Richard-
son’s law. For the random walk corresponding to the Josephson
junction example, flight paths were traversed with a constant
velocity. A Lévy set of trajectories where the velocity depends
on the flight length will reproduce Richardson’s law?* when the
v(r) in equation (10) is given by v(r) =|r|'/?, and p(r) describes
a Lévy flight. This o(r) relation is the signature of Kolmogorov’s
scaling for inertial range of turbulence. It represents particle
trajectories encountering a hierarchy of larger and larger vortices
as time progresses. The Lévy walk approach not only arrives at
the proper scaling law, but in addition gives a Lagrangian
description of particle trajectories. Modifications to Richard-
son’s law have also been investigated in the framework of
random walks*>?%,

Patterns, stochastic webs and strange kinetics
We now discuss several dynamical models for which the
phenomena of anomalous, non-gaussian transport (see equation
(5)) with u # 3 have been observed. The models describe hamil-
tonian systems for which the Liouville theorem (of the preserva-
tion of phase volume) is relevant. This means that the initial
area in the phase, bounded by a surface, can change its form
drastically, but the volume surrounded by the surface cannot
change. The crucial feature of this treatment is to show how the
existence of flights (or trappings) and anomalous kinetics is
connected to symmetry properties of a system or, more generally
speaking, to a symmetry of the system’s phase portrait in phase
space”>™?.

As the first example let us consider the ‘Q-flow’® defined as

v =(3¢,/dy+ & sin z, =3y, /dx + & cos z, ) (10)
where ¢ is a parameter. Here the generating symmetry function
Y, is

q
Yg= L cos(R-¢), R=(xy)
i=1

=1,...,q9 (1

where ¢ is the order of symmetry, and e; is set of unit vectors,
which form the regular star. Lines of constant 4, generate the

¢;=(cos 2mj/q,sin 2mj(q))
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g-fold symmetry pattern in the (x, y) plane, which is of crystal-
like symmetry for g € q. = {1, 2, 3, 4, 6} and is of quasicrystal-like
symmetry for g £ q,. The Q-flow is incompressible (divv=0)
and of Beltrami type (v=curl v), described in detail in ref. 29.
The best known is the case of cubic symmetry flow when g =4
and ¢,=2(cos x+cosy), the ‘Arnold-Beltrami-Childress’
(ABC) flow. Interest in the ABC flow has been raised by the
nontrivial chaotic behaviour of the flow’s streamlines**? and
by applications to the fast dynamo problem. It should be men-
tioned that any Q-flow has a stochastic web in real coordinate
space®”, which means the following. The set of equations
dx/v,=dy/v,=dz/v, defines the flow’s streamlines. Its sol-
ution for v from equation (10) displays an infinite connected
net of channels of finite width of order &, inside which stream-
lines look like random contours, which leads one to conclude
that passive scalar dynamics is diffusive. We will see later that
the transport through the stochastic web is anomalous or
‘strange’ for general situations”'°, implying the existence of
flights and trappings, and also implying that w#3 in the
asymptotic formula, equation (5).

Observations of flights for different models can be sketched
as in Fig. 3. Flights (or trappings) appear along the island’s
boundary, and the existence of pattern symmetries is crucial for
determining the probability of their occurrence. If the patterns
are destroyed, the long flights and anomalous transport proper-
ties disappear. This is why the generation function ¢, in equation
(10) is of great importance. It possesses general symmetry
properties and creates different directions of flights in the phase
space and real space of Q-flow. In particular, changing the
parameter £ in equation (10) changes some aspects of the phase
portrait. The number of islands, their locations, sizes and shape
all depend on &. The levels of stickiness of the island boundary,
and the cantori closest to them, are also functions of &. This is
revealed in the sensitive dependence of w on e For g=6
(hexagonal symmetric flow) the curve u= u(e) was obtained
in ref. 9. (See Fig. 4) All variations of u in the plot correlate
one-to-one with sharp changes in the phase portrait of the system
after ¢ has passed through some critical values. The influence
of the closeness of ¢ to such a critical value was found'’ for
the equations (10 and 11) with ¢ = 5. Figure 5 explains how this
could happen. For some intervals of ¢ there are special domains
in the phase space of very long particle trapping which creates
extremely long flights, called stochastic jets. The escape of any
orbit from a bundle of orbits, initially inside the trapped chaotic
area, is blocked by a cantorus. The scattering of the bundle is
very small and the bundle survives as a long jet. The time of

