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ABSTRACT
The transport phenomena are known to be important for various scientific domains: ex-

amples can be found in physics, electrochemistry, heterogeneous catalysis, physiology, etc. To
obtain new information about diffusive or Laplacian transport towards a semi-permeable or
resistive interface, one can study the random trajectories of diffusive particles modelled, in a
first approximation, by the partially reflected Brownian motion. This stochastic process turns
out to be a convenient mathematical foundation for discrete, semi-continuous and continuous
theoretical descriptions of the diffusive transport.

This paper presents an overview on these topics with a special emphasis on the close relations
between stochastic processes with partial reflections and the Laplacian transport phenomena.
We give selected examples of these phenomena followed by a brief introduction to the partially
reflected Brownian motion and related probabilistic objects (e.g., local time process and spread
harmonic measure). A particular attention is paid to a useful relation to the Dirichlet-to-
Neumann operator. Some practical consequences and further perspectives are discussed.

Keywords: Diffusion with Reflections; Mixed Boundary Value Problems; Laplacian Trans-
port Phenomena.

1



2 CHAPTER 1. PARTIALLY REFLECTED BROWNIAN MOTION...

Introduction

An erratic motion of pollens of Clarkia (primrose family) discovered by Robert Brown in 1827
and quantitatively described by Albert Einstein in 1905 gave a substantial impact for devel-
opment of mathematical theory of stochastic processes, an important branch of modern math-
ematics. Supported by rigorous mathematical foundations, the Brownian motion and related
stochastic processes found numerous applications in different scientific domains, from theoreti-
cal physics to biology and economics. To study the transport of species diffusing from a remote
source towards and across semi-permeable or resistive interface (e.g., cellular membrane), one
can employ either an averaged description in terms of an appropriate boundary value problem
for the concentration of species, or stochastic analysis of its random trajectories. In the first
case, a finite permeability of the interface leads to the mixed boundary condition, while in the
second case it can be modelled by partial reflections on the boundary. Physical or chemical
processes governed by the Laplace equation (stationary diffusion) with mixed boundary condi-
tion are generally called Laplacian transport phenomena. Its examples are found in physiology
(oxygen diffusion towards and across alveolar membranes), in electrochemistry (electric trans-
port through metallic electrodes), in heterogeneous catalysis (diffusion of reactive molecules
towards catalytic surfaces). The theoretical or numerical analysis of these phenomena is gen-
erally complicated by an irregular geometry of the interface (e.g., microroughness of metallic
electrodes, see Section 1.1). Studying random trajectories of diffusing species, one can extract
a more subtle information about the system in question.

In this paper, we present a particular stochastic process, called partially reflected Brownian
motion (PRBM), and its application to study the Laplacian transport phenomena. The main
purpose we are standing for is to capture the attention to this motion for understanding the
influence of a geometrical irregularity of the interface on transport properties of the whole sys-
tem. Bearing in mind the particular role of the geometry, we would like to “bridge” theoretical,
numerical and experimental studies of the Laplacian transport phenomena on the one side, and
powerful mathematical methods of stochastic analysis on the other side. Since the extensive lit-
erature existing on both topics is generally difficult to get through for non-specialists, we prefer
to use a descriptive style of writing in order to give the whole vision of the problem, without
specifying particular details which can be easily found anywhere else (e.g., see references at the
end of this paper).

In the first section, we present three examples of the Laplacian transport phenomena found
in different scientific fields. Their mathematical description by the mixed boundary value
problem opens encouraging possibilities to apply powerful tools of potential theory, variational
analysis and probability theory. The second section is devoted to remind some basic definitions
of stochastic process theory: stopping times, reflected Brownian motion, local time process,
harmonic measure, etc. In the third section, we introduce the partially reflected Brownian
motion and show its properties for a planar surface. An important relation to the Dirichlet-
to-Neumann operator is revealed and then illustrated by several examples. The last section
contains the stochastic descriptions of the Laplacian transport phenomena: recently developed
continuous approach and two other approaches are described. In the conclusion, we summarize
the essential aspects of the paper.

1.1 Laplacian transport phenomena

The transport of species between two distinct “regions” separated by an interface occurs in
various biological systems: water and minerals are pumped by roots from the earth, ions and
biological species penetrate through cellular membranes, oxygen molecules diffuse towards alve-
olar ducts, and so on. The transport processes are relevant for many other scientific domains,
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for example, in heterogeneous catalysis (principal industrial process in petrochemistry) or in
electrochemistry. In this section, we will give three important examples of particular transport
process, called Laplacian or diffusive transport.

1.1.1 Stationary diffusion across semi-permeable membranes

Let us begin by considering the respiration process of mammals. Inbreathing a fresh air, one
makes it flow from the mouth to the dichotomic bronchial tree of the lungs (Fig. 1.1). For
humans, first fifteen generations of this tree serve for convectional transport of the air towards
pulmonary acini, terminal gas exchange units [1]. A gradual increase of the total cross-section
of bronchiae leads to a decrease of air velocity. At the entrance of the acinus, it becomes lower
than the characteristic diffusion velocity [2, 3]. As a consequence, one can describe the gas
exchange into the acinus as stationary diffusion of oxygen molecules in air from the entrance
(“source” with constant concentration C0 during one cycle of respiration) to the alveolar mem-
branes [4]. In the bulk, the flux density is proportional to the gradient of concentration (Fick’s
law), J = −D∇C, where D is the diffusion coefficient. The mass conservation law written
locally as div J = 0 leads to the Laplace equation ∆C = 0 in the bulk. The flux density
towards the interface is simply Jn = D ∂C/∂n, where the normal derivative ∂/∂n is directed
to the bulk. Arrived to the alveolar membrane, oxygen molecules can penetrate across the
boundary for further absorption in blood, or to be “bounced” on it and to continue the motion.
The “proportion” of absorbed and reflected molecules can be characterized by permeability W
varying from 0 (perfectly reflecting boundary) to infinity (perfectly absorbing boundary). Thus,
the flux density across the alveolar membrane is proportional to the concentration, Jn = WC.
Equating these two densities, one obtains a mixed boundary condition, D(∂C/∂n) = WC,
called also Fourier or Robin boundary condition. Resuming these relations, one provides the
following mathematical description for the diffusion stage of human or, in general, mammalian
respiration:

∆C = 0 in the bulk (1.1)

C = C0 on the source (1.2)
[

I − Λ
∂

∂n

]

C = 0 on the alveolar membrane (1.3)

where the involved physics and physiology are characterized by a single parameter, Λ = D/W ,
being homogeneous to the length (I stands for the identity operator). Note also that the
dependence on constant C0 is irrelevant. In what follows, we address to this “classical” boundary
value problem. The essential complication resides in a very irregular geometry of the pulmonary
acinus which presents a branched structure of eight generations (for humans), “sticked” by
alveolar ducts (Fig. 1.1). For small Λ, only a minor part of the boundary is involved to
the transport process (so-called Dirichlet active zone), whereas the flux across the rest of the
boundary is almost zero (this effect is called diffusional screening [4–10]). With an increase of
Λ, larger and larger part of the boundary becomes active. As a result, the efficiency of human
lungs depends on the parameter Λ in a non trivial manner that implies different physiological
consequences. Considering the trajectory of a chosen oxygen molecule, one finds the Brownian
motion from the source towards the alveolar membrane, with multiple bounces on the boundary
and final absorption. One will see that such trajectories correspond to the partially reflected
Brownian motion (Section 1.3). The profound study of the interplay between the irregular
geometry of the acinus and erratic random motion of oxygen molecules inside should lead to a
better understanding of the physiological functioning of human lungs.
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Figure 1.1: On the left, a cast of human lungs; on the right, a cast of pulmonary acinus [1, 11]
(by E. Weibel).

1.1.2 Heterogeneous catalysis

The similar description can be brought to the heterogeneous catalysis omnipresent at petro-
chemistry. One considers reactive molecules A injected into a solvent and then diffusing towards
a catalytic surface. Hitting this boundary, they can be transformed into other molecules A∗

with a finite reaction rate K, or to be bounced for further diffusion. The new molecules diffuse
from the catalytic surface and then they are collected with the help of appropriate physical
or chemical technics. Assuming the presence of a remote source of reactive molecules A, one
can model, in a first approximation1, the heterogeneous catalysis by the mixed boundary value
problem (1.1–1.3) with a characteristic length Λ = D/K [12–16]. The keynote of this similitude
is related to the fact that each reactive molecule arrived to the boundary terminates its motion
after a number of successive reflections. The mechanism leading to their termination is differ-
ent: for the oxygen diffusion, the molecules are absorbed by the alveolar membrane, whereas for
the heterogeneous catalysis, the reactive molecules are transformed into other molecules which
do not participate to further process. Since the overall production of new molecules A∗ depends
on the total surface area of the catalytic surface, one tries to design catalysts with the largest
possible surface (for given volume), realizing porous and very irregular boundaries (Fig. 1.2).
As a consequence, the diffusional screening becomes important for understanding numerous
industrial processes in petrochemistry. Since random trajectories of reactive molecules corre-
spond to the partially reflected Brownian motion, its study may allow to design more efficient
catalysts.

