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In many biological situations, a species arriving from a remote source diffuses in a domain con-
fined between two parallel surfaces until it finds a binding partner. Since such a geometric shape
falls in between two- and three-dimensional settings, the behavior of the macroscopic reaction rate
and its dependence on geometric parameters are not yet understood. Modeling the geometric setup
by a capped cylinder with a concentric disk-like reactive region on one of the lateral surfaces, we
provide an exact semi-analytical solution of the steady-state diffusion equation and compute the dif-
fusive flux onto the reactive region. We explore the dependence of the macroscopic reaction rate on
the geometric parameters and derive asymptotic results in several limits. Using the self-consistent
approximation, we also obtain a simple fully explicit formula for the reaction rate that exhibits a
transition from two-dimensional to three-dimensional behavior as the separation distance between
lateral surfaces increases. Biological implications of these results are discussed. Published by AIP
Publishing. https://doi.org/10.1063/1.5041074

I. INTRODUCTION

Diffusion is omnipresent in biological systems. In par-
ticular, the random motion of ions and molecules in aqueous
environments is a critical mechanism responsible for bringing
reactants to their reaction centers. Without the effect of actively
driven processes, the concentration C of a species moving with
diffusivity D satisfies the diffusion equation

∂C
∂t
= D∆C,

where ∆ = ∇2 is the Laplace operator. One should note that
the diffusion equation is limited to the case of homogeneous
purely viscous liquids and thus it often breaks down in live
cells as well as in other complex fluids,1–7 but it is typically an
excellent approximation for the motion of small molecules
in three dimensions within the range of biologically rele-
vant experimental times.8,9 At intermediate time scales, the
concentration of most species is often found in steady state
and, thus, the diffusion equation simplifies to the Laplace
equation

∆C = 0.

In spite of the relative simplicity of this equation, solving it
can be non-trivial due to the complex morphology of cellular
environments.10–13

Among the different morphologies that appear within
cells, the occurrence of thin interconnected sheets is
widespread. For example, two cellular organelles involve the
presence of aqueous environments within thin sheets: mito-
chondria and the endoplasmic reticulum (ER). On one hand, a
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mitochondrion contains an outer membrane and an inner mem-
brane that separate this organelle into distinct compartments
with different functions, namely, an intermembrane space,
cristae formed by foldings within the inner membrane, and
a matrix enclosed by the inner membrane.14 The intermem-
brane space is a sheet between the outer and inner membranes
of approximately 8 nm thickness.15,16 This compartment has
multiple physiological (including its role in oxidative phos-
phorylation) and pathological functions, and many proteins
involved in mitochondrial signaling pathways are specifically
targeted to it.17,18 On the other hand, the ER is a continuous
membrane system with a common enclosed space comprising
an intricate three-dimensional network.19–21 The ER lumen,
i.e., its interior, is filled with ions, small molecules, and pro-
teins. In animal cells, the ER is the primary storage site for
intracellular Ca2+ that can be released as Ca2+ signals.22 Dif-
fusion within the ER lumen is essential for critical cellular
processes including protein transport and post-translational
regulation and quantitative diffusion measurements of Ca2+

and proteins therein have been reported.9,23,24 The periph-
eral ER consists of sheets and a network of tubules, where,
in mammals, ER sheets are typically in the range of 50 nm
thickness.25

Besides their occurrence within cell organelles, sheet-
shaped structures are common in extracellular spaces where
signaling between adjacent cells takes place. These struc-
tures are notably prevalent in different brain regions where
communication between cells and regulation of extracel-
lular components are of utmost importance for cognitive
functions. In particular, the concentrations of K+ and neu-
rotransmitters such as glutamate are tightly regulated in the
extracellular space surrounding neurons. Glutamate, the major
excitatory neurotransmitter in the brain of vertebrates, when
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present in excess for extended periods of time, acts as a neu-
rotoxin that triggers cell death. In order to remove excess
glutamate, astrocytes take up extracellular glutamate via glu-
tamate transporters so that neurotransmitters are maintained
at a low concentration close to resting cells. The best-known
region for the action of glutamate transporters in neurotrans-
mitter removal is the synaptic cleft, where astrocytic mem-
branes are observed to wrap the synapse region and express
high levels of glutamate transporters.26,27 Besides their role
in synaptic transmission, astrocytes are also observed to regu-
late the concentration of neurotransmitters in extrasynaptic and
somato-dendritic regions.28,29 Furthermore, astrocytic signals
are triggered upon binding of glutamate to receptors, which can
result in Ca2+ signaling and the release of glio-transmitters like
glutamate, ATP, and D-serine.30 Most of the processes that reg-
ulate glutamate are modulated by glutamate diffusion within
extracellular sheets and tunnels. These extracellular spaces are
found to have a thickness of the order of 20 nm.31,32

In this article, we model how the localization of binding
partners alters local concentration within confined sheet-like
spaces such as those encountered in the extracellular space
or in the peripheral ER. In particular, we investigate the flux
associated with the clearing of glutamate from the vicinity of
neuronal glutamate receptors. These problems are addressed
by solving the three-dimensional reaction-diffusion equations
in steady state. The diffusion-limited solution provides an
upper bound for the glutamate flux. This is a key aspect
in understanding glutamate uptake from the extracellular
gap.

The macroscopic reaction rate J of steady-state diffusion-
limited reactions has been studied over the last century.33–44

In the three-dimensional setting, J is often estimated as the
Smoluchowski reaction rate on a spherical reactive region of
radius ρ,

JS = 4πC0Dρ, (1)

where C0 is the concentration of molecules at an (infinitely)
distant source.33 In turn, a steady-state solution in two dimen-
sions is only defined for a source at a finite distance from
the reactive region, and the rate J depends on this distance
(see below, as well as the related discussion in Refs. 38 and
39). Since three-dimensional diffusion between parallel sheets
appears to be in between these two conventional cases, the
behavior of the reaction rate J is not well understood. The aim
of the paper is to determine the dependence of the reaction
rate J on the geometric parameters of the problem such as the
size of the reactive region, the distance to the source, and the
separation between sheets.

