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An improved algorithm has been used to simulate off-lattice diffusion-limited aggregation 
(DLA) in two dimensions. This enables us to grow clusters of up to 6 x 10” particles, which 
are the largest such clusters made up to now. The density profile in two dimensions is 
analyzed for the scaling form (multiscaling) g(r, R) = r-(” “‘s’C(x) with x = r/R, where R is 
the radius of gyration and r is the distance from the cluster origin. In contrast with previous 
studies, the dimension D(x) shows no systematic tendency to drop at large values of x but 
only fluctuates around the global fractal dimension D = 1.712 k 0.003. 

1. Introduction 

Growth phenomena are very actively studied because of their relevance in 
many fields. Diffusion-limited aggregation (DLA) [l] is a particularly interest- 
ing model which describes phenomena like dielectric breakdown, viscous 
fingering or electrodeposition. Some of these topics have been summarized, 
e.g., in refs. [2,3]. One very interesting question about DLA is the internal 
structure of the resulting clusters. As is very well known, off-lattice clusters are 
fractal with an overall fractal dimension D = 1.715 -f. 0.004 [4]. which is defined 
through the dependence of the radius of gyration R, on the cluster mass M, i.e. 
the number of particles, by 

Rp Ml'". (1) 

Recently it has been suggested that DLA clusters might have a richer structure 
which can be described by a multiscaling fractal dimension D(x) that depends 
continuously on the relative distance x from the cluster origin [5]. In this paper 
we study the behavior of D(x) for large off-lattice DLA clusters of lo6 
particles. In section 1 we present a detailed description of an algorithm that 
produces these large clusters. In section 2 v/e make some remarks on the 
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self-similarity of very large scale off-lattice DLA clusters and in section 3 we 
present the results for the multiscaling dimensions. 

2. Model and method 

The basic process for growing off-lattice DLA clusters is as follows: Initially 
the cluster or aggregate consists of one single seed particle. Now another 
particle is launched from “infinity” that may undertake a random walk of fixed 
step length until it hits the cluster and sticks to it. Afterwards another particle 
is launched and this process is repeated until a cluster of intended mass is 
grown. Because of the fixed step length in the random walk and the launching 
at “infinity” the previously described algorithm is not very efficient. 

In all practical DLA algorithms [6,4] the particles are launched from a 
randomly chosen position on a finite hypersphere that encloses the cluster. 
They are stopped if they either hit the cluster or move a large distance away 
from it. In both cases a new particle is generated at a randomly chosen position 
on the launching hypersphere. Obviously it is sufficient to have a launching 
hypersphere that is only slightly larger than the cluster itself. 

I he major improvement of the algorithm is to modify the step length during 
the random walk [7,4]. In the empty regions between the branches of the 
cluster or far away from it, it is obviously not necessary to have a fixed small 
step length but rather to allow for longer jumps as long as they do not 
accidentally cross a branch of the cluster. For that reason it is necessary to find 
the largest empty region around a given random-walker in order to get a good 
estimate for the largest possible step length for the next jump. 

The idea is essentially to construct maps of the aggregate on different length 
scales. If the walker wants to take the next step one first consults the coarsest 
map. If this map indicates that - on this special length scale - the walker is far 
away from the cluster the jump is executed. Otherwise the next finer map is 
examined. This process is repeated until a map is found where the jump can be 
executed or the finest map is reached. In this last map each element contains a 
list of the precise coordinates of the particles in a small given region to check 
which one of them, if any, is touched by l hr. *ZI-~GPP c-im*r;nm thP npyt illmn LIIL waIm_l UUIII~~ -1.~ mmylme J--.-r- 

After this rough description of the method we now want to present some 
computational details of the actual implementation of this aigorithm. To 
determine the position of a random-walker we start with a root map consisting 
of an @array of pointers, where N, is the number of lattice sites in one space 
dimension in the coarF,est map. Each array element represents a certain part of 
size L f: of the growth region. If a given pointer contains the special value 



456 P. Ossadnik I Multiscaling analysis of large-scale off-lattice DLA 

“NIL” there are no cluster particles in or near that region. Otherwise it points 
to a structure of 2” pointers, each of them representing a certain subregion of 
size (L,,/#. On this level again a pointer containing NIL indicates an empty 
region while a non-NIL entry points to the next finer map. This map structur- 
ing is continued to a given depth. In our simulations we used maps of depth 
six. In the finest level the map elements contain a pointer to a list of 
coordinates. For the set of particles that should be stored in this list, Tolman 
and Meakin [4] suggested two possibilities: 

(1) All the particles whose centers are in that region. 
(2) All the particles that can be contacted by a walker whose center is in 

that region. 
For simulations of large-scale clusters (25 X 10” particles) we found it 

necessary to implement the first version in order to reduce the memory 
consumption which was the bottleneck of our simulations. 