1.1.3 Electric transport in electrochemistry

The other example of Laplacian transport phenomena can be found in electrochemistry: the
electric transport between two metallic electrodes into an electrolyte is described by the same
boundary value problem. Indeed, the electric potential V obeys the Laplace equation in the
bulk since the electrolyte is locally neutral. Taking one electrode of very low resistance (counter-
electrode), one writes the corresponding boundary condition as V = V0, where V0 is the applied
tension. For the other electrode of surface resistance r (working electrode), one obtains the

1This description is probably too simplified in order to model the heterogeneous catalysis quantitatively. First,
the presence of other molecules A∗ may obstruct the access to the catalytic surface. Second, certain parasite
reactions happen on the boundary that implies a deactivation of the catalyst. Consequently, the reactivity
K becomes dependent on the spatial position leading to an inhomogeneous boundary condition. Finally, the
molecular diffusion can be applied if the mean free path of reactive molecules is lower than the geometrical
features of the catalyst (in the opposite case, one deals with Knudsen diffusion [17]). Nevertheless, the simple
description (1.1–1.3) permits to take into account many important features related to the catalytic process.
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Figure 1.2: On the left, an example of an irregular catalytic surface (by J.S. Andrade jr.);
at the center, photo of a rough metallic surface of nickel electrode (by E. Chassaing); on the
right, photo of an irregular metallic electrode used to study the Laplacian transport phenomena
experimentally (by B. Sapoval).

mixed boundary condition by equating the volume current density −ρ−1∇V (ρ is the electrolyte
resistivity) and the surface current density V/r: Λ ∂V/∂n = V , where Λ = r/ρ is again the
physical length of the problem. The similar description can be brought even in the case of an
alternative tension [18, 19].

For electric transport, one cannot associate directly the mixed boundary value problem with
the partially reflected Brownian motion since there is no diffusing particle. From this point
of view, the electrochemical problem has only a formal analogy with two previous examples.
At the same time, the electrochemistry provides a wide domain for experimental studies of
the influence of the irregular geometry on the (average) transport properties. Taking different
metallic electrodes with micro- or macro-roughness (Fig. 1.2), one can measure its spectroscopic
impedance or admittance corresponding to the total flux across the boundary for diffusional
problems [20]. The observation of anomalous impedance behavior in [21] had provoked numer-
ous theoretical, numerical and experimental studies of the role of a geometrical irregularity in
Laplacian transport phenomena [22–32] (for more information, see [33] and references therein).

1.1.4 Discrete and semi-continuous approaches

Between different theoretical approaches developed to study the Laplacian transport phenom-
ena, one can distinguish semi-continuous and discrete approaches: the double layer theory of
Halsey and Leibig [24, 25] and the formalism of the Brownian self-transport operator introduced
by Filoche and Sapoval [20] respectively. In both cases, one involves the stochastic description
of particle’s motion corresponding to the mixed boundary value problem (1.1–1.3). Halsey and
Leibig used the Green functions in order to account the number of jump-like reflections of the
Brownian motion on the boundary (see Section 1.4.3), while Filoche and Sapoval considered
random walks on a lattice with partial reflections (see Section 1.4.4). Although both approaches
provide a complete description of the Laplacian transport phenomena (e.g., the explicit formula
for the total flux across the boundary), their essential inconvenient resides in the dependence
on an artificial length scale: jump distance a for the semi-continuous approach of Halsey and
Leibig and lattice parameter a for the discrete approach of Filoche and Sapoval. A physical
intuition suggests that, if the description is correct, there should exist a well defined continuous
limit as a tends to 0. Certain substantial arguments to justify the existence of this limit are
brought in [33], but a rigorous mathematical proof is still required. In this paper, we describe
a different approach which can be called continuous, based on the partially reflected Brownian
motion. It will integrate the advantages of previous ones, being a mathematical foundation
for understanding the Laplacian transport phenomena. We will return to these questions in
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Section 1.4.

1.2 Basic definitions

In this section, we recall the basic definitions related to the Brownian motion and reflected
Brownian motion that can be found in extensive literature, e.g., [34–40]. The familiar reader
may pass over this section.

1.2.1 Brownian motion and Dirichlet boundary value problem

The Brownian motion can be defined in different ways [34]. Throughout this paper, we use the
following definition.

Definition 1.2.1 A stochastic process Wt (t ≥ 0) defined on the chosen probabilistic space is
called one-dimensional Brownian motion (or Wiener process) started from the origin, if

• its trajectories are continuous almost surely (with probability 1);

• it starts from the origin almost surely, P{W0 = 0} = 1;

• its joint distribution is

P{Wt1 ∈ Γ1, ..., Wtn ∈ Γn} =
∫

Γ1

dx1...

∫

Γn

dxn g(0, x1 ; t1) g(x1, x2 ; t2 − t1) ... g(xn−1, xn ; tn − tn−1)

for any integer n, any real numbers 0 < t1 < ... < tn and arbitrary intervals Γ1, ..., Γn,
where g(x, x′ ; t) is the Gaussian density

g(x, x′ ; t) =
1√
2πt

exp

[

−(x − x′)2

2t

]

x, x′ ∈ R, t ∈ R+ (1.4)

By definition, g(0, x ; t)dx is the probability to find the Brownian motion in dx vicinity
of point x at time t:

P{Wt ∈ (x, x + dx)} = g(0, x ; t)

The collection Wt = (W 1
t , ..., W d

t ) of d independent one-dimensional Brownian motions W k
t

is called d-dimensional Brownian motion started from the origin (in the following, we will omit
the pointing on the dimension). The translated stochastic process, x + Wt, is called Brownian
motion started from the point x ∈ Rd.

Various properties of the Brownian motion and its relations to other mathematical fields
(like partially differential equations or potential theory) are well known and can be found in
[34–40].

As one can see, the Brownian motion Wt is defined for the whole space Rd, without any
binding to a particular domain. However, the physical processes are usually confined into a
certain domain Ω ⊂ Rd. The “presence” of its boundary ∂Ω can be introduced by a specific
condition for a quantity we are looking for. To illustrate this notion, let us introduce the
harmonic measure ωx defined as the probability to hit the boundary ∂Ω on its different subsets
for the first time.
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Definition 1.2.2 Let Ω ⊂ Rd be a domain with boundary ∂Ω. For any x ∈ Rd, a random
variable Tx = inf{t > 0 : (x + Wt) ∈ ∂Ω} is called stopping time on the boundary ∂Ω (it
gives the first moment when the Brownian motion started from x hits the boundary). For any
subset A from the Borel σ-algebra B(∂Ω), one defines its harmonic measure ωx{A} (hitting
probability) as:

ωx{A} = P{WTx ∈ A, T
x < ∞}

(we remind that the Borel σ-algebra B(∂Ω) is generated by all open subsets of ∂Ω).

We gave this classical definition of the harmonic measure in order to outline that the boundary
∂Ω is present in the problem through the stopping time Tx. In other words, its introduction does
not change the definition of the Brownian motion itself. This feature considerably simplifies
the following analysis.

Up to this moment, we did not specify the domain Ω and its boundary ∂Ω, since the
harmonic measure can be well defined for very irregular domains [41–43]. However, the following
definitions will require some restrictions on the boundary. Throughout this paper, we will
consider a domain Ω ∈ Rd (d ≥ 2) with bounded smooth boundary ∂Ω (twice continuous
differentiable manifold). Note that this condition can be weakened in different ways, but
it would require more sophisticated analysis overflowing the frames of this paper (e.g., see
[59, 60]). Dealing with physical problems shown in Section 1.1, one can always smooth a given
boundary ∂Ω whatever its original irregularity. Indeed, the physics provides a minimal cut-off
` (e.g., mean free path of diffusing or reacting molecules) which determines the “admissible”
scales of the boundary. All geometrical features of the boundary smaller than ` should be
irrelevant (otherwise, the proposed physical description would be invalid). Smoothing these
geometrical elements, one obtains a boundary which is irregular on scales larger than ` and
smooth on scales lower than `. For a smooth boundary ∂Ω, one can introduce the harmonic
measure density ωx(s) such that ωx(s)ds is the probability that the Brownian motion hits the
boundary in ds vicinity of the boundary point s.

The harmonic measure, generated by the Brownian motion, provides a general solution of
the Dirichlet boundary value problem with a given function f on ∂Ω:

∆u = 0 (x ∈ Ω), u = f (x ∈ ∂Ω) (1.5)

Since the harmonic measure density is equal to the normal derivative of the Green function for
the Dirichlet problem (1.5), one writes the solution u(x) explicitly [44]:

u(x) =

∫

∂Ω

f(s) ωx(s)ds

or as following expectation
u(x) = E

(
f(WTx)

)
(1.6)

One can give a physical interpretation of this mathematical relation. In order to calculate the
expectation, one considers all possible trajectories of the Brownian motion started from the
point x ∈ Ω. For each trajectory terminated at boundary points s, one assigns the weight
f(s) and then averages over all these trajectories. Giving this interpretation, we do not discuss
the mathematical realization of such average over all possible trajectories: to do this operation
properly, one introduces the Wiener measure on the space of continuous functions and defines
the corresponding functional integrals [34]. It is interesting to remark that this understanding
traced to the Feynman integral’s description of quantum mechanics [45]. Note also that the
relation (1.6) is the mathematical foundation for Monte-Carlo numerical tools to solve the
Dirichlet problem (1.5): launching a large number of random walkers from the point x, for each
trajectory one determines its hitting point s and assigns the corresponding weight f(s). The
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average over all random walkers gives an approximation to the value of the solution u(x) at
point x.

One concludes that the Brownian motion provides an efficient mathematical tool to study
the Dirichlet boundary value problem. However, it becomes useless for other types of boundary
conditions like, e.g., the Neumann condition. The simple physical reason is the following. As
we have mentioned above, the Dirichlet boundary condition is introduced through the stopping
time Tx. It means that we are interested only in the Brownian motion Wt for times t between
0 and Tx. Since the further motion (with t > Tx) is completely irrelevant for this problem,
one may think that the Brownian motion is absorbed on the boundary ∂Ω at the first hit. In
other words, the Dirichlet condition corresponds to a purely absorbing boundary ∂Ω. For the
Neumann condition, the situation changes drasticly. The normal derivative representing a flux
leads to the notion of reflection on the boundary: if one would like to fix the flux density
across the boundary, certain particles should be reflected. The probabilistic description of the
Neumann boundary condition necessitates thus the introduction of other stochastic process
called reflected Brownian motion.