The paper is organized as follows. In Sec. II, we present
the mathematical model and its solution and explore the depen-
dence of the reaction rate on the geometric parameters of
the problem. In Sec. III, we discuss some limitations of the
considered model and the related extensions, as well as the
biological implications. Technical calculations are reported in
appendixes.

II. MATHEMATICAL MODEL AND SOLUTION

We model a thin sheet (e.g., a flat junction between
two cells) as a capped cylinder of radius R (the radius of

junction) and of height L (the distance between cells); see
Fig. 1. In cylindrical coordinates (r, z, ϕ), this confining domain
is described as

Ω = {0 < r < R, 0 < z < L, 0 ≤ ϕ < 2π}.

On one surface (at z = 0), there is a target protein that is mod-
eled by a reactive disk Γ of radius ρ. Once a molecule (e.g.,
glutamate) arrives onto the target protein, it is adsorbed and
removed from the domain. We aim at computing the macro-
scopic reaction rate J, i.e., the steady-state diffusive flux of
particles onto the reactive protein coming from outside of the
junction. In the steady state, one can assume that multiple
sources of particles, distributed in the space outside the junc-
tion, maintain a constant concentration of particles at the outer
boundary of the junction (i.e., at r = R). Fixing the boundary
condition at the outer boundary allows one to disentangle the
diffusion-reaction problem inside the junction from diffusion
in the outer space toward the junction. The latter determines
only the constant concentration C0 at the outer boundary which
is just a proportionality factor due to the linear character of the
problem. In turn, the solution of the diffusion-reaction prob-
lem inside the junction depends on the geometric parameters
of the junction: the radius R and the height L of the junc-
tion, as well as the radius ρ and the location of the target
protein. In this paper, we focus on the role of these geo-
metric factors. We emphasize that this geometric model is
different from a model of concentric cylinders with a reac-
tive region on the inner cylinder that was studied in Refs. 45
and 46 in the context of first passage phenomena. In particu-
lar, in our setting, the particles reach the reactive region from
above.

In mathematical terms, one first needs to determine the
steady-state concentration of particles in the junction, C(r, z,
ϕ), by solving the boundary value problem

∆C(r, z, ϕ) = 0 in the junction, (2a)

C = C0 on the outer boundary, (2b)

C = 0 on reactive region Γ, (2c)

∂nC = 0 on the cell membranes, (2d)

FIG. 1. A disk-like sink of radius ρ (in red) inside the capped cylinder of
radius R and of height L. The source of particles is located at the cylindrical
surface. In a typical biological setting, one has R � L � ρ so that the cylinder
should be extended in the radial (lateral) direction.
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where ∂n is the normal derivative directed outward the domain.
The Dirichlet boundary condition (2c) at the reactive patch
expresses a reaction on the target protein upon the first
encounter. This perfect reaction can be replaced by a partial
reaction modeled by a Robin boundary condition (see Sec. III).
Finally, the Neumann boundary condition (2d) ensures that the
two lateral surfaces at z = 0 and z = L, representing the cell
membranes, are impenetrable to the particles (except for the
reactive region). Once this problem is solved, the diffusive flux
onto the reactive region Γ is obtained by integrating the flux
density over Γ,

J =
∫
Γ

ds (−D∂nC) |Γ. (3)

As we are interested in the effect of geometric parameters, it
is convenient to compare the flux to the classic Smoluchowski
flux JS from Eq. (1),

Ψ =
J

4πC0Dρ
. (4)

The normalized flux Ψ does not depend on the imposed con-
centration C0. Moreover, there is also no dependence on the
diffusion coefficient D for the considered case of perfect
steady-state reactions.

When the target protein is located at the center of the
surface of one cellular membrane (i.e., it is concentric with
the junction; see Fig. 1), the boundary value problem (2)
can be solved semi-analytically. In fact, although the solu-
tion technique is standard (see Appendix A for details), the
resulting expressions for the concentration C(r, z, ϕ) and for
the macroscopic reaction rate J are not fully explicit, involv-
ing the inversion of an infinite-dimensional matrix. While this
step has to be done numerically, the computation is fast and
accurate, allowing one to explore the dependence of Ψ on the
two geometric ratios L / ρ and R/ρ. Figure 2 shows the normal-
ized flux Ψ as a function of these parameters (note that R/ρ
≥ 1, whereas L/ρ can range from 0 to ∞). Let us explore the
dependence on both geometric parameters.

In the regime L � ρ, the separation between two lateral
boundaries is so short that a particle appearing above the reac-
tive region rapidly reaches this region and reacts. This regime
is therefore close to diffusion between two coaxial cylinders

FIG. 2. The normalized flux Ψ as a function of two geometric parame-
ters: L/ρ and R/ρ. For convenience, the practically irrelevant region with
R/ρ ≈ 1 is excluded by setting R/ρ ≥ 2. The colored arrows indicate the
equation numbers that show the derived asymptotic relations with their
corresponding limits, e.g., L/ρ→∞.

of radii R and ρ, for which the concentration profile and the
flux are well known,

Ccyl(r) = C0
ln(r/ρ)
ln(R/ρ)

, Jcyl =
2πDLC0

ln(R/ρ)
. (5)

As for the two-dimensional diffusion problem, these solutions
vanish logarithmically as R→∞. Dividing this flux by JS , one
gets the asymptotic behavior of Ψ as L→ 0,

Ψ ' Ψcyl =
L/ρ

2 ln(R/ρ)
(L � ρ). (6)

In the limit R → ρ, the concentration C(r, z, ϕ) can
be found in a fully explicit form but the diffusive flux
diverges logarithmically in this limit (see Appendix A 2 for
details),

Ψ →
1
π

ln
(

ρ

R − ρ

)
+ O(1) (R − ρ � ρ). (7)

This is a consequence of zero distance between the source
(here, the cylinder at r = ρ) and the sink (the disk at z = 0) that
touch each other.

