
Supplemental Material for the article “Semi-analytical com-
putation of Laplacian Green functions in three-dimensional
domains with disconnected spherical boundaries”

I. Technical derivations

I.1. Newton’s potential

We use the Laplace expansion for the Newton’s potential [74],
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where Li = y − xi, (Li,Θi,Φi) are the spherical coordinates of Li, r< = min(‖x −
xi‖, ‖Li‖) and r> = max(‖x− xi‖, ‖Li‖). For ri < Li, one has r< = ri and r> = Li so
that
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=
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from which Eq. (25) follows. If xi = 0, then this formula is reduced to
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In the opposite case ri > Li, one has r> = ri and r< = Li so that
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from which Eq. (59) follows.

I.2. Derivation of the harmonic measure density

Taking the derivative of Eq. (25) with respect to ri, one finds
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Similarly, the derivative of Eq. (24) with respect to ri yields
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that can also be written as
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Recalling Eq. (31), one gets a simpler form
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Combining these results, we get Eq. (34) for the harmonic measure density.

I.3. Computation of the flux

The flux of particles onto the ball Ωi is

Ji :=
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where we used Eqs. (109, 115). According to Eq. (42), the derivative of Aj
00 can be

expressed as a linear combination of the derivatives of V̂ k
mn. We show that
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∣

∣
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from which Eq. (116) follows. Indeed, for j = i, the integral is

Iiimn =

∫

∂Ωi

ds
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∂ri

)∣

∣

∣

∣

∣

ri=Ri

= δn0 δm0Ri. (S10)

For j 6= i, we use the addition theorem (20b) to get

Iijmn =
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∂Ωi
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j
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−
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∂ri
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= 0. (S11)

I.4. Residence time

We use Eqs. (32, 25, 20b) to write the residence time T in a ball ΩI of radius RI

centered at xI as

T (y) =
1

D
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dx

{

∑

n,m

V I
mnψ

+
mn(rI , θI , φI)

−
N
∑
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mn
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I
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N
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mnψ
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}

, (S12)
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where LIj = xj−xI , (LIj ,ΘIj ,ΦIj) are the spherical coordinates of LIj , LI = ‖y−xI‖,
and V I

mn is given by Eq. (26) which is modified for the ball ΩI .

I.5. Integrals over balls

One can compute the integral of ψ−mn(rj , θj , φj) over any ball ΩI (of radius RI and
centered at xI), which is not overlapping with the ball Ωj . In fact, denoting the local
spherical coordinates associated to ΩI as (rI , θI , φI), one can use the I→R addition
theorem (20b) for rI < LIj to write

∫

ΩI

dxψ−mn(rj , θj , φj) =
∑

l,k

U
(−j,+I)
mnkl

∫

ΩI

dxψ+
kl(rI , θI , φI)

=
4πR3

I

3
U

(−j,+I)
mn00 =

4πR3
I

3
ψ−mn(LIj ,ΘIj ,ΦIj), (S13)

where LIj = xj − xI , (LIj ,ΘIj ,ΦIj) are the spherical coordinates of LIj , and the
mixed-basis elements are given by Eq. (22b). Similarly, the integral over the sphere ∂ΩI

reads
∫

∂ΩI

dsψ−mn(rj , θj , φj) = 4πR2
I ψ

−
mn(LIj ,ΘIj ,ΦIj). (S14)

Now we consider a more complicated situation when Ωj ⊂ ΩI . We split the integration
domain ΩI into two subsets, Ω<

I and Ω>
I , such that

Ω<
I = {x ∈ ΩI : ‖x− xI‖ < LIj},

Ω>
I = {x ∈ ΩI : ‖x− xI‖ > LIj}.

(S15)

In each subset, we can use the appropriate addition theorem to compute the integral.
Using Eq. (20b) for rI < LIj and Eq. (20c) for rI > LIj , we have

∫

Ω<
I

dxψ−mn(rj , θj , φj) =
∑

l,k

U
(−j,+I)
mnkl

∫

Ω<
I

dxψ+
kl(rI , θI , φI) =

4π

3
L3
Ij U

(−j,+I)
mn00 (S16)

and

∫

Ω>
I

dxψ−mn(rj , θj , φj) =
∞
∑

l=n

m−n+l
∑

k=n+m−l

U
(−j,−I)
mnkl

∫

Ω>
I

dxψ−kl(rI , θI , φI) (S17)

=

∞
∑

l=n

m−n+l
∑

k=n+m−l

U
(−j,−I)
mnkl 2πδl0δk0(R

2
I − L

2
Ij) = δn0δm0 2π(R

2
I − L

2
Ij),

where we used U
(−j,−I)
0000 = 1.