1.2.2 Reflected Brownian motion

The fact of reflection on the boundary implies three essential distinctions with respect to the
(simple) Brownian motion:

• the definition of the reflected Brownian motion will depend on the domain Ω (as a con-
sequence, it will be more sophisticated than the definition of the Brownian motion);

• the type and direction of each reflection should be prescribed (e.g., right or oblique);

• some restrictions on the boundary ∂Ω should be introduced, e.g., the normal vector should
be well defined at each point (as a consequence, the boundary cannot be very irregular).

It is not thus surprising that the definition of the reflected Brownian motion requires the study
of stochastic differential equations. We do not pretend to reproduce the whole analysis leading
to the reflected Brownian motion since one can find it in corresponding literature (e.g., see
[34, 46–48]). Note that, in the case of smooth boundaries, this definition is quite classical. The
situation becomes essentially more difficult when one tries to extend it for nonsmooth domains.

Definition 1.2.3 Let Ω be a domain with boundary ∂Ω, and n(s) is a vector-valued function
on ∂Ω. For a given point x ∈ Ω, one considers the stochastic equation in the following form:

dŴt = dWt + n(Ŵt)I∂Ω(Ŵt)d`t Ŵ0 = x, `0 = 0 (1.7)

where Wt is d-dimension Brownian motion and I∂Ω is the indicator of the boundary ∂Ω. By
a solution of this equation, we mean a pair of almost surely continuous processes Ŵt and `t,
satisfying (1.7), adapted to the underlying family of σ-fields and satisfying, with probability 1,
the following conditions:

• Ŵt belongs to Ω ∪ ∂Ω;

• `t is a nondecreasing process which increases only for t ∈ T , T = {t > 0 : Ŵt ∈ ∂Ω}
having Lebesgue measure zero almost surely.

The process Ŵt is called Brownian motion reflected on the boundary or reflected Brownian
motion, the process `t is called local time on the boundary.

The following theorem provides the existence and uniqueness of these stochastic processes
in the case of smooth boundaries.
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Theorem 1.2.4 Let Ω be a bounded domain with twice continuous differentiable boundary ∂Ω,
n(s) is the vector of the inward unit normal at boundary point s (orthogonal to the boundary
at s and oriented towards the domain). For a given point x ∈ Ω ∪ ∂Ω, the stochastic equation
(1.7) possesses a unique solution, i.e., there exist the reflected Brownian motion Ŵt and the
local time on the boundary `t satisfying the above conditions, and they are unique.

Proof can be found in [34, 46].

We should note that this theorem can be extended in different ways. For example, one can
consider the Brownian motion, reflected on the boundary in the direction given by another
vector-valued field than the field n(s) of the inward unit normals. The assumption that the
domain is bounded can be replaced by a more subtle hypothesis that allows to extend the
definition of the reflected Brownian motion for some classes of unbounded domains. At last,
one may define this motion for a general case of second order elliptic differential operators (with
certain restrictions on their coefficients). The interested reader may consult the corresponding
literature, e.g., [34, 38].

Although the rigorous mathematical definition of stochastic differential equations is more
difficult than in the case of ordinary differential equations, an intuitive meaning of its elements
remains qualitatively the same. For example, the stochastic equation (1.7) states that an
infinitesimal variation dŴt of the reflected Brownian motion Ŵt in the domain Ω is governed
only by the variation dWt of the (simple) Brownian motion Wt (the second term vanishes due
to the indicator I∂Ω). When the motion hits the boundary, the second term does not allow to
leave the domain leading to a variation directed along the inward unit normal n(s) towards
the interior of the domain. On the other hand, each hit of the boundary increases the local
time `t. Consequently, the single stochastic equation (1.7) defines simultaneously two random
processes, Ŵt and `t, strongly dependent each of other.

As an example, one can consider the one-dimensional Brownian motion reflected at zero
which can be written as mirror reflection of the (simple) Brownian motion: Ŵt = |x + Wt|.
Applying Itô’s formula to this function, one obtains:

Ŵt = |x + Wt| = x +

t∫

0

sign(x + Wt′)dWt′ +
1

2

t∫

0

δ(x + Wt′)dt′

One can show that the second term corresponds to a Brownian motion W ′
t , whereas the third

term, denoted as `t, is a continuous, nondecreasing random process which increases only on the
set T = {t > 0 : x + Wt = 0} of the Lebesgue measure zero. The previous expression can
be thus written as Ŵt = x + W ′

t + `t or, in differential form, as dŴt = dW ′
t + d`t which is the

particular case of the stochastic equation (1.7). For the local time `t, Lévy proved the following
representation [36, 37]:

`t = lim
a→0

1

2a

t∫

0

I[0,a](Ŵt′)dt′ (1.8)

This relation makes explicit the meaning of the local time `t: it shows how “many times” the
reflected Brownian motion passed in an infinitesimal vicinity of zero up to the moment t. We
give also the other useful representation for the local time (proposed also by Lévy):

`t = lim
a→0

aNt(a) (1.9)

where Nt(a) is the number of passages of the reflected Brownian motion through the interval
[0, a] up to the moment t. If one introduces a sequence of stopping times at points 0 and a,

τ
(0)
0 = inf{t > 0 : Ŵt = 0} τ

(a)
0 = inf{t > τ

(a)
0 : Ŵt = a}

τ (0)
n = inf{t > τ

(a)
n−1 : Ŵt = 0} τ (a)

n = inf{t > τ
(0)
n−1 : Ŵt = a}



10 CHAPTER 1. PARTIALLY REFLECTED BROWNIAN MOTION...

the number of passages can be defined as

Nt(a) = sup{n > 0 : τ (0)
n < t}

Note that these representations can be extended for a general case of d-dimensional reflected
Brownian motion.

1.3 Partially reflected Brownian motion

1.3.1 Definition and certain properties

Bearing in mind the description of the Laplacian transport phenomena, we would like to extend
the reflected Brownian motion in order to be able to deal with the mixed boundary condition
(1.3).

Definition 1.3.1 For a given domain Ω ⊂ Rd with smooth bounded boundary ∂Ω, let Ŵt be
the reflected Brownian motion started from x ∈ Ω and `t be the related local time process. Let χ
be the random variable, independent of Ŵt and `t and distributed according to the exponential
law with a positive parameter Λ:

P{χ ≥ λ} = exp[−λ/Λ] (λ ≥ 0) (1.10)

The stopping time

T
x
Λ = inf{t > 0 : `t ≥ χ}

shows the first moment when the local time process `t exceeds the random variable χ. The
process Ŵt conditioned to stop at random moment t = Tx

Λ is called partially reflected Brownian
motion (PRBM).

First of all, we stress that the partially reflected Brownian motion is not a new stochastic
process: it reproduces completely the reflected Brownian motion Ŵt up to the moment Tx

Λ. The
only difference between them resides in the fact that we are not interested in what happens after
this moment. Consequently, the condition to stop at t = Tx

Λ may be thought as an absorption
by the boundary ∂Ω. It explains the term “partially reflected”: after multiple reflections, the
process will be absorbed on the boundary (see Section 1.4 for further comments). Roughly
speaking, the whole term “partially reflected Brownian motion” is a shorter version of the
phrase “reflected Brownian motion conditioned to stop at random moment T

x
Λ”.

In the particular case Λ = 0, the exponential distribution (1.10) degenerates to P{χ = 0} = 1
and P{χ > 0} = 0. Consequently, the stopping time becomes: Tx

0 = inf{t > 0 : `t > 0}.
Since the first moment of an increase of the local time process `t corresponds to the first hit of
the boundary ∂Ω, one obtains the stopping time of the (simple) Brownian motion: T

x
0 = T

x.
One concludes that, for Λ = 0, the partially reflected Brownian motion becomes the Brownian
motion conditioned to stop at the first hit of the boundary.

The partially reflected Brownian motion allows to introduce a measure to quantify the
absorption on different subsets of the boundary ∂Ω.

Definition 1.3.2 For any subset A from the Borel σ-algebra B(∂Ω), one defines its spread
harmonic measure ωx,Λ{A} as:

ωx,Λ{A} = P{ŴT
x
Λ
∈ A, T

x
Λ < ∞}
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As for the harmonic measure, ωx,Λ{A} satisfies the properties of a probabilistic measure, in
particular, ωx,Λ{∂Ω} = 1. When Λ goes to 0, the spread harmonic measure tends to the
harmonic measure: ωx,Λ{A} → ωx{A}.

Since the definition of the PRBM requires the smoothness of the boundary, one can introduce
the spread harmonic measure density ωx,Λ(s).

Dealing with the Brownian motion, one could formally take the starting point x on the
boundary ∂Ω, but it would lead to trivial results: the stopping time Tx becomes 0 and the
harmonic measure ωx is degenerated to the Dirac point measure: ωx{A} = IA(x) (if x ∈ ∂Ω).
In the case of the partially reflected Brownian motion, the starting point x can belong to the
domain Ω or to its boundary ∂Ω: in both cases the spread harmonic measure has nontrivial
properties.

It is convenient to separate each random trajectory of the PRBM in two parts, before
and after the first hit of the boundary. The first part, Ŵ0≤t≤Tx , coincides with the (simple)
Brownian motion started from x and conditioned to stop on the boundary, while the second
part, ŴTx≤t≤T

x
Λ
, coincides with the reflected Brownian motion started on the boundary (at the

first hitting point) and conditioned to stop on the same boundary at random moment Tx
Λ. Since

these two parts are independent, one can write the spread harmonic measure density as

ωx,Λ(s) =

∫

∂Ω

ds′ωx(s
′) TΛ(s′, s) TΛ(s′, s) ≡ ωs′,Λ(s) (1.11)

The integral kernel TΛ(s, s′) represents the probability density that the PRBM started from
the boundary point s′ is stopped (absorbed) in an infinitesimal vicinity of the boundary point
s. Consequently, it is sufficient to determine the probabilities of displacements between two
boundary points in order to reconstruct the whole spread harmonic measure density.