Another computational parameter with which one can tune the memory and 
the time consumption is the ratio of the size of the particles to the length scale 
of the finest map. A small ratio, e.g. 1, leads to fast programs, which need 
much memory, while a large ratio leads to memory-saving but slow programs. 
We chose the length scale of the finest map to be four times the size of the 
particles. 

With that implementation we used about 14 Mbytes of memory and about 9 
hours of CPU time on a Sun Spare-station1 to grow a 10” particle cluster. For 
the simulation of even larger clusters of size 6 x lo6 particles we used a special 
memory-management strategy in order to reduce the memory consumption. 
Here we employed the fact that the active growth zone is only a fraction of the 
whole cluster [8] so that only the coordinates of the recently attached particles 
are often needed during the simulation while the rest can be stored on disk. In 
case a walker accidentally travels into the region of the cluster that resides on 
disk, one has to read ‘;he coordinates of the particles back into memory. For 
the 6 X 10’ particle cluster we kept in (virtual) memory the coordinates of the 
last 3 X 10’ particles. Here the memory consumption was about 50 Mbytes and 
the run time was about 6 days. A programme will be published elsewhere and 
can be obtained from the author. 

One interesting feature of our implementation is that for clusters of sizes 10’ 
to 6 X 10’ particles the user CPU time and the memory consumption depend 
only linearly, or at most with an exponent that is very close to unity, on the 
cluster size. This is demonstrated in fig. 1. From this data we obtain a 
power-law behavior where the user CPU time depends with an exponent 
VT = 1.047 * 0.005 and tl&; memory consumption depends with an exponent 
*nl = 0.994 2 0.005 on the cluster size. For very large clusters of 6 x lo6 
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Fig. 1. Size dependence of the user CPU-time. the memory consumption and the paging activity 
for a 6 x 10” particle off-lattice DLA cluster. 

particles the total run time, i.e. the user and the system CPU time does no 
longer depend linearly on the cluster size. This is due to an increased paging 
activity of the operating system because the main memory of our workstations 

is only 8 Mbytes which is much less than the actual amount of memory needed 
for the simulation. This is also demonstrated in fig. 1. Here the paging activity 
is measured in terms of the system CPU time which is in our case proportional 
to the disk access time. One clearly sees a crossover behavior at about 10” 
particles that strongly influences the total run time. 

3. Statistical self-similarity 

Lattice DLA is known to show a slow crossover in the overall shape. While 
small clusters of only a few thousand particles have a very ramified structure 
due to strong fluctuations, the shape of large clusters of several million 
particles is dominated by the structure of the underlying lattice [9]. Large DLA 
clusters on a square lattice exhibit a starlike overall shape. 

Although it might not be expected that also off-lattice DLA clusters exhibit 
such a crossover behavior in thei- shape, the asymptotic structure of off-lattice 
DLA clusters is still quite controversial. Indication exists either for a slow 
crossover to a fully self-similar structure or for more complex behavior even for 
infinite sizes. There have been suggestions arid numerical evidence in favour of 
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Fig. 2. Comparison of three different off-lattice DLA clusters of sizes differing over three orders 

C 

of magnitude. (a) 6 x 10’ particles, (b) 6 X 10” particles and (c) 6 x 10” particles. All clusters are 
plotted using the same resolution of 144 dots per inch. 

a directed fractal [lo], geometrical multifractality [ 1 l] or multiscaling [S]. 
Therefore it should be interesting to investigate if there is some special cluster 
size above which the individual clusters have a self-similar shape. For this we 
propose to use a simple visual criterion. We have grown clusters in sizes of 
three different orders of magnitude, namely 6 x 10” to 6 x 10h particles, and 
plotted them with the same resolution. This is important in order not to fool 
the visual impression. The clusters are shown in fig. 2. 

It is striking to note that the two last figures are virtually indistinguishable 
modulo statistical fluctuations. That means that over one order of magnitude in 
size difference self-similarity is convincingly present. This is not the case for 
smaller clusters. 

With growing cluster size it gets more and more difficult to distinguish which 
of the clusters has more sites than the other. The shape of the small cluster is 
more influenced by fluctuations than that of the larger clusters. It can be seen 
that visual self-similarity is reached for clusters that contain at least several 10” 
particles. 

This suggests three conclusions. The first is that large off-lattice DLA 
clusters seem to be really self-similar for infinite sizes. The second is that a 
crossover behavior like in lattice DLA does not appear. Furthermore, one has 
to grow large clusters (X0” particles) to obtain results that are not strongly 
affected by finite-size effects. High-quality computing is needed to test DLA 
self-similarity. 

4. Multiscaling 

One feature of moderate-sized DLP, clusters seems to be the existence of 
different scaling exponents for different quantities. By studying the width of 
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the active growth zone, Plischke and Racz [8] found an exponent that differs 
from the overall exponent determined by the radius of gyration. Coniglio et al. 
[5] proposed the existence of a whole set of scaling exponents within the 
framework of multiscaling. 