In the limit L → ∞, the problem is close to that
of an absorbing disk in the half-space, for which (see
Appendix B)

Ψ ' Ψdisk =
1
π
≈ 0.3183 . . . (L � R). (8)

In this regime, the geometric confinement is irrelevant and the
diffusive flux onto the target protein is close to the Smolu-
chowski limit. The reduction by the factor π is due to our
choice of modeling the target protein by a disk instead of a
sphere. To fully illustrate the specific role of the aspect ratio
of the reactive region, we compute the normalized flux Ψ for
an oblate spheroid, allowing for a continuous variation from a
sphere to a disk (see Appendix C).

Unfortunately, the exact semi-analytical solution for
C(r, z, ϕ) (Appendix A) is difficult to analyze in the most
relevant regime R � L � ρ. Even its numerical computa-
tion becomes time consuming because the truncation size of
the infinite-dimensional matrix has to be large. To get a more
suitable expression for the flux, we apply the self-consistent
approximation (also known as the constant-flux approxima-
tion) originally devised by Shoup, Lipari, and Szabo47 and then
extensively adapted to first-passage time problems.45,46,48 The
accuracy of this approximation was investigated in Ref. 49.
The approximation consists in replacing the mixed Dirichlet-
Neumann conditions (2c) and (2d) on the lateral boundary at
z = 0 by an effective inhomogeneous Neumann condition. The
modified boundary value problem is simpler and admits an
exact explicit solution (see Appendix D for details). In partic-
ular, we derived the following expression for the normalized
flux Ψ:

Ψsca =
ρ

16R



∞∑
k=0

J2
1 (α0k ρ/R)

α3
0kJ2

1 (α0k)

(
1 +

e−α0kL/R

sinh(α0kL/R)

)

−1

, (9)

where α0k (k = 0, 1, 2, . . .) are the positive zeros of
the Bessel function J0(z) of the first kind. The exact solu-
tion of the modified problem, Ψsca, turns out to be a good
approximation for the factor Ψ of the original problem, as
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FIG. 3. (a) The normalized fluxΨ as a function of R/ρ and three values of L/ρ.
Full symbols show the exact semi-analytical solution in Eq. (A21) obtained
by truncating the matrices to the size 500 × 500 (we also checked that the
results are very close for truncation to 1000 × 1000); empty symbols present
the self-consistent approximation (9), in which the series is truncated after
10 000 terms; thick dashed lines illustrate the explicit approximation (11);
thin solid lines indicate Eq. (5) for two co-axial cylinders (note that the red
curve corresponding to L/ρ = 10 lies above 0.5 and is thus not visible). (b)
The same plot shown as a function of 1/ln(R/ρ).

illustrated by Fig. 3 (compare full and empty symbols). More-
over, this approximation is getting more accurate when ρ is
decreased (or R and L are increased), i.e., in the most relevant
regime.

Most importantly, the self-consistent approximation pro-
vides theoretical insights into the macroscopic reaction rate. In
particular, the monotonous decrease of the function e−z/sinh z
in Eq. (9) implies a monotonous increase of Ψsca and its
approach to a constant as L increases. In other words, a larger
separation between lateral boundaries increases the diffusive
flux onto the reactive region. Moreover, the two sums in Eq. (9)
can be approximately evaluated in the regime R � L � ρ.
In fact, the first slowly converging sum in Eq. (9) can be
accurately approximated for ρ/R . 0.1 as

∞∑
k=0

J2
1 (α0k ρ/R)

α3
0kJ2

1 (α0k)
'

2ρ
3πR

+ O
(
(ρ/R)2) . (10)

In turn, the second sum is exponentially converging so that for
small ρ/R, it can be approximated as

ρ2

4R2

∞∑
k=0

1

α0kJ2
1 (α0k)

e−α0kL/R

sinh(α0kL/R)
≈

ρ2

8RL
ln

( R
2L

)
,

where the last approximation is obtained numerically for
small L/R. Combining these asymptotic relations, one gets an
approximation

Ψapp '
1
2

( 16
3π

+
ρ

L
ln

( R
2L

))−1
(R � L � ρ). (11)

As illustrated in Fig. 3, this approximation is less accurate
than Eq. (9) but it is getting more and more accurate as R
increases. In contrast to the relation (6) for co-axial cylinders,
this explicit approximation correctly captures the dependence
of the normalized flux Ψ on both geometric parameters, L/ρ
and R/ρ, and can be used to estimate Ψ without resorting to
numerical solutions. Note also that the approximation (11) and
the expression (6) turn out to be the lower and the upper bounds
for the factor Ψ, respectively,

Ψapp ≤ Ψ ≤ Ψcyl. (12)

Although we have no rigorous proof for these inequalities,
they can be used for a rough estimate of the normalized
flux Ψ.

The approximation (11) highlights the main features of
the reaction rate J in our geometric setting. In the limit
L→∞, the factor Ψsca approaches a constant 3π/32 ≈ 0.2945
which is close to the exact value in Eq. (8). In turn, in the limit
R → ∞, the behavior of the factor Ψsca becomes similar to
Eq. (6) for co-axial cylinders, except that the radius ρ of the
reactive region is replaced by 2L under the logarithm. Most
importantly, the approach to the latter limit is extremely slow:
the constant A = 16/(3π) ≈ 1.7 can be neglected only when
R/L � 2 exp(AL /ρ). For instance, if L/ρ = 5, R/L needs to be
much larger than 106. In other words, whenever L/ρ& 5, the co-
axial approximation is not applicable, whereas the approxima-
tion (11) yields rather accurate results. We emphasize that the
limits L→∞ and R→∞ cannot be interchanged, their order is
important.