Lemma 1.3.3 For any subset A from B(∂Ω) and fixed positive Λ, the spread harmonic measure
ωx,Λ{A}, considered as function of x, solves the mixed boundary value problem:

∆ωx,Λ{A} = 0 (x ∈ Ω),

[

I − Λ
∂

∂n

]

ωx,Λ{A} = IA(x) (x ∈ ∂Ω) (1.12)

This lemma generalizes the Kakutani theorem for the harmonic measure (when Λ = 0) [49].
We do not reproduce the proof of this lemma since it would require many technical details. It
can be also written for the spread harmonic measure density:

Lemma 1.3.4 For any boundary point s ∈ ∂Ω and fixed positive Λ, the spread harmonic
measure density ωx,Λ(s), considered as function of x, satisfies the following conditions:

∆ωx,Λ(s) = 0 (x ∈ Ω),

[

I − Λ
∂

∂n

]

ωx,Λ(s) = δ(s − x) (x ∈ ∂Ω) (1.13)

where δ(s − x) is the Dirac function (distribution) on the boundary.

According to this lemma, one can write the solution of a general mixed boundary value
problem with a given function f on ∂Ω and fixed positive Λ,

∆u = 0 (x ∈ Ω),

[

I − Λ
∂

∂n

]

u = f (x ∈ ∂Ω)

in two equivalent forms:

u(x) =

∫

∂Ω

f(s) ωx,Λ(s)ds = E
(
f(ŴT

x
Λ
)
)

Again, one can give a physical interpretation of this relation: one averages the function f over
all possible trajectories of the partially reflected Brownian motion started from the point x.
Each trajectory is weighted by f(s) according to the boundary point s of its final absorption.
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1.3.2 Planar surface

We remind that the physical motivation of this study is a possibility to consider the partially re-
flected Brownian motion as the random trajectory of diffusing particles towards semi-permeable
interfaces. Indeed, the boundary value problem (1.1–1.3) is an averaged description for the par-
ticle’s concentration, while the stochastic description permits to “follow” the trajectory of each
particle providing new information: typical or average distance between the first hitting point
and the final absorption point; proportion of “flatten” trajectories, going near the interface,
with respect to remote trajectories, moving away from the interface and then returning to it,
etc. In this subsection, we briefly consider the particular case of the planar surface (boundary
of a half space), when the partially reflected Brownian motion can be constructed in a simple
way, without stochastic equations. Consequently, many related characteristics can be obtained
explicitly. In addition, this construction for the half space provides an example of the PRBM
for an unbounded domain.

Let Ω be the upper half space, Ω = {x ∈ Rd : xd > 0}, with smooth boundary ∂Ω = {x ∈
Rd : xd = 0}. Let W k

t are d independent Brownian motions started from the origin. Then, the
Brownian motion, started from a given point x ∈ Ω and reflected on the boundary ∂Ω, can be
written in a simple way as (x1+W 1

t , ..., xd−1+W d−1
t , |xd+W d

t |). The particular simplification is
brought by the fact that reflections happen in a single direction, being involved through the one-
dimensional reflected Brownian motion |xd + W d

t |. Without loss of generality, we can consider
the reflected Brownian motion started from the origin (x = 0). The translational invariance
along the hyperplane ∂Ω permits to move the starting point in ∂Ω, whereas the convolution
property (1.11) allows displacements in orthogonal direction. The local time process `t can be
introduced either through the stochastic equations (1.7), or with the help of Lévy’s formulae
(1.8) or (1.9).

Lemma 1.3.5 Let Ω be the upper half space, Ω = {x ∈ Rd : xd > 0}. For any positive Λ, the
stopping time T0

Λ, defined in 1.3.1, is distributed according to

P{T
0
Λ ∈ (t, t + dt)} = ρΛ(t)dt, ρΛ(t) =

∞∫

0

z e−z2/2te−z/Λ

Λ
√

2π t3/2
dz (1.14)

Proof. Since the local time `t and the random variable χ are independent, one can write the
probability P{T0

Λ ∈ (t, t + dt)} as

P{ T
0
Λ ∈ (t, t + dt) } =

∞∫

0

P

{

inf{τ > 0 : `τ = z} ∈ (t, t + dt)

}

P{ χ ∈ (z, z + dz) }

Then, the first factor is the well known density of the inverse local time process [35],

P

{

inf{τ > 0 : `τ = z} ∈ (t, t + dt)

}

= dt
z e−z2/2t

√
2π t3/2

whereas the second factor is given by the exponential law density (1.10) that implies (1.14). �

Note that the integral in (1.14) can be represented with the help of the Gaussian error
function

ρΛ(t) =
1

2Λ2

[

1√
π

1
√

t/2Λ2
−K

(
√

t/2Λ2

)]

, K(z) =
2√
π

∞∫

z

ez2−x2

dx
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One finds the asymptotic behavior of the density ρΛ(t):

ρΛ(t) ∼
(√

2πΛ
)−1

t−1/2 (t → 0), ρΛ(t) ∼
(√

2π/Λ
)−1

t−3/2 (t → ∞)

Once the distribution of stopping time T0
Λ is determined, one can calculate the spread

harmonic measure density ωx,Λ(s).

Lemma 1.3.6 Let Ω be the upper half space, Ω = {x ∈ Rd : xd > 0}. For any positive Λ, the
spread harmonic measure density ωx,Λ(s) is

ωx,Λ(s1, ..., sd−1) =

∞∫

−∞

...

∞∫

−∞

dk1...dkd−1

(2π)d−1
exp

[

−i
d−1∑

j=1

kj(xj − sj)

]
e−xd|k|

1 + Λ|k| (1.15)

where |k| =
√

k2
1 + ... + k2

d−1.

Proof. First, the probability kernel TΛ(s, s′), defined for two boundary points s, s′ ∈ ∂Ω, is
translationally invariant in the hyperplane ∂Ω, TΛ(s, s′) = tΛ(s − s′), where

tΛ(s1, ..., sd−1)ds1...dsd−1 ≡ P

{

W 1
T

0

Λ

∈ (s1, s1 + ds1) , ... , W d−1
T

0

Λ

∈ (sd−1, sd−1 + dsd−1)

}

The stopping time T0
Λ is related to the orthogonal motion and, consequently, independent of

lateral motions W 1
t , ..., W d−1

t . Therefore, the previous probability can be written as

tΛ(s1, ..., sd−1)ds1...dsd−1 =

∞∫

0

P

{

W 1
t ∈ (s1, s1+ds1), ... , W d−1

t ∈ (sd−1, sd−1+dsd−1)

}

ρΛ(t)dt

Since the lateral motions are independent between themselves, the first factor is equal to the
product of Gaussian densities (1.4):

tΛ(s1, ..., sd−1) =

∞∫

0

dt ρΛ(t)
d−1∏

j=1

e−s2
j/2t

√
2πt

Using the integral representation (1.14), one finds

tΛ(s1, ..., sd−1) =
Γ(d/2)

πd/2 Λ

∞∫

0

dz
z e−z/Λ

[
s2
1 + ... + s2

d−1 + z2
]d/2

where Γ(z) stands for Euler gamma function (see [33] for details).
Substituting the well known harmonic measure density ωx(s) for the upper half space (gen-

eralized Cauchy distribution),

ωx(s1, ..., sd−1) =
Γ(d/2)

πd/2

xd
[
(x1 − s1)2 + ... + (xd−1 − sd−1)2 + (xd)2

]d/2

into convolution (1.11), one finally obtains the expression (1.15) for the spread harmonic mea-
sure density. �

One can easily verify that the spread harmonic measure density ωx,Λ(s) and the probability
kernel TΛ(s, s′) satisfy the following conditions:
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1. Normalization condition:
∫

∂Ω

ds ωx,Λ(s) = 1

∫

∂Ω

ds′ TΛ(s, s′) = 1

2. Dirichlet limit (Λ → 0):

ωx,Λ(s) −→ ωx(s) TΛ(s, s′) −→ δ(s − s′)

3. Translational invariance:

ωx,Λ(s) = ωx−s,Λ(0) TΛ(s, s′) = TΛ(s − s′, 0) ≡ tΛ(s − s′)

One can also deduce the asymptotic behavior of the function tΛ(s) as |s| → 0 or |s| → ∞. For
these purposes, it is convenient to define the new function ηd(z) by relation

tΛ(s) = ηd

(
|s|/Λ

)
ω(0,...,0,Λ)(s)

where the second term is the harmonic measure density for the Brownian motion started from
the point (0, ..., 0

︸ ︷︷ ︸

d−1

, Λ). Using the explicit formulae for tΛ(s) and ω(0,...,0,Λ)(s), one obtains:

ηd(z) =
(
1 + z2

)d/2

∞∫

0

t e−t dt

(t2 + z2)d/2
(1.16)

Its asymptotic behavior for z going to infinity is

ηd(z) = 1 − 5d

2
z−2 + O(z−4) (1.17)

whereas for z going to 0, one has

ηd(z) ∼ Γ(d/2)

πd/2
z2−d (d > 2), ηd(z) ∼ 1

π
ln z (d = 2)

These relations can be used for qualitative study of the partially reflected Brownian motion.
For instance, one identifies the parameter Λ as a characteristic length scale of the problem: the
magnitude of any distance (e.g., |s|) has to be compared with Λ. Interestingly, the asymptotic
behavior (1.17) for large z means that the function tΛ(s) is close to the harmonic measure
density ω(0,...,0,Λ)(s). Roughly speaking, for large |s|/Λ, the partially reflected Brownian motion
started from the origin is qualitatively equivalent to the (simple) Brownian motion started
from the point (0, ..., 0, Λ). In other words, the partial reflections on the boundary leads to a
spreading of the harmonic measure with characteristic scale Λ (see also relation (1.11)).