FIG. 4 The dependence of the diffusional exponent u = u(e) (ref. 9), for the
same hexagonal flow as in Fig. 3. There is a region of & between ~0.8 and
2.8 where u fluctuates strongly between 3 and 1.
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survival of a jet can be comparable with any timescale of
observation or simulation. Such jets imply that the exponent u
is close to one (ballistic behaviour).

Another model, for which flights, stochastic jets and
anomalous transport were observed in detail'? is the four-
dimensional mapping

u'=[u+ K sin(v—2z)] cos ay+ v sin a,
v'=—[u+ K sin(v—2z)] sin ay+ v cos aq (12)

p'=p+K,sin(v—z), Z’=z+p’

Equations (12) describe particle motion in a magnetic field and
in a wave packet which propagates obliquely to the magnetic
field. Here u is a dimensionless velocity along x and v is the
coordinate x; p and z are dimensionless velocity and coordinate
along the magnetic field; « and K, K, are dimensionless para-
meters. The first two equations in (12) describe the so-called
web-map which generates the stochastic web of the g-fold sym-
metry if ao=2m/q with integer g. Averaging the hamiltonian
for the first two equations in (12) will coincide with the pattern
generator ¥, in equation (11) if one puts R = (u, v). The second
pair of equations in (12) coincides with the standard map,
equation (3). Thus system (12) described coupling of the stan-
dard and web maps. It demonstrates a rich collection of different
dynamical features. Even for small K and K, the diffusion can

50%P1

1.5*P1

- —97*P1 —47*P}

X

FIG. 5 The topological situation in phase space when extremely long flights,
or trappings, occur'®. We call them stochastic jets. All plots correspond to
the 5-fold symmetry Q-flow (g=>5 in equations (16) and (17)). Each plot is
the (x, y)-coordinate of the only streamline when its z-coordinate value is
z=0 (mod 27). The case a plots long time transport for £ =0.8. Many black
clusters of dots correspond to the streamline trapping in a small domain.
Zooming into the small square in a gives b, which shows a figure ‘8'-like
region with chaotic behaviour outside and inside the 8. These ‘outer’ and
‘inner’ areas of chaos are slightly connected (the white narrow strip does
not absolutely separate them). This reflects small probability of penetration
from the ‘inner’ chaotic area to the ‘outer’ one. If a particle has been trapped
in the ‘inner’ area, it stays for a very long time which results in an appearance
of jets in the perpendicular z-direction. Small variations of the parameter
& change the phase portrait of the system (¢ and d). In ¢, e =0.5. A closed
curve exists between ‘inner’ and narrow chaotic area and ‘outer’ one and
the stochastic jets like in b have disappeared. The same is observed in g
where £=0.4, and the ‘inner’ chaotic area is invisible. The existence or
nonexistence of a low probability connection between ‘inner’ and ‘outer’
domains in b-d means that a wandering (outside the figure ‘8’) particle can
either be trapped for a long time in a small domain or cannot be trapped.
This provides a micro-picture of the occurrence of superlong flights and
trappings.
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be fast and anomalous. This diffusion is faster than the Arnold
diffusion. Figure 6 represents the two cases of diffusion when
trappings and flights occur after a fairly small parameter change.
As in previous cases, the system in equation (12) possesses a
symmetry in its phase space, which generates flights of different
forms.