For illustrative purposes, we compute the diffusive flux
J for a realistic set of the model parameters: D = 800 µm2/s,
L = 50 nm, ρ = 3–50 nm, and R = 1–10 µm. Figure 4 shows
the diffusive flux as a function of the outer radius R for three
values of the radius ρ: 3 nm (a single receptor), 10 nm (a small
group of receptors), and 50 nm (a large cluster of receptors).
In the former case, the flux does not almost depend on the
outer radius, as expected for the regime R � L � ρ. In turn,
when the inner radius ρ becomes comparable to the inter-cell
distance L, a weak dependence on R emerges. One can see
that our approximation (11) accurately captures this behavior.

FIG. 4. The diffusive flux J toward the reactive region, normalized by the
concentration C0 at the outer surface, as a function of the outer radius R, with
L = 50 nm, D = 800 µm2/s, and three values of ρ: 3 nm (circles), 10 nm
(squares), and 50 nm (triangles). Solid lines show our approximation (11),
whereas dotted lines indicate Eq. (5) for two co-axial cylinders.
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For comparison, we also plot the flux from Eq. (5) for two co-
axial cylinders. Although this formula reproduces qualitatively
the behavior of the flux for ρ comparable to L, it strongly
over-estimates the flux for small ρ.

III. DISCUSSION

For a particular geometric shape of a junction (Fig. 1), we
obtained the exact semi-analytical solution for the steady-state
concentration of particles, diffusing from the outer bound-
ary of the junction to a reactive region on the surface. We
focused on the macroscopic reaction rate J and studied its
dependence on three geometric parameters: the radius ρ of the
reactive region and the radius R and height L of the junction.
This geometric shape falls in between two commonly stud-
ied limits: unrestricted diffusion in three-dimensional space
(L, R → ∞) and two-dimensional diffusion (L → 0). We
showed that none of the conventional expressions for the reac-
tion rate is applicable in the intermediate regime R� L � ρ,
which is the most relevant for many biological applications.
Using the self-consistent approximation, we managed to derive
an explicit simple approximation for the reaction rate J. For
a fixed L � ρ, this approximation highlights the extremely
slow decay of the reaction rate with the junction radius R. On
one hand, the very weak dependence on R suggests that this
parameter is irrelevant. On the other hand, one cannot fully
get rid of this parameter by setting R→∞ (as in the conven-
tional three-dimensional case) because the reaction rate would
vanish.

The derivation of both the semi-analytical solution and
self-consistent approximation relied on modeling the target
protein by a reactive disk located at the center of the lateral sur-
face. While this assumption may look oversimplistic, one can
argue that the shape and location of the reactive region are not
relevant in the regime R� L� ρ. For instance, the normalized
flux Ψ changes from 1/π ≈ 0.32 for a disk to 0.5 for a half-
sphere in the half-space (L, R→∞). Even if L is not infinitely
large, the dependence on the shape is expected to be weak. Sim-
ilarly, the displacement of the reactive region from the center
of the lateral surface would change the distance R − ρ from the
source to this region. If this distance is still much larger than
L and ρ, the reaction rate should not be much affected (see the
related discussion in Ref. 50 for planar diffusion, for which
an explicit solution can be obtained by a conformal mapping
even for a non-concentric reactive region; see also Ref. 51 and
references therein for other diffusion-reaction applications of
conformal mapping).

Another simplification consisted in considering perfect
reactions occurring immediately upon the first encounter with
the reactive region. In practice, a particle arriving onto the reac-
tive region has to overcome an energetic barrier to form a com-
plex and may fail to react and thus resume its diffusive motion.
This mechanism of imperfect reactions can be accounted for
via a finite reactivity κ in the Robin boundary condition on
the reactive region.34,37,52–56 For instance, the Smoluchowski
reaction rate JS is reduced by the factor 1 + D/(κρ) for
imperfect reactions.34 Both the semi-analytical solution and
self-consistent approximation can be easily adapted to this
problem (see Appendixes A and D for details). In particular,

applying the same analysis to the self-consistent approxima-
tion (D13), one can extend the approximation (11) to imperfect
reactions

Ψapp '
1
2

[
2D
κρ

+
16
3π

+
ρ

L
ln

( R
2L

)]−1

(R � L � ρ). (13)

As for a small sphere in R3, the binding process with the disk-
like reactive region becomes reaction-limited as ρ → 0 or
κ → 0, with the dominant term 2D/(κρ), independently of
other geometric parameters. Even if the reaction mechanism
is relatively fast so that the term 2D/(κρ) is of order 1, its pres-
ence can significantly affect the reaction rate. This highlights
the importance of accounting for imperfect reaction mecha-
nisms and potential pitfalls of considering reactions as perfect.
Note that we have put forward perfect reactions for clarity of
presentation, bearing in mind the provided extensions for the
imperfect case.

Finally, we focused on a single reactive site located on
the lateral surface. In biological applications, there are typi-
cally many reactive sites distributed over the surface. Even if
these sites are well separated from each other, the total dif-
fusive flux is not equal to the flux to a single site multiplied
by the number of sites. In fact, reactive sites compete for cap-
turing the diffusing particles that yields long-range diffusive
interactions between reactive sites.57–59 Moreover, the reactive
region located closer to the outer source can (partly) screen the
reactive sites in the central region.50,52,60 As a consequence,
the analysis of the steady-state diffusion equation with multi-
ple reactive regions is much more involved and often relies on
numerical solutions. Since this problem is beyond the scope of
the paper, we only mention that a region of the lateral surface
covered by uniformly distributed reactive sites can be mod-
eled as a large partially reactive region. In this homogenized
problem, the partial reactivity κ accounts for eventual reflec-
tions of diffusing particles on passive regions of the lateral
surface.