The knowledge of the probability kernel TΛ(s, s′) provides an important information about
the partially reflected Brownian motion in the (upper) half space. As an example, we calculate
the probability PΛ(r) that the PRBM started from the origin is finally absorbed on the disk
Bd−1

r = { (x1, ..., xd) ∈ Rd : x2
1 + ... + x2

d−1 ≤ r2, xd = 0 } of radius r centered at the origin:

PΛ(r) =

∫

Bd−1
r

ds tΛ(s) =
2 Γ(d

2
)

Γ(d−1
2

)
√

π

∞∫

0

te−tdt

r/Λ∫

0

xd−2 dx

[x2 + t2]d/2
(1.18)
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Figure 1.3: Land Surveyor Approximation: the total flux across the boundary can be approx-
imately calculated when the mixed boundary condition ∂C/∂n = C/Λ on a given irregular
curve (on the left) is replaced by the Dirichlet condition C = 0 on the coarse-grained bound-
ary (on the right). The last one is obtained by replacing curvilinear intervals of length Λ by
corresponding linear chords.

This probability shows how far the partially reflected Brownian motion can go away after the
first hit of the boundary. One sees that this function depends only on the ratio r/Λ, going to
0 for small radii and to 1 for large radii. Again, the parameter Λ is the characteristic length
scale of the problem. In two-dimensional case, PΛ(Λ/2) is the probability that the PRBM is
absorbed on the linear segment of length Λ, centered at the origin (the first hitting point).
The numerical calculation gives PΛ(Λ/2) ' 0.4521, i.e., about half of the particles is absorbed
on this region. In other words, the length of the characteristic absorption region (where half
of the particles is absorbed) is equal approximately to Λ. It has been shown recently that
this result is qualitatively valid for certain irregular boundaries [50]. Roughly speaking, if the
one-dimensional boundary (curve) has no deep pores (fjords) and its perimeter is large with
respect to the scale Λ, then the curvilinear interval of length Λ, centered on the first hitting
point, absorbs approximately half of the diffusing particles.

This result can be considered as a first mathematical justification of the Land Surveyor
Approximation (LSA) developed by Sapoval [18]. According to this approximation, one can
coarse-grain a given one-dimensional interface (curve) with physical scale Λ in order to replace
the mixed boundary condition [I−Λ∂/∂n]C = 0 by the Dirichlet condition C = 0 (see Fig. 1.3).
Some heuristic physical arguments allow to state that the total flux across the irregular semi-
permeable interface is equal approximately to the total flux across this coarse-grained boundary
with Dirichlet condition. This statement provides a simple but powerful tool to study the Lapla-
cian transport phenomena. The land surveyor approximation had been checked numerically
[29, 30], but not mathematically. The study of the partially reflected Brownian motion provides
its justification and further understanding. Actually, the coarse-grain procedure generates the
regions of length Λ, where about half of the particles is absorbed. The LSA is based on two
simplifications which can be clearly explained in terms of diffusing particles:

1. All particles arrived to the characteristic absorption region are absorbed (Dirichlet condi-
tion). This approximation does not take into account half of the particles which escapes
this region.

2. The deterministic regions, generated by the coarse-grain procedure, cannot be centered
on a random position of the first hit of the boundary.

Although these simplifications seem to be rough, the numerical simulations showed that the LSA
reproduces the transport properties with relatively good accuracy. However, this approximation
has no small parameter which would allow to control its applicability. More accurate approaches
will be discussed below (see Section 1.4).
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One can go further by extending the land surveyor approximation to the three-dimensional
case, which remains still not well studied. Indeed, the numerical calculation leads to PΛ(Λ) '
0.4611, i.e., about half of the particles is absorbed on the disk of radius Λ centered on the
first hitting point. Consequently, if one finds a convenient cover of a semi-permeable irregular
interface by disk-like sets of characteristic radius Λ, the LSA may be still valid, i.e., the total
flux across a given interface can be approximated by the total flux across the perfectly absorbing
coarse-grained interface (with Dirichlet condition). An accurate mathematical formulation of
this extension and its numerical verification present still open problems.

1.3.3 Relation to the Dirichlet-to-Neumann operator

The construction of the partially reflected Brownian motion for a given domain Ω requires the
resolution of the stochastic differential equation (1.7), a quite difficult problem. Fortunately,
many characteristics of this process, e.g. the spread harmonic measure density ωx,Λ(s), can be
obtained in another way. This subsection is devoted to the Dirichlet-to-Neumann operator and
its relation to the partially reflected Brownian motion.

Definition 1.3.7 For a given domain Ω ⊂ Rd (d ≥ 2) with smooth bounded boundary ∂Ω, let
u : Ω ∪ ∂Ω → R be a harmonic function with Dirichlet condition u = f , a function f being
from the Sobolev space H1(∂Ω) (in other words, u is the the solution of the boundary value
problem (1.5)). Applying the normal derivative to u, one obtains a new function g = ∂u/∂n
belonging to the square integrable functions space L2(∂Ω). Then the operator M, acting from
H1(∂Ω) to L2(∂Ω), which associates the new function g with a given function f , is called
Dirichlet-to-Neumann operator.

It is known that the Dirichlet-to-Neumann operator M is self-adjoint pseudodifferential
operator of the first order, with discrete positive spectrum {µα} and smooth eigenfunctions
forming a complete basis in L2(∂Ω) [51–60]. For this operator, one can define its resolvent
operator TΛ = [I + ΛM]−1, called spreading operator. This is an analytic operator function in
the whole complex plane except a denumerable set of points, C\{−µ−1

α }. In particular, TΛ is
well defined for any positive Λ.

Lemma 1.3.8 For any strictly positive Λ, the spreading operator TΛ acts from L2(∂Ω) to
L2(∂Ω) as a compact integral operator,

[TΛf ](s) =

∫

∂Ω

ds′ f(s′) TΛ(s′, s)

where the kernel TΛ(s, s′) is given by (1.11).

Proof. The probability kernel TΛ(s, s′) is a positive function satisfying the normalization:
∫

∂Ω

TΛ(s, s′)ds′ = 1

since the partially reflected Brownian motion is conditioned to be finally absorbed on the
boundary. Therefore, one obtains:

∫

∂Ω

∫

∂Ω

ds ds′ |TΛ(s, s′)|2 = Stot < ∞

where Stot is the total surface area of the boundary ∂Ω. The integral operator TΛ defined by
the kernel TΛ(s, s′) is a Hilbert-Schmidt operator and, consequently, a compact operator.
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The boundary condition in lemma 1.3.4 can be written with the help of the Dirichlet-to-
Neumann operator:

[
I + ΛM]TΛ(s, s′) = δ(s − s′)

that implies that the integral operator TΛ coincides with the resolvent [I + ΛM]−1 of the
Dirichlet-to-Neumann operator M. �

This simple lemma creates a “bridge” between the partially reflected Brownian motion and
the Dirichlet-to-Neumann operator. In particular, the relation (1.11) for the spread harmonic
measure density ωx,Λ(s) can be now understood as application of the spreading operator TΛ to
the harmonic measure density ωx(s). Consequently, once the Dirichlet-to-Neumann operator
is constructed for a given domain, one can calculate the density ωx,Λ(s) without solving the
stochastic differential equations (1.7).

The self-adjointness of the Dirichlet-to-Neumann operator allows to involve efficient tools of
the spectral theory. For example, one can rewrite the relation (1.11) as spectral decomposition
of the harmonic measure density on eigenfunctions Vα of the operator M:

ωx,Λ(s) =
∑

α

(
ωx · V∗

α

)

L2

1 + Λµα
Vα(s)

(
ωx ·V∗

α

)

L2
=

∫

∂Ω

ωx(s
′) V∗

α(s′) ds′ (1.19)

where ( · )L2 denotes the scalar product in L2(∂Ω) space. The advantage of this relation is an
explicit dependence on the physical parameter Λ.

1.3.4 Examples

In order to illustrate the underlying concepts, we consider several examples.

Two-dimensional disk

We are going to study the partially reflecting Brownian motion in a unit disk, Ω = { x ∈
R2 : |x| < 1 } (its boundary is a unit circle, ∂Ω = { x ∈ R2 : |x| = 1 }).

In this case, the harmonic measure density ωx(s) ≡ ω(r, θ) is a function of two real variables:
the distance 0 ≤ r < 1 between the starting point x ∈ Ω and the origin, and the angle
0 ≤ θ < 2π between directions onto points x and s ∈ ∂Ω from the origin. The harmonic
measure density is known as Poisson kernel:

ω(r, θ) =
1 − r2

2π(1 − 2r cos θ + r2)
(1.20)

The rotational invariance of the domain Ω implies that the eigenbasis of the Dirichlet-to-
Neumann operator M is the Fourier basis,

Vα(θ) =
eiαθ

√
2π

(α ∈ Z)

Taking a Fourier harmonics as boundary condition, u(r = 1, θ) = eiαθ, one finds the regular
solution of the corresponding Dirichlet problem, u(r, θ) = r|α|eiαθ. Since the normal derivative
coincides with the radius derivative, one obtains the eigenvalues of the Dirichlet-to-Neumann
operator:

µα = |α| (α ∈ Z)

These eigenvalues are doubly degenerated (expect µ0 = 0).
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The spread harmonic measure density is given by relation (1.19):

ωx,Λ(s) ≡ ωΛ(r, θ) =
1

2π

∞∑

α=−∞

r|α| eiαθ

1 + Λ|α|

(the scalar product of the harmonic measure density ωx(s) and eigenfunctions Vα(θ) is shown
to be equal to r|α|, with r = |x|). In the case Λ = 0, one finds the Poisson representation for
the harmonic measure density (1.20) just as required. The kernel of the resolvent operator TΛ

is

TΛ(θ, θ′) =
1

2π

∞∑

α=−∞

eiα(θ−θ′)

1 + Λ|α|

For the exterior problem, when Ω = {x ∈ R2 : |x| > 1}, one obtains exactly the same
results.