Clusters, multifractals and different length scales

An important observation'? was the dependence of the diffusion
exponent u on the phase-space region where the set of initial
coordinates is taken. This property reflects the inhomogeneity
of u for the same set of parameters (K, K, ). It is known that
turbulent motion can be characterized by such inhomogeneous

FIG. 6 The trajectory in & and b is part of a Lévy flight which does not
possess any characteristic scale. If each segment is followed with a velocity
proportional to the cube root of the segment length, then Richardson’s law
of turbulent diffusion ensues. Such trajectories can be used to simulate
high Reynolds number fluid flows and are projections of particle’s orbit onto
the (u, v) plane for aq=2m/6 (hexagonal symmetry and K =0.18, for the
model described by equations (18). In 8 K,/K =0.3 and diffusion through
the stochastic web is close to the normal one. In b, K,/K =0.08 and there
are many flights along the web.
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fractal properties®®. One can imagine a fractal net or cluster
imbedded into the real space, along which diffusion can occur.
Now imagine several different nets or clusters imbedded into
the same space. This provides a simplified representation of a
multifractal: complicated, interpenetrating network of different
fractals. In some sense, the same kind of idea is applicable to
dynamical chaos. One can suppose the existence of local fractal
dimensions in the phase space and clusters of different
dimensionality. A particle diffusing along a cluster can switch
from time to time to another cluster. If the measure of clusters
with long flights is considerable, then their input to the
diffusional exponent x should be important. This, along with
finite observation times and the choice of initial conditions, will
define the final value u

mw=M(a, B; L, T) (13)

where a and B are fractal exponents of local space and time
singularities of the transition probability (see below); L and T
are large-scale distance and time, and /# is the corresponding
functional. Let us mention that the usual definition of the
diffusion constant from equation (3)

D= lim {(Ax)?)/At=constant (14)

At—->0,Ax->0
gives the necessary connection (equation (13)) in the gaussian
case (@ =1, 8=1) for u to be equal to B/2a =1
The cases of the kinetic descriptions in which the processes

of flights and trappings are important have been broadly dis-
cussed”, especially in the context of fractal space and fractal
time. The generalization to the multifractal case is detailed in
ref. 12, and the fractional Fokker-Planck-Kolmogorov (FFPK)
equation was derived in ref. 34. It is beyond the scope of this
article to discuss the FFPK equation and we present here only
some of its features. One further consideration is to generalize
the idea of diffusion constant. The basic idea involves perform-
ing the limit At >0, Ax > 0 in equation (14). For homogeneous
and smooth t and x processes, the procedure is straightforward.
When this is not the case, the limit has many flights and trap-
pings. On many scales we encounter the limit (see for example
refs 35, 43)

$B= lim

A1—0,Ax=0

Ax|**/|At|® = constant (15)
|

which replaces equation (14) and produces the scaling x> ~ t#/*,
It is not a simple matter to obtain the unknown contants « and
B from the properties of the phase space of a system because
they should come from the analysis of fine details of the cantori
described earlier. Nevertheless one can assume that invisible
cantori are in charge of the local properties of the phase space
and the limit (equation (15)) defines the large-scale properties
of the transport process. It has been shown'>** that the constant
w in equations (5) and (13) is u = B/2a, and that is the way in
which fractal properties of space and time (fractal because «
and B in equation (15) are fractional) allow us to deduce
anomalous transport, connecting fractal space and time inherent
in Lévy-like processes'®.

The above examples show that chaotic dynamics are related
to the phenomena of Lévy flights and walks. One should expect,
however, that different intermediate asymptotics could exist
which correspond to normal diffusion as well as to anomalous
transport with different exponents. Such a picture is consistent
with the general multifractal property of chaos.

Scaling and strange kinetics have many applications to situ-
ations other than those discussed here: the physics of fluids,
plasmas, macromolecules, computer sciences, chemical kinetics
and technological problems®~*¢-*! The potential for strange
kinetics exists in any situation where some hierarchical ordering
of the random walk occurs. It happens in the random walk of
electrons in disordered media (when localized states are of
importance®'***%), in the kinetics of macromolecules and in
aggregation processes where a long-range correlation exists®*°,
Problems of anomalous diffusion and anomalous conductivity
in plasmas provide a good number of examples of kinetics with
scaling®’. We hope that a unified understanding of these
examples could build a generalized approach for a kinetic theory
of processes with long-time memory and long-range correlations
as now exists for gaussian-like random dynamics. O
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