We have solved explicitly the diffusion-limited reaction
within a sheet. This problem is particularly relevant to the dif-
fusion of signaling molecules within organelles and to that of
glutamate and other neurotransmitters in the brain extracellular
spaces. The problem is solved semi-analytically as a function
of reactive region size, sheet thickness, and radial distance
to the source. Besides the exact solutions, simple expressions
for the thin- and thick-sheet asymptotics as well as the large
radial distance-to-source are provided. Some biologically rel-
evant conclusions are obtained. In particular, even though the
flux is monotonically decreasing with the radial distance-to-
source, the flux decay is very slow, making the reaction rate
practically insensitive to this distance. Thus, it is possible for
a cell system to dramatically reduce the area devoid of reac-
tive sites without a substantial effect on the adsorption flux.
Another important result is shown for the effect of the sheet
thickness. For very thin sheets, when the thickness is smaller
than the radius of the reactive region, the flux is proportional
to the sheet thickness and practically insensitive to the radius.
Therefore, within a thin sheet, the flux to a single protein is
in essence the same as that to a cluster of proteins and, as a
consequence, the cell would not gain anything by increasing
the number of target proteins within a single site. On the other
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hand, for large sheet thicknesses, the flux is proportional to
the radius of the reactive region. Finally, the solution to the
case where both the diffusion and adsorption rate play roles,
i.e., for the imperfect reaction, is also provided. This case is
particularly relevant for glutamate transporters that are known
to be limited by the velocity of glutamate transport across the
astrocytic membrane.
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APPENDIX A: SEMI-ANALYTICAL SOLUTION

In this appendix, we provide the mathematical derivation
of the macroscopic reaction rate on the target protein (the reac-
tive region Γ), which is located at the center of the surface, i.e.,
it is concentric with the junction domain Ω: Γ = {0 < r < ρ,
z = 0}. As a consequence, one can drop the dependence on
the angular coordinate ϕ, and the boundary value problem (2)
becomes(

∂2
r +

1
r
∂r + ∂2

z

)
u(r, z) = 0, (A1a)

u |r=R = 1, (A1b)

u |z=0 = 0 (0 < r < ρ), (A1c)

(∂zu) |z=0 = 0 (ρ < r < R), (A1d)

(∂zu) |z=L = 0, (A1e)

from which C(r, z, ϕ) = C0u(r, z). While the problem is classic,
the mixed Dirichlet-Neumann boundary conditions (A1c) and
(A1d) present the major technical difficulty.

To overcome this difficulty, it is convenient to split the
domain Ω into two parts: Ω1 = {0 < r < ρ, 0 < z < L}
and Ω2 = {ρ < r < R, 0 < z < L}. In the inner part Ω1, we
search a solution in the form satisfying Eqs. (A1a), (A1c), and
(A1e),

u1(r, z) =
∞∑

n=1

c(1)
n v (1)

n (r) sin(α(1)
n z/L), (A2)

where α(1)
n = π(n − 1/2),

v (1)
n (r) =

I0(α(1)
n r/L)

I0(α(1)
n ρ/L)

, (A3)

c(1)
n are unknown coefficients and Iν(z) are the modified Bessel

functions of the first kind. In the outer part Ω2, we search a
solution in the form satisfying Eqs. (A1a), (A1b), (A1d), and
(A1e),

u2(r, z) = 1 + c(2)
0 ln(r/R) +

∞∑
n=1

c(2)
n v (2)

n (r) cos(α(2)
n z/L), (A4)

where α(2)
n = πn,

v (2)
n (r) = K0(αnr/L) − I0(αnr/L)

K0(αnR/L)
I0(αnR/L)

, (A5)

c(2)
n are unknown coefficients, and Kν(z) are the modified

Bessel functions of the second kind.
The unknown coefficients can be determined by matching

two solutions at r = ρ,

u1(ρ, z) = u2(ρ, z), (A6a)

(∂ru1(r, z)) |r=ρ = (∂ru2(r, z)) |r=ρ. (A6b)

Substituting u1 and u2 into the first relation, multiplying by
sin(α(1)

m z/L), and integrating over z from 0 to L, one gets an
infinite system of linear equations

2

α(1)
m

(
1 + c(2)

0 ln(ρ/R)
)

+
∞∑

n=1

c(2)
n v (2)

n (ρ)Bnm = c(1)
m (A7)

for each m = 1, 2, . . ., where we have used that v (1)
m (ρ) = 1 and

B is the infinite-dimensional matrix with elements

Bnm =
2
L

L∫
0

dz sin(α(1)
m z/L) cos(α(2)

n z/L)

=
2α(1)

m

[α(1)
m ]2 − [α(2)

n ]2
, (A8)

because cos α(1)
n = sin α(2)

n = 0. Note that

BB† = I , B†B = I + C, (A9)

where I is the identity matrix, † denotes the matrix transposi-
tion, and

Cmn = −
2

α(1)
m α(1)

n

. (A10)

Next, substituting u1 and u2 into Eq. (A6b), multiplying by
cos(α(2)

m z/L), and integrating over z from 0 to L, one gets
another infinite system of linear equations

c(2)
m

(
∂rv

(2)
m (r)

)
|r=ρ =

∞∑
n=1

c(1)
n

(
∂rv

(1)
n (r)

)
|r=ρBmn (A11)

with m = 1, 2, . . .. Finally, the integral of Eq. (A6b) over z
from 0 to L yields

c(2)
0 = ρ

∞∑
n=1

c(1)
n (∂rv

(1)
n (r)) |r=ρ

α(1)
n

. (A12)

Combining these equations, one gets a closed infinite system
of linear equations for unknown c(1)

n ,

c(1)
m =

2

α(1)
m

+
2ρ ln(ρ/R)

α(1)
m

∞∑
n=1

c(1)
n

(∂rv
(1)
n (r)) |r=ρ

α(1)
n

+
∞∑

n=1

c(1)
n (∂rv

(1)
n (r)) |r=ρ

∞∑
n′=1

Bn′n
v (2)

n′ (ρ)

(∂rv
(2)
n′ (r)) |r=ρ

Bn′m.