Three-dimensional ball

The similar arguments can be applied for higher dimensions. For example, in the three-
dimensional case, one considers the unit ball Ω = { x ∈ R3 : |x| < 1 }. The harmonic
measure density is known to be

ωx(s) ≡ ω(r, θ) ≡ 1 − r2

4π
(
1 − 2r cos θ + r2

)3/2
(s ∈ ∂Ω)

where r = |x| < 1 is the distance between the starting point x ∈ Ω and the origin, and θ is the
angle between directions onto points x and s ∈ ∂Ω from the origin. The development of this
function on spherical harmonics is

ωx(s) =

∞∑

l=0

l∑

m=−l

rl Yl,m(s) Yl,m(x/r)

The rotational symmetry of the problem implies that the eigenbasis of the Dirichlet-to-
Neumann operator is formed by spherical harmonics Yl,m. A regular solution of the Dirichlet
problem (1.5) in the unit ball can be written in spherical coordinates r, θ and ϕ as

u(r, θ, ϕ) =

∞∑

l=0

l∑

m=−l

fl,m rl Yl,m(θ, ϕ)

where fl,m are coefficients of the development of a given function f (Dirichlet condition) on the
complete basis of spherical harmonics. Since the normal derivative coincides with the radius
derivative, one obtains

[Mf ](θ, ϕ) =

(
∂u

∂n

)

∂Ω

=

(
∂u

∂r

)

r=1

=

∞∑

l=0

l∑

m=−l

fl,m l Yl,m(θ, ϕ)

i.e., the eigenvalues of the Dirichlet-to-Neumann operator M are

µl = l (l ∈ {0, 1, 2, ...}) (1.21)

Note that the l-th eigenvalue is degenerated nl = (2l + 1) times.
Interestingly2, the Dirichlet-to-Neumann operator M for the unit ball Ω = {x ∈ R3 : |x| <

1} coincides with an operator introduced by Dirac in quantum mechanics [61]. It is known that

2The author thanks S. Schadchine for valuable discussions on this relation.
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the hydrogen atom is described by three quantum numbers: the main quantum number n, the
orbital quantum number l and magnetic quantum number m. Two last numbers are associated
with indices of spherical harmonics. Thus, the Dirichlet-to-Neumann operator for the ball is
apparently the orbital quantum number operator for the hydrogen atom. In particular, the
degeneracy of eigenvalues of this operator can be understood from the point of view of spin
degeneracy.

The spread harmonic measure density ωx,Λ(s) and the spreading operator kernel TΛ(s, s′) can
be written explicitly as spectral decompositions on the eigenbasis of the Dirichlet-to-Neumann
operator M as in the two-dimensional case.

The eigenvalues of the Dirichlet-to-Neumann operator for d-dimensional unit ball are still
given by (1.21) with degeneracy

nl =
(2l + d − 2)

(d − 2)

(l + d − 3)!

(d − 3)! l!

The exterior problem for Ω = {x ∈ R3 : |x| > 1} can be considered in the same manner.
The harmonic measure density is given as ω̃x(s) = (1/r) ω(1/r, θ), with r = |x| > 1. Using
the same development on spherical harmonics, one obtains µl = l + 1 with l ∈ {0, 1, 2, ...}. In
particular, the lowest eigenvalue µ0 = 1 is strictly positive. This difference with respect to the
spectrum µl for the interior problem has a simple probabilistic origin: the Brownian motion
in three dimensions is transient, i.e., there is a positive probability (equal to 1 − 1/r) to never
return to the ball. Another explication follows from the theory of boundary value problems
for elliptic differential operators: the exterior Neumann problem has a unique solution, while
the solution of the interior Neumann problem is defined up to a constant. Consequently, the
Dirichlet-to-Neumann M operator should be invertible for the exterior problem that implies
a simple condition for its eigenvalues: µα 6= 0. On the contrary, M is not invertible for the
interior problem providing the condition that at least one eigenvalue is zero.

1.4 Stochastic approaches to Laplacian transport phe-

nomena

In this section, we return to the Laplacian transport phenomena, discussed at the beginning.
First, we are going to introduce the notion of source, diffusing particles started from. The
definition of the partially reflected Brownian motion will require only a minor modification.
After that, the recently developed continuous approach will be presented with a special emphasis
on its physical importance. Finally, we will mention two other physical descriptions which can
be now considered as useful approximations to the continuous approach.

1.4.1 Notion of source

The description of the partially reflected Brownian motion given in the previous section does
not involve a source, an important element for the Laplacian transport phenomena. In this
subsection, we are going to discuss the extension of previous definitions in order to introduce
the source. As one will see, a minor modification will be sufficient.

Throughout this subsection, we consider a bounded domain Ω with twice continuous differ-
entiable boundary composed of two disjoint parts, ∂Ω and ∂Ω0, referred as working interface
and source respectively3. In practice, the working interface and the source are well separated
in space, therefore one may think about a circular ring as generic domain.

3Previously, the whole boundary of the domain had been considered as the working interface. For this reason,
we preserve the same notation ∂Ω for this object and hope that it will not lead to ambiguities.
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As previously, one considers the reflected Brownian motion Ŵt, started from any point
x ∈ Ω∪ ∂Ω∪ ∂Ω0 and reflected on the whole boundary ∂Ω∪ ∂Ω0, the corresponding local time
process `t, and the stopping time T

x
Λ defined in 1.3.1. Let us introduce a new stopping time τ

as the first moment when the process Ŵt hits the source ∂Ω0:

τ = inf{t > 0 : Ŵt ∈ ∂Ω0}

Then, the spread harmonic measure can be defined for any subset A from Borel σ-algebra
B(∂Ω) (defined on the working interface!) as

ωx,Λ{A} = P{ŴT
x
Λ
∈ A, T

x
Λ < τ < ∞} (1.22)

We remark two distinctions with respect to the previous definition 1.3.2:

• The measure is considered on Borel subsets of the working interface ∂Ω only, whereas
the reflected Brownian motion Ŵt and the local time process `t are defined on the whole
boundary ∂Ω ∪ ∂Ω0.

• There is a supplementary condition Tx
Λ < τ providing that the process Ŵt should be

absorbed (killed) on the working interface before hitting the source.

Note that 1−ωx,Λ{∂Ω} is the probability that the process Ŵt started from a given point x ∈ Ω
hits the source ∂Ω0 before its final absorption on the working interface ∂Ω.

One can easily extend the lemma 1.3.3 to this spread harmonic measure:

Lemma 1.4.1 For any subset A from B(∂Ω) and fixed positive Λ, the spread harmonic measure
ωx,Λ{A}, considered as function of x, solves the boundary value problem:

∆ωx,Λ{A} = 0 (x ∈ Ω),

[

I − Λ
∂

∂n

]

ωx,Λ{A} = IA(x) (x ∈ ∂Ω)

ωx,Λ{A} = 0 (x ∈ ∂Ω0)
(1.23)

Proof is similar to those of the lemma 1.3.3. The last condition holds since x ∈ ∂Ω0 implies
τ = 0. �

Corollary 1.4.2 Function CΛ(x) = C0(1−ωx,Λ{∂Ω}) solves the boundary value problem (1.1–
1.3).

Proof is a direct verification. �

Consequently, a simple introduction of the source allows to apply the previous description
of the partially reflected Brownian motion to study the Laplacian transport phenomena. Due
to reversibility of the Brownian motion, one may think that (1 − ωx,Λ{∂Ω})dx gives also the
probability to find the partially reflected Brownian motion, started from the absorbing source,
in dx vicinity of the point x ∈ Ω, under partially absorbing condition on the working interface
∂Ω. Note that such way of reasoning, being intuitive and useful, is quite formal. In particular,
the (simple) Brownian motion started from the source returns to it infinitely many times with
probability 1. If one really needs to define such a process, the starting point should be taken
slightly above the source.

Since the boundary ∂Ω is always supposed to be smooth, one can introduce the spread
harmonic measure density ωx,Λ(s). In turn, the kernel of the spreading operator is defined as
previously, TΛ(s, s′) ≡ ωs,Λ(s′). In particular, one retrieves the relation (1.11):

ωx,Λ(s) =

∫

∂Ω

ds′ωx,0(s
′) TΛ(s′, s)
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where the harmonic measure density ωx,0(s) is defined by relation (1.22) with Λ = 0.

The definition of the Dirichlet-to-Neumann operator can be also extended to domains with
a source. For a given function f ∈ H1(∂Ω), one solves the Dirichlet problem in the domain Ω:

∆u = 0 (x ∈ Ω), u = f (x ∈ ∂Ω), u = 0 (x ∈ ∂Ω0)

In principle, one could consider another function on the source. For a given function f on
∂Ω, the Dirichlet-to-Neumann operator M, acting from H1(∂Ω) to L2(∂Ω), associates the new
function g = ∂u/∂n on the working interface ∂Ω. One demonstrates general properties of
this operator and its relation to the partially reflected Brownian motion in a straight way. In
particular, the spreading operator TΛ, defined by its kernel TΛ(s, s′), coincides with the resolvent
operator [I + ΛM]−1. However, some normalization properties may be changed. In particular,
for the probability kernel TΛ(s, s′), one has

∫

∂Ω

TΛ(s, s′)ds′ < 1

since the PRBM started from the working interface ∂Ω can be absorbed on the source.