For that purpose we measure the radial density profile g(r, R) which is 
defined as 

g(r, R) ddr = dN , (2) 

where dN is the number of particles in an infinitesimal volume element ddr at 
distance r from the origin of the cluster. The size N of the cluster is implicitly 
given by the radius of gyration R = R(N). 

By analogy with critical phenomena one usually assumes a scaling behavior 

g(r, R)= r-d+D ; , f( ) (3) 

with a scaling function f(x) and the overall fractal dimension D. Coniglio and 
Zannetti [5] suggested to replace the overall fractal dimension by a more 
structured function D = D(rlR) in order to determine the set of fractal 
dimensions within different shells. Thus they proposed 

g(r, R) = r-d+D(*)f(x), x = r/R. 

One expects that well inside the frozen regions of 

a scaling form 

(4) 

the cluster x-+ 0 the 
multiscaling exponent D(0) is the same as the global fractal dimension 
measured before. On the other hand, it is not possible to predict a priori the 
behavior of D(x) in the outer regions. 

Recently this possibility was studied numerically using clusters of 10” parti- 
cles by Amitrano et al. [ 121. Some evidence was given that the multiscaling 
dimension D(x) is not a constant but depends continuously on x. As expected, 
for small x the fractal dimensions D and D(x) agree very well. For increasing x 
they obtained a small maximum at x = 1.4 and a continuous drop between 
x = 1.7 and x = 2.1. In our study of the multiscaling behavior of large DLA 
clusters we grew 100 off-lattice DLA clusters of 10” and of 10h particles. The 
cluster growth was divided into 10 stages to give different values for the radius 
of gyration. From stage to stage the mass of the cluster was increased by a 
factor of 1.25. At each stage the ciuster was divided into 30 shells in whit 
measured the mass M(r, , R), which is directly related to the density profile 

M(r,,, R) = 2q,g(r,, R) Ar . (5) 
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A comparison of the radii of gyration of two subsequent growth stages leads to 
a scaling factor I given by 

I= R,,_,IR,, . (6) 

After resealing the thickness and the radii of the shells by this factor one 
obtains an estimate of the fractal dimension within a given shell, 

A,r N-4-1 = 4, 

r II+ I = k, ’ 

d 

Then we averaged over each growth stage of the cluster and over the different 
runs. The results obtained for both cluster sizes are shown in fig. 3. 

At small x we obtain for D(x) a value that is, within the statistical error, very 
close to the overall fractal dimension: D(0) = 1.69 t 0.02 and D = 1.712 + 
0.003. Here we obtained D(0) by fitting a straight line to the values of D(x) for 
small x and extrapolating it to x = 0. For growing x the multiscaling dimension 
remains fairly constant. For large values of x one has to measure the outer 
region of the cluster where the measurement of the mass is very inaccurate 
since there are less particles. This results in large fluctuations and statistical 
error bars for D(X). 

0.00 0.40 0.80 I .20 1.60 2.00 

x=mgyr 

Fig. 3. Plot of the multiscaling dimensions D(x) for 100 off-lattice DLA clusters with 10h particles 
(solid curve) and for 100 off-lattice DLA clusters with 10’ particles (dashed curve). The thin solid 
line denotes Q = 1.712. 
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For the small clusters of IO” particles we reproduced the systematic drop of 
D(x) at large x described earlier. But for large clusters of 10” particles this 
systematic deviation is much less pronounced and seems to disappear within 
the error bars. For large x the estimates of the multiscaling dimensions seem to 
remain constant around the mean value of D(0) = 1.69, only fluctuating around 
this value. Our data therefore suggest that the multiscaling observed in ref. [12] 
is only a crossover behavior for clusters of the order of or smaller than 10’. 

5. Conclusion 

In the present paper we have presented a detailed description of an effective 
algorithm to grow large-sized off-lattice DLA clusters and produced the largest 
clusters so far. Using this algorithm we grew 100 clusters of size 10” and 10” 
particles and checked the multiscaling ansatz recently suggested [S]. For small 
clusters of size 10” particles we found a systematic decrease in the multiscaling 
dimension D(x) for large x. This systematic behavior disappeared for larger 
clusters. The multiscaling dimensions only showed statistical fluctuations 
around the value of D = 1.712 t 0.003. Thus we suggest that this effect might 
be a finite-size effect that disappears for large clusters. 

Tolman and Meakin also showed that the exponent that describes the width 
of the active growth zone tends for large cluster sizes to be of the same value as 
the fractal dimension D. This is another hint indicating that somt effects that 
were previously explained by the existence of several fractal dimensions may 
be simply crossover effects. Therefore one could speculate that also other 
effects like geometrical multifractality might be for off-lattice DLA only 
crossover effects for finite cluster sizes. More work in this direction is in 
progress. 
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