Introducing diagonal matrices

V (1)
mn = δmn

1

L (∂rv
(1)
n (r)) |r=ρ

, (A13)

V (2)
mn = δmn

v (2)
n (ρ)

L(∂rv
(2)
n (r)) |r=ρ

, (A14)

one can rewrite the above equations in a matrix form as

c(1) = 2b + (ηC + B†V (2)B)(V (1))−1c(1), (A15)
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where

bn =
1

α(1)
n

, η = (ρ/L) ln(R/ρ) (A16)

and the matrix C is defined by Eq. (A10). One gets thus

c(1)
m = 2

[
V (1)Xb

]
m, (A17)

where
X =

(
V (1) − (ηC + B†V (2)B)

)−1. (A18)

From Eq. (A11), one also gets

c(2)
m =

2

L(∂rv
(2)
m (r))r=ρ

[
BXb

]
m, (A19)

while c(2)
0 is given according to Eq. (A12) as

c(2)
0 =

2ρ
L

(
b · Xb

)
. (A20)

The found coefficients c(1)
n and c(2)

n fully determine the solu-
tion u(r, z) of the boundary value problem (A1). Figure 5
shows the concentration profile u(r, z) for a reactive disk of
radius ρ = 1. One can see how the concentration drops from
1 at the outer cylinder (at r = R = 10) to 0 at the reactive
region.

The diffusive flux onto the reactive region reads

J = 2πC0D

ρ∫
0

dr r (∂zu1(r, z))z=0

= 2πC0Dρ
∞∑

n=1

c(1)
n

I1(α(1)
n ρ/L)

I0(α(1)
n ρ/L)

= 2πC0Dρ
∞∑

n=1

c(1)
n

L(∂rv
(1)
n (r))r=ρ

α(1)
n

= 4πC0Dρ
(
b · Xb

)
.

Dividing this expression by the Smoluchowski flux in Eq. (1),
one finds the normalized flux Ψ accounting for the shape of
the domain,

Ψ =
(
b · Xb

)
. (A21)

By construction, Ψ is equal to 1 for a reactive sphere of radius
ρ in the three-dimensional space. In our setting, the normal-
ized flux is a function of two geometric parameters, R/ρ and
L/ρ.

While the above solution of the boundary value problem
(A1) and the consequent expression (A21) for the normalized
flux Ψ are exact, they involve the inversion of an infinite-
dimensional matrix in Eq. (A18) that requires numerics. For

FIG. 5. Concentration u(r, z) for ρ = 1, R = 10, and L = 2.

this reason, the presented solution is called semi-analytical.
In practice, one needs to truncate infinite-dimensional matri-
ces and vectors and then compute numerically the normalized
flux Ψ and thus the flux J. The accuracy of this computation
is controlled by the truncation size and can be easily verified.
Although the dependence on the geometric parameters R/ρ and
L/ρ is “hidden” by the matrix inversion, this semi-analytical
solution is easily computable and thus allows one to explore
the shape dependence.

1. Limit R → ∞

In the limit R→∞, one has

v (2)
n (r) = K0(α(2)

n r/L) (A22)

so that

V (1)
mn = δmn

I0(α(1)
n ρ/L)

α(1)
n I1(α(1)

n ρ/L)
, (A23)

V (2)
mn = −δmn

K0(α(2)
n ρ/L)

α(2)
n K1(α(2)

n ρ/L)
. (A24)

While all the matrices remain well defined in this limit, the
factor η in the matrix X in Eq. (A18) diverges logarithmically.
Qualitatively, one can thus expect that the matrix X vanishes
logarithmically as well.

To clarify this point, we consider the regime L � ρ, for
which

V (1)
mn −→ (V (1)

0 )mn =
δmn

α(1)
n

,

V (2)
mn −→ (V (2)

0 )mn = −
δmn

α(2)
n

(this is also true in the limit n→∞).
In a first attempt, one can try to neglect all matrices in the

expression (A18) for X, except for the dominant term −ηC.
However, such an approximation is useless as the matrix C
is not invertible. For this reason, we neglect only the matrix
B†V (2)B. In fact, one can show that this matrix is asymptot-
ically comparable to the matrix C and thus can be neglected
as compared to C due to the large factor η in front of C. The
remaining matrix V (1) − ηC, truncated to the size N × N, can
be inverted explicitly, i.e.,

X̃ (N)
mn =

[(
V (1) − ηC

)−1
]

mn
= δmnα

(1)
n −

2η
1 − 2ηAN

, (A25)

where AN = 1/α(1)
1 + · · · + 1/α(1)

N [the sign tilde highlights
that this is an approximation, in which the matrix B†V (2)B
was neglected]. As a consequence, the normalized flux Ψ
becomes

ΨN =
AN

1 + 2ηAN
. (A26)

In the limit N → ∞, the series of 1/α(1)
k diverges logarithmi-

cally, i.e., AN → ∞, from which we retrieve the normalized
flux Ψ for two co-axial cylinders,

ΨN → Ψcyl =
1

2η
=

L/ρ
2 ln(R/ρ)

. (A27)

This is expected because the geometric setting R � ρ � L
resembles two-dimensional diffusion. However, getting cor-
rections to this limit due to the matrix B†V (2)B is a difficult
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technically involved problem which is beyond the scope of the
paper.

2. Limit R → ρ

When R → ρ, the outer subdomain Ω2 shrinks. Set-
ting R = ρ(1 + ε), the first-order expansions in powers of
ε are

η ' ρε/L, V (2)
mn = −δmnρε/L (A28)

so that

X =
(
V (1) + (ρε/L)I

)−1. (A29)

As a consequence, Eq. (A17) implies that c(1)
n → 2/α(1)

n as
ε→ 0 and thus

u(r, z) = u1(r, z) = 2
∞∑

n=1

v (1)
n (r)

α(1)
n

sin(α(1)
n z/L). (A30)

Moreover, Eq. (A21) yields the diffusive flux and the normal-
ized flux Ψ,

Ψ =
∑

n

1

(α(1)
n )2

(
ρε

L
+

I0(α(1)
n ρ/L)

α(1)
n I1(α(1)

n ρ/L)

)−1
. (A31)

This relation shows that the normalized flux diverges logarith-
mically with ε. We checked numerically that

Ψ ' −
1
π

ln ε + O(1) (ε → 0), (A32)

with ε = (R− ρ)/ρ and the constant term depending on ρ/L. The
divergence of the flux also follows from a direct computation
of J from the exact solution in Eq. (A30). In mathematical
terms, the divergence is related to the fact that at the circle
{r = ρ, z = 0}, the boundary conditions C = C0 at r = ρ and
C = 0 at z = 0 contradict each other.