1.4.2 Continuous approach

The stochastic treatment by means of the partially reflected Brownian motion provides the
solution of the problem (1.1–1.3) describing the Laplacian transport phenomena: CΛ(x) =
C0(1 − ωx,Λ{∂Ω}) (see corollary 1.4.2). One can go further using the close relation to the
Dirichlet-to-Neumann operator [33]. According to the lemma 1.4.1, the density ωx,Λ{∂Ω},
considered as function of x, solves the boundary value problem:

∆ωx,Λ{∂Ω} = 0 (x ∈ Ω),

[

I − Λ
∂

∂n

]

ωx,Λ{∂Ω} = 1 (x ∈ ∂Ω), ωx,Λ{∂Ω} = 0 (x ∈ ∂Ω0)

The restriction of the function ωx,Λ{∂Ω} on ∂Ω can be written with the help of the Dirichlet-
to-Neumann operator M as

ωx,Λ{∂Ω} =
[
(I + ΛM)−11

]
(s) = [TΛ1](s)

where 1(s) stands for a constant (unit) function on the working interface.
One defines then the flux density φΛ(s) across the working interface ∂Ω:

φΛ(s) = D
∂CΛ

∂n
(s) = −D

∂ωx,Λ{∂Ω}
∂n

(s)

Since the normal derivative of a harmonic function can be represented as the application of the
Dirichlet-to-Neumann operator to the restriction of this function on the boundary, one writes

φΛ(s) = D Mωs,Λ{∂Ω} = D M[TΛ1](s)

(the sign is changed due to particular orientation of the normal derivative). Taking Λ = 0, one
finds φ0(s) = D [M1](s) and finally

φΛ(s) = [TΛφ0](s)

The transport properties of the working interface can be characterized by a physical quantity
called spectroscopic impedance. We remind that the impedance of an electric scheme is defined
as the tension applied between two external poles, divided by the total electric current passing
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through. The formal analogy between the electric problem and the diffusive transport, discussed
in section 1.1, leads to a natural definition of the impedance in our case as the concentration
C0 on the source ∂Ω0 divided by the total flux across the working interface ∂Ω:

Zcell(Λ) =
C0

∫

∂Ω

ds φΛ(s)

Taking Λ = 0, one deals with a purely absorbing interface ∂Ω: any particle arrived to ∂Ω is
immediately absorbed (without reflections). In other words, such interface has no resistance
for passage across it. Consequently, the impedance Zcell(0) represents the “access resistance”
by the volume: the possibility that the Brownian motion can return to the source without
hitting the working interface. The resistance property of the working interface can be thus
characterized by the difference between Zcell(Λ) and Zcell(0), called spectroscopic impedance:

Zsp(Λ) = Zcell(Λ) − Zcell(0)

Using the simple identity
(
(φΛ − φ0) · 1

)

L2
=

Λ

D

(
φΛ · φ0

)

L2
(1.24)

one writes the spectroscopic impedance as

Zsp(Λ) =
Λ

D

(
φΛ · φ0

)

L2

(
φΛ · 1

)

L2

(
φ0 · 1

)

L2

Using again the identity (1.24), one finds a more convenient form:

Zsp(Λ) =
1

1

Z(Λ)
− 1

Zcell(0)

The new function

Z(Λ) =
Λ

D

(
TΛφh

0 · φh
0

)

L2
φh

0(s) =
φ0(s)

(
φ0 · 1

)

L2

can be called effective impedance, where φh
0(s) is the normalized flux density towards the per-

fectly absorbing working interface ∂Ω. Finally, the spectral decomposition of the spreading
operator TΛ on the basis of eigenfunctions Vα of the Dirichlet-to-Neumann operator M leads
to the important relation for the effective impedance:

Z(Λ) =
Λ

D

∑

α

Fα

1 + Λµα

Fα =
(
φh

0 ·Vα

)

L2

(
φh

0 · V∗
α

)

L2
(1.25)

This relation presents the central result of the continuous approach developed in [33]. Let us
briefly discuss its physical meaning. The spectroscopic impedance Zsp(Λ) or, equivalently, the
effective impedance Z(Λ), is a physical quantity which characterizes the transport properties
of the whole working interface. More importantly, this quantity can be measured directly in
experiment (e.g., in electrochemistry). On the other hand, the local transport properties of
the working interface are described by the single physical parameter Λ, being related to the
membrane’s permeability W , the electrode’s resistance r or the catalyst’s reactivity K (see
Section 1.1). Varying the parameter Λ, one changes the local transport properties at each
boundary point and, consequently, the whole linear response of the working interface. In a
first sight, one may think that an increase of the local boundary resistance should imply a
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proportional increase of the whole boundary resistance, i.e., Z(Λ) ∼ Λ. This reasoning being
true for a planar surface becomes invalid in a general case due to geometrical irregularities. In
fact, an irregular geometry modifies considerably the linear response of the working interface
[22–28]. The boundary value problem (1.1–1.3) describing the Laplacian transport phenomena
on the average allows, in principle, to study such geometrical influence. Practically, however,
this is a very difficult problem. The continuous approach provides an efficient tool to carry out
these studies both in theoretical and numerical ways. In particular, the relation (1.25) makes
explicit the impedance dependence on the local transport properties (parameter Λ) and allows
to identify contributions due to the physics and due to the geometry, involved in the problem
in a complex manner. In other words, whatever the physical problem (diffusion across semi-
permeable membranes, heterogeneous catalysis or electric transport), the geometry enters only
through the spectral characteristics of the Dirichlet-to-Neumann operator M: its eigenvalues
µα and the spectral components Fα of the normalized flux density φh

0(s) on the basis of its
eigenfunctions Vα(s).

The other important meaning of the relation (1.25) can be outlined if one considers the
inverse problem [33]: what is the most available information that one can retrieve from a
measurement of the spectroscopic impedance of an unknown working interface? The mathe-
matical response can be given immediately if one rewrites (1.25) as Laplace transform of the
new function ζ(λ):

Z(Λ) =
1

D

∞∫

0

dλ e−λ/Λ ζ(λ), ζ(λ) ≡
∑

α

Fαe−λµα

Under assumption to be able to measure the impedance with an absolute precision, one can
reconstruct the function ζ(λ) and, consequently, the set of characteristics {µα, Fα} which may
be thus called geometrical spectrum of the working interface. In practice, however, the inverse
problem is more difficult [62].

In two following subsections, we are going to discuss some aspects of the semi-continuous
and the discrete descriptions of the Laplacian transport phenomena which can be referred as
physical approaches based on the intuitive notion of partial reflections on the boundary. Since
these descriptions turn out to be approximations to the continuous approach, we do not present
the circumstantial details.

1.4.3 Semi-continuous approach

The semi-continuous approach, developed by Halsey and Leibig [25], is based on the following
construction (for details, see [33]). For a given domain Ω with smooth bounded boundary ∂Ω,
one considers the Brownian motion started from a point x ∈ Ω. When it hits the boundary at
some point s, two complementary events may happen:

• with probability ε, the Brownian motion is reflected to the interior point s+an(s), slightly
above the boundary (here n(s) is the unit normal vector to the boundary at point s, a is
a small positive parameter); the Brownian motion continues from this point;

• or, with probability 1 − ε, the Brownian motion is terminated at this point s (absorbed
on the boundary).

This motion continues until the absorption on the boundary and can be called Brownian motion
reflected with jump. Two new parameters, the jump distance a and the reflection probability
ε, are related to the given physical parameter Λ [50]:

ε =
1

1 + (a/Λ)
(1.26)
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(one fixes Λ and takes 0 < a < Λ in order to have 0 < ε < 1).

Now, one can calculate the probability ω
(a)
x,Λ(s)ds that this process is finally absorbed in

ds vicinity of the boundary point s. Since the motions before and after each reflection are
independent, this probability can be obtained as the sum of probabilities to be absorbed after
0, 1, 2, ... reflections:

ω
(a)
x,Λ(s)ds =

[
ωx(s)ds

]
(1 − ε) +

∫

∂Ω

[
ωx(s1)ds1

]
ε

[
ωs1+an(s1)(s)ds

]
(1 − ε)+

+

∫

∂Ω

∫

∂Ω

[
ωx(s1)ds1

]
ε

[
ωs1+an(s1)(s2)ds2

]
ε

[
ωs2+an(s2)(s)ds

]
(1 − ε) + ...

For example, the third term represents the probability to hit the boundary in ds1 vicinity of
the point s1, to be reflected to the neighboring point s1 + an(s1), to hit again the boundary
in ds2 vicinity of the point s2, to be reflected to the neighboring point s2 + an(s2), to hit the
boundary for the last time in ds vicinity of the point s, and to be finally absorbed. Introducing
the integral operator Q(a), acting from L2(∂Ω) to L2(∂Ω) as

[Q(a)f ](s) =

∫

∂Ω

ds′ f(s′) ωs′+an(s′)(s)

one rewrites the previous sum as the application of the new integral operator T
(a)
Λ to the

harmonic measure density ωx(s):

ω
(a)
x,Λ(s) = [T

(a)
Λ ωx](s) T

(a)
Λ = (1 − ε)

∞∑

k=0

(
εQ(a)

)k
(1.27)

What happens when the jump distance a goes to 0? Hitting the boundary, the Brownian
motion will be reflected to interior points lying closer and closer to the boundary, i.e., displace-
ments of the Brownian motion between two serial hits are getting smaller and smaller. At the
same time, the reflection probability ε tends to 1 according to relation (1.26), i.e., the average
number of reflections increases. Indeed, the distribution of the random number N of reflections
until the final absorption is simply

P{N = n} = (1 − ε) εn (1.28)

implying that the average number <N >= ε(1−ε)−1 goes to infinity. Does the limiting process
exist? The situation is complicated by the local choice between reflection and absorption: at
each hitting point, the motion can be absorbed with vanishing probability 1 − ε. In order to
get round this difficulty, one can consider the process from a slightly different point of view.
Actually, one can replace the local condition of the absorption (with probability 1 − ε) by
its global analog: the process is absorbed on the boundary when the number of reflections
exceeds a random variable N distributed according to the geometrical law (1.28). Evidently,
this modification does not change at all the properties of the process. At the same time, we
gain that the condition of the absorption is independent of the Brownian motion between serial
hits. As a consequence, we can consider the corresponding limits (as a → 0) separately. So,
the Brownian motion reflected with jump should tend to the reflected Brownian motion as the
jump distance a vanishes. This motion, however, is conditioned to stop when the number of
reflections exceeds the random variable N . Since the average number < N > goes to infinity
in the limit a → 0, it is convenient to consider a normalized variable χ = aN obeying the
following distribution:

P{χ ≥ λ} = P{N ≥ λ/a} =

∞∑

[λ/a]

P{N = n} ' ε[λ/a] ' exp[−λ/Λ] (1.29)
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(the last equality is written with the help of (1.26) when a goes to 0). Since the number of
reflections on jump distance a, multiplied by a, tends to the local time process according to
Lévy’s formula (1.9), the previous condition of absorption can be reformulated: the motion is
absorbed when its local time process exceeds a random variable distributed according to the
exponential law (1.29). One thus concludes that the Brownian motion reflected with jump
should tend to the partially reflected Brownian motion defined in 1.3.1.