One may also need to compute the integral of ψ−mn(rj , θj , φj) over ΩI without any
ball Ωi:

Ω̃I = ΩI\
N
⋃

i=1

Ωi. (S18)
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We only consider the case when each ball Ωi can be either included into ΩI (i.e., Ωi ⊂ ΩI),
or lie outside ΩI (i.e., Ωi ∩ ΩI = ∅). In other words, we do not allow the ball ΩI to cut
any ball Ωi. In this case, the integral over Ω̃I is simply the integral over ΩI minus the
integrals over each Ωi. First, we have

∫

Ωj

dxψ−mn(rj , θj , φj) = δn0 δm0 2πR
2
J (S19)

(although ψ−mn is singular at rj = 0, this singularity is integrable for n = 0 due to
the radial weight r2, whereas the symmetry of the integration domain Ωj cancels the
contribution from other harmonics with n > 0). Second, the integral of ψ−mn(rj , θj , φj)
over Ωi (with i 6= j) is given by Eq. (S13). Combining all these results, we get

∫

Ω̃I

dxψ−mn(rj , θj , φj) = 4π

{

δn0δm0

R2
I − L

2
Ij −R

2
J

2
+ U

(−j,+I)
mn00

L3
Ij

3
−

∑

i

R3
i

3
U

(−j,+i)
mn00

}

,

(S20)

where the last sum is taken over the balls Ωi (except Ωj) which are included in ΩI . This
formula allows one to integrate the solution over any ball ΩI that does not cut balls Ωi.

Using the addition theorem (20c), one can compute an integral over a large sphere
∂ΩI that englobes a ball Ωj . In fact, since RI > LIj because Ωj ⊂ ΩI , one has

∫

∂ΩI

dsψ−mn(rj , θj , φj) =
∞
∑

l=n

m−n+l
∑

k=n+m−l

U
(−j,−i)
mnkl

∫

∂ΩI

dsψ−kl(rI , θI , φI) = 4πRI δn0, (S21)

the last equality coming from the rotation symmetry of spherical harmonics Ykl and from

the identity U
(−I,−i)
0000 = 1. Note that this result depends neither on the location, nor on

the radius of the ball Ωj .

II. Monopole approximation for interior problems

The monopole approximation for the interior problem of finding chemical reaction
rates was discussed in [48, 49, 117]. Here, we briefly present its extension for computing
the Green function.

For the interior problem, one needs to modify the elements of Û and V̂ corresponding
to the outer boundary ∂Ω0:

Û i0
0000 = Ri (i > 0), Û0j

0000 =
1

R0
(j > 0), V̂ 0

00 =
1

4πR0
. (S22)

With this modification, the boundary conditions read

(ai + bi)A
i
00 + aiRi

N
∑

j( 6=i)=1

L−1
ij A

j
00 + aiRiA

0
00 =

aiRi

4πLi0
(i = 1, N), (S23a)

a0A
0
00 +

a0 − b0
R0

N
∑

j=1

L−1
ij A

j
00 =

a0 − b0
4πR0

. (S23b)
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If a0 6= 0, one can express A0
00 from the last equation and substitute it into the former

ones that yields a closed system of linear equations on Ai
00 for i = 1, N :

(

ai + bi
Ri

− c0

)

Ai
00 + ai

N
∑

j( 6=i)=1

(

1

Lij

− c0

)

Aj
00 =

ai
4π

(

1

Li0
− c0

)

, (S24)

with c0 = (a0 − b0)/R0.
Finally, if a0 = 0 (i.e., the Neumann boundary condition at the outer boundary), the

last relation in Eq. (S23) is reduced to

N
∑

j=1

Aj
00 =

1

4π
. (S25)

In this case, Eqs. (S23) can be written as

Ai
00 + ci

N
∑

j( 6=i)=1

L−1
ij A

j
00 + ciA

0
00 =

ci
4πLi0

(i = 1, N), (S26)

with ci = aiRi/(ai + bi) (for i = 1, N). Summing these equations over i from 1 to N ,
one gets

1

4π
+

N
∑

i=1

ci

N
∑

j( 6=i)=1

L−1
ij A

j
00 + CA0

00 =

N
∑

i=1

ci
4πLi0

, (S27)

where C = c1 + . . .+ cN . Expressing A0
00 from this relation, one gets a closed system of

linear equations on Ai
00 for i = 1, N :

Ai
00 + ci

N
∑

j( 6=i)=1

L−1
ij A

j
00 +

ci
C





N
∑

k=1

ck
4πLk0

−
1

4π
−

N
∑

k=1

ck

N
∑

j( 6=k)=1

L−1
kj A

j