3. Extension to partial reactivity

When the target protein is partially reactive (i.e., when
the reaction does not occur immediately upon the arrival
onto the reactive region), the Dirichlet boundary condition
(A1c) should be replaced by a more general Robin boundary
condition [

D(∂zu) − κu
]
|z=0 = 0 (0 < r < ρ), (A33)

where κ is the reactivity,34,37,52–56 which can vary from 0
(no reaction) to infinity (perfect reaction, as considered in
the main text). This extension affects only the solution (A2)
in the inner subdomain, in which sin(α(1)

n z/L) is replaced by
cos(α(1)

n (L − z)/L), where α(1)
n are now obtained as solutions

of the trigonometric equation

D
κL
α(1)

n sin α(1)
n = cos α(1)

n . (A34)

This change also affects the computation of the matrix B for
which Eq. (A8) is replaced by

Bnm =
2α(1)

m sin α(1)
m

[α(1)
m ]2 − [α(2)

n ]2
. (A35)

APPENDIX B: DISK IN THE HALF-SPACE

In the double limit L → ∞ and R → ∞, the problem is
reduced to the classic problem of electrified disk in the (half)-
space, for which the solution was found by Weber (see Ref. 61,
p. 64). In our notations, the solution in the upper half-space
reads

u(r, z) = 1 −
2
π

∞∫
0

dµ
µ

sin(µρ) e−µzJ0(µr). (B1)

This function satisfies the Laplace equation with the mixed
boundary conditions on the plane z = 0,

u(r, z)|z=0 = 0 (0 ≤ r < ρ),

(∂zu(r, z))|z=0 = 0 (r > ρ),
(B2)

and u(r, z) → 1 as r → ∞ or z → ∞. The flux density is
then

j(r) = DC0
2
π

∞∫
0

dµ sin(µρ) J0(µr)

=
2DC0

π
√
ρ2 − r2

(0 ≤ r < ρ), (B3)

whereas the diffusive flux is obtained by integration over the
disk,

Jdisk = 4DC0ρ. (B4)

We thus retrieved the particular case of the Hill formula.62

The flat shape of the disk reduced the factor Ψ from 1/2 for a
half-sphere to Ψdisk = 1/π ≈ 0.3183.

APPENDIX C: SOLUTION FOR AN OBLATE SPHEROID

As we mentioned in Appendix B, the particular choice of
the reactive region as a disk reduces the factor Ψ. In order to
illustrate the dependence on the shape of the reactive region,
we recall the solution of the steady-state diffusion equation for
an oblate spheroid in R3 (see Fig. 6). It is natural to use the
oblate spheroidal coordinates (µ, θ, ϕ) which are related to the
Cartesian coordinates via

x = a cosh µ cos θ cos ϕ,

y = a cosh µ cos θ sin ϕ,

z = a sin µ sin θ,

(C1)

FIG. 6. Oblate spheroid with major and minor semiaxes a+ and a−.
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whereas

cosh µ =
d+ + d−

2a
,

cos ν =
d+ − d−

2a
,

tan ϕ = y/x,

(C2)

with d± =
√

(ρ ± a)2 + z2 and ρ =
√

x2 + y2. Here µ varies
from 0 to infinity, ν from −π/2 to π/2, and ϕ from 0 to 2π.
Note that the oblate spheroid at a constant µ0 is obtained by
rotating ellipses about the z-axis. An ellipse in the x–z plane has
a major semiaxis of length a cosh µ0 along the x-axis, whereas
its minor semiaxis has length a sinh µ0 along the z-axis. The
foci of all the ellipses in the x–z plane are located on the
x-axis at ±a. In other words, if the major and minor semi-

axes are denoted as a±, one has a =
√

a2
+ − a2

− and µ0

= tanh−1(a−/a+).
Harmonic functions can be decomposed into the following

regular and singular functions:




Pm
n (i sinh µ) Pm

n (sin ν)eimφ (regular),

Qm
n (i sinh µ) Pm

n (sin ν)eimφ (singular),

where Pm
n and Qm

n are the Legendre functions of the first and
second kind, respectively. Since we are interested in a solution
outside the oblate spheroid, we use only singular functions.
Due to the symmetry of the boundary conditions, there is only
the contribution from m = n = 0, i.e.,

u = 1 −
Q0(i sinh µ)
Q0(i sinh µ0)

, (C3)

where µ0 determines the boundary ∂Ω of the oblate spheroid
and Q0(z) = 1

2 ln
( z+1

z−1

)
. This function solves the following

problem:
∆u = 0 (µ > µ0),

u|∂Ω = 0 (µ = µ0),

u|‖x ‖→∞ → 1.

(C4)

Note that

Q0(iz) =
i
2

cos−1
( z2 − 1

z2 + 1

)
(C5)

so that

Q0(i sinh µ) =
i
2

cos−1
(
1 −

2

cosh2 µ

)
=

i
2

cos−1
( (d+ + d−)2 − 8a2

(d+ + d−)2

)
. (C6)

The flux density onto the oblate spheroid is then

j = −C0D(∂nu)|∂Ω =
(
−C0D

hµ
∂µu

)
|µ=µ0

=
C0Di

hµ0 cosh µ0 Q0(i sinh µ0)
, (C7)

where hµ = a
√

sinh2 µ + sin2 ν. The diffusive flux is then

J =
∫
Γ

dνdφ hν hφ j

= 2πC0Da

π/2∫
−π/2

dν
i cos ν

Q0(i sinh µ0)
=

4πC0Dai
Q0(i sinh µ0)