The above analysis, presented as a sketch (without proofs), does not pretend to a mathe-
matical rigour. It may be considered rather as a possible justification which can be brought for
the semi-continuous approach if necessary. In particular, one can demonstrate that the density
ω

(a)
x,Λ(s), given by relation (1.27), tends to the spread harmonic measure density as the jump

distance a goes to 0:

ωx,Λ(s) = lim
a→0

ω
(a)
x,Λ(s)

This relation may be useful for numerical computations. Similarly, the integral operator T
(a)
Λ

should converge to the spreading operator TΛ as a → 0. Calculating the geometrical series in
(1.27) and representing T

(a)
Λ as

T
(a)
Λ = (1 − ε)

(
I − εQ(a)

)−1
=

(

I + Λ
I − Q(a)

a

)−1

one obtains the following approximation for the Dirichlet-to-Neumann operator:

M = lim
a→0

I − Q(a)

a

Again, this relation may be useful for the numerical computation of the left hand side.

The advantages of the semi-continuous approach are based on an apparent intuitive meaning
of partial reflections on the boundary. Moreover, this approach provides even a more realistic
description of physico-chemical processes on microscopic level. For example, if one considers
the partially reflected Brownian motion started from a boundary point, the number of hits of
the boundary is infinite for any moment t > 0 that sounds impossible for real physical species.
The keypoint is that, for diffusion across a semi-permeable membrane or heterogeneous reac-
tion on a catalytic surface, the description by the boundary value problem (1.1–1.3) cannot
be justified on scales less than the mean free path of diffusing particles. Since the continuous
limit a → 0 requires such non-physical scales, it is not surprising that the limiting process
(the PRBM) presents some irrealistic properties from the physical point of view. The similar
limitation happens for the electric transport problem when the smallest physical scale is given
by the thickness of the double layer, being close to the Debye-Hückel length [24, 25]. Evidently,
this remark does not devaluate the efficiency of the continuous approach based on the par-
tially reflected Brownian motion. On the contrary, the mathematical rigour of this approach
justifies the semi-continuous description and simplifies its study by introducing the Dirichlet-to-
Neumann operator. However, dealing with a mathematical description of a physical problem,
one should take care that deduced consequences do not go beyond the ranges of the model.

The capabilities of the semi-continuous approach are essentially limited by the fact that
the central operator Q(a) is not self-adjoint (the function ωs+an(s)(s

′) is not symmetric with
respect to the permutation of s and s′ except specific cases). As a consequence, one cannot
develop the spectral decomposition (1.25) of the impedance, i.e., there is no possibility to
distinguish contributions of different modes. Although the operator Q(a) is defined naturally
by the harmonic measure density, it does not provide a proper description of the problem as it
was done with the Dirichlet-to-Neumann operator.
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1.4.4 Discrete approach

Another stochastic approach to Laplacian transport phenomena has been developed by Filoche
and Sapoval [20]. The main idea is to model the partially reflected Brownian motion by random
walks on a lattice with partial reflections on the boundary. Actually, one discretizes a given
domain Ω by d-dimensional hypercubic lattice of mesh a and considers the following stochastic
process: started from a remote source, a random walker jumps to a neighboring site at each
step with probability (2d)−1. When the walker arrives to a boundary site, it can be reflected
to its neighboring site (belonging to the bulk) with probability ε (and the motion continues),
or it can be absorbed with probability (1− ε). The motion continues until the final absorption
on the boundary, or the return to the source. One can show [50] that the discrete parameters
a and ε are related by the expression (1.26) involving the continuous physical parameter Λ.

In the discrete description, the harmonic measure density is replaced by the distribution
of hitting probabilities (P0)j of boundary sites j, (simple) random walks being started from a

remote source. Let Q
(a)
j,k denote the probability to arrive to the boundary site k starting from

the boundary site j by a random walk in the bulk without hitting the boundary or the source
during the walk4. One can thus calculate the distribution of probabilities (PΛ)j to be finally
absorbed on the boundary site j, when random walks with partial reflections are started from
a remote source. Indeed, the Markov property of this process allows to calculate (PΛ)j as the
sum of contributions provided by random trajectories with 0, 1, 2, ... reflections before the
final absorption:

(PΛ)j = (P0)j(1 − ε) +
∑

k1

(P0)k1
εQ

(a)
k1,j(1 − ε) +

∑

k1

∑

k2

(P0)k1
εQ

(a)
k1,k2

εQ
(a)
k2,j(1 − ε) + ...

(we remind that ε = (1 + a/Λ)−1). For example, the second term represents the product of
the following probabilities: to hit a boundary site k1, to be reflected to its neighboring site, to
arrive to the boundary site j, and to be finally absorbed on it. If one considers P0 and PΛ as
vectors and Q(a) as matrix, the summation over intermediate sites k1, k2, ... can be understood
as matrix product:

PΛ =

[

(1 − ε)

∞∑

n=0

(
εQ(a)

)n

]

P0

i.e., the distribution of absorption probabilities (PΛ)j is obtained as the application of a linear
operator, depending on Q(a) and Λ (or ε), to the distribution of hitting probabilities (P0)j .
The symmetric matrix Q(a) represents a self-adjoint operator, called Brownian self-transport
operator. Using the normalization property |Q(a)| ≤ 1 and relation (1.26) between Λ and ε, one
obtains:

PΛ = T
(a)
Λ P0 T

(a)
Λ =

[

I + Λ
I − Q(a)

a

]−1

The operator T
(a)
Λ , depending on the lattice parameter a, is called (discrete) spreading operator.

The previous relation, written explicitly as

(PΛ)j =
∑

k

(P0)k

(
T

(a)
Λ

)

k,j

allows to separate random trajectories in two independent parts:

• the random walker started from a remote source arrives to the boundary site k (first
factor);

4We use the same notation Q(a) for the integral operator in semi-continuous approach and for the matrix of
these probabilities since they have the same meaning and even may be used to approximate each other.
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• it continues the motion with partial reflections until the final absorption on the boundary
site j (second factor).

One concludes that the absorption probabilities (PΛ)j provide a discrete analog of the spread

harmonic measure density, while the matrix
(
T

(a)
Λ

)

k,j
is a discrete analog of the kernel TΛ(s, s′)

of the spreading operator TΛ = [I + ΛM]−1. In particular, the bounded operators (I −Q(a))/a
can be understood as discrete approximations of the Dirichlet-to-Neumann operator M (in
resolvent sense). As for the semi-continuous approach, we do not furnish the corresponding
proofs (see [33] for more details).

The advantage of the discrete description with respect to the semi-continuous approach
is based on the fact that the Brownian self-transport operator Q(a) and, consequently, the
(discrete) spreading operator T

(a)
Λ are self-adjoint. This property allows to employ all the

machinery of the spectral theory in order to express the physical characteristics of the Laplacian
transport through eigenmodes of this operator in an explicit way. For example, the spectral
decomposition (1.25) can be also written in the discrete case. Such decompositions have been
used to study the Laplacian transport towards irregular geometries [33, 50]. Moreover, the
discrete description provides at least two different ways to study the problem numerically:
direct Monte Carlo simulations and discrete boundary elements method [63].

The discrete description, being intuitively the most simple and useful, may lead to mathe-
matical difficulties when one tries to proceed the continuous limit a going to 0. Although the
partially reflected Brownian motion is the natural limit of random walks with partial reflec-
tions, its rigorous demonstration, in our knowledge, is not yet realized in details. The interested
reader can find more information on this topic in [64–69].

1.5 Conclusion

The application of stochastic processes to represent the solution of boundary value problems is
well known and wide used. In particular, Monte Carlo simulations are generally based on this
technique. In this paper, we gave an overview of the Laplacian transport phenomena found in
different scientific domains (e.g., physics, electrochemistry, chemistry, physiology) and related
stochastic approaches to describe them. The most attention has been paid to the recently de-
veloped continuous approach based on the partially reflected Brownian motion. This stochastic
process can be thought as rigorous mathematical description for random trajectories of dif-
fusing particles hitting a semi-permeable interface, in comparison with more intuitive physical
descriptions by semi-continuous and discrete approaches. The partially reflected Brownian
motion turns out to be the natural limit of the Brownian motion reflected with jump (semi-
continuous approach) and of the random walks with partial reflections (discrete approach).

The profound relation between the partially reflected Brownian motion and spectral prop-
erties of the Dirichlet-to-Neumann operator M are found to be useful for practical purposes. In
particular, the kernel of the resolvent operator TΛ = [I + ΛM]−1 provides the probability den-
sity TΛ(s, s′) allowing to reconstruct the spread harmonic measure density ωx,Λ(s). Moreover,
the spectral decomposition on the complete basis of eigenfunctions of the Dirichlet-to-Neumann
operator leads to the explicit analytical formula for this density. Consequently, the use of the
operator M gives an efficient way to study different probability distributions related to the
partially reflected Brownian motion.

The spectral decomposition of the spectroscopic impedance, characterizing the linear re-
sponse of the whole working interface, provides an explicit analytical dependence on the physi-
cal parameter Λ allowing to identify physical and geometrical contributions which were involved
in a complex manner. The geometrical spectrum of the working interface contains the complete
information about its transport properties. The combined use of stochastic characteristics of
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the partially reflected Brownian motion and spectral properties of the Dirichlet-to-Neumann
operator opens encouraging possibilities for further understanding of various physical and chem-
ical transport processes in nature. In this light, a more profound mathematical analysis of these
objects seems to be an important perspective for the present study.
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