, (C8)

where hν = a
√

sinh2 µ + sin2 ν and hφ = a cosh µ. Using the

relation µ0 = tanh−1(a−/a+) and Eq. (C6), one gets

Q0(i sinh µ0) =
i
2

cos−1
(2a2

−

a2
+

− 1
)
= i cos−1 (a−/a+

)
. (C9)

One thus retrieves the explicit form of the diffusive flux
discussed in Ref. 63,

J = 4πC0D

√
a2

+ − a2
−

cos−1(a−/a+)
. (C10)

In particular, one gets J = 8C0Da+ in the limit a− → 0, as
expected for the disk of radius a+. In the limit a− → a+, one
can write a− = a+(1 − ε) and then cos−1(1 − ε) ' 2

√
ε so

that the Smoluchowski rate is retrieved. Dividing the flux
by the Smoluchowski rate for a sphere of radius a+, one
gets

Ψoblate =

√
1 − (a−/a+)2

cos−1(a−/a+)
, (C11)

which varies from 2/π at a−/a+ = 0 (the disk) to 1 at a−/a+

= 1 (the sphere). This factor should be halved if one considers
a half of an oblate spheroid in the half-space.

APPENDIX D: SELF-CONSISTENT APPROXIMATION

We also provide an approximate but explicit solution to the
problem based on the self-consistent approximation originally
developed by Shoup, Lipari, and Szabo47 and then extensively
adapted to first-passage time problems.45,46,48 Within the self-
consisted approximation, the Dirichlet boundary condition at
the target protein is replaced by an approximate Neumann
condition with an unknown constant flux density ĵ. In other
words, the mixed Dirichlet-Neumann boundary conditions
(A1c) and (A1d) are replaced by inhomogeneous Neumann
condition

D(∂zû) |z=0 = ĵΘ(ρ − r), (D1)

where Θ is the Heaviside step function. The solution of the
modified boundary value problem (A1a), (A1b), (A1e), and
(D1), denoted as û, can be expressed through the Green
function G(x, x′) in the capped cylinder,

û(x) = 1 −
ĵ
D

∫
Γ

dx′G(x, x′), (D2)

where Γ is the reactive region and x = (r, z, ϕ) in cylindrical
coordinates. The Green function satisfies

− ∆xG(x, x′) = δ(x − x′), (D3)

subject to the Dirichlet boundary condition G(x, x′) = 0 at
r = R and Neumann boundary conditions ∂zG(x, x′) = 0 at
z = 0 and z = L. The latter can be expressed via the
corresponding Laplacian eigenfunctions

G(x, x′) =
∑
m,n,k

λ−1
mnkumnk(x) u∗mnk(x′), (D4)

where
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umnk(r, z, ϕ) = cmnk Jn(αnkr/R) cos(πmz/L) einϕ ,

λmnk = α
2
nk/R

2 + π2m2/L2,

where m = 0, 1, . . ., n = 0, 1, . . ., k = 0, 1, . . ., and cmnk are the
normalization constants,

cmnk =
εm

√
πLR2 Jn+1(αnk)

(D5)

(with εm =
√

2 for m > 0 and ε0 = 1), and αnk are
the positive zeros of the Bessel function Jn(z). We thus
get

û(r, z) = 1 −
ĵ
D

∑
m,n,k

λ−1
mnkumnk(r, z, ϕ)

ρ∫
0

dr ′ r ′
2π∫
0

dϕ′ u∗mnk(r ′, 0, ϕ′)

= 1 −
2πĵ
D

∑
m,k

c2
m0k

λm0k
J0(α0kr/R) cos(πmz/L)

ρ∫
0

dr ′ r ′J0(α0kr ′/R)

= 1 −
2πĵ
D

∑
m,k

c2
m0k

λm0k
J0(α0kr/R) cos(πmz/L)

ρJ1(α0k ρ/R)
α0k/R

= 1 −
2ĵρ
DLR

∑
m,k

ε2
m

λm0k

J0(α0kr/R)J1(α0k ρ/R)

α0kJ2
1 (α0k)

cos(πmz/L).

Using the identity for 0 ≤ x ≤ 1,
∞∑

m=1

cos(πmx)

(πm)2 + z2
=

cosh z(1 − x)
2z sinh z

−
1

2z2
, (D6)

one can evaluate the sum over m that yields

û(r, z) = 1 −
2ĵρ
D

∑
k

J0(α0kr/R)J1(α0k ρ/R)

α2
0kJ2

1 (α0k)

×
cosh α0k(L − z)/R

sinh α0kL/R
. (D7)

The yet unknown flux density ĵ is determined by imposing
that the solution û satisfies the Dirichlet boundary condition
on average, i.e.,

0 =
∫
Γ

dx û |z=0, (D8)

from which

ĵ
D
=

1
4R

(∑
k

J2
1 (α0k ρ/R)

α3
0kJ2

1 (α0k)
ctanh(α0kL/R)

)−1
. (D9)

Multiplying this flux density by the area of the reactive region,
one determines the diffusive flux of particles in the modified
problem,

Ĵ = C0πρ
2 ĵ. (D10)

From this flux, one gets Eq. (9) for the normalized flux Ψ.
In the case of imperfect reactions, one uses the same

inhomogeneous Neumann condition (D1) to substitute the
mixed Robin-Neumann boundary conditions (A1d) and (A33).
As a consequence, the solution (D7) of the modified prob-
lem remains the same, whereas the average Dirichlet condi-
tion (D8) determining the effective flux density ĵ is replaced
by

0 =
∫
Γ

dx
(
û −

D
κ
∂zû

)
|z=0

, (D11)

from which

ĵ
D
=

1
4R

( D
4κR

+
∑

k

J2
1 (α0k ρ/R)

α3
0kJ2

1 (α0k)
ctanh(α0kL/R)

)−1
(D12)

and thus

Ψsca =
1
2

(2D
κρ

+
8R
ρ

∑
k

J2
1 (α0k ρ/R)

α3
0kJ2

1 (α0k)
ctanh(α0kL/R)

)−1
.

(D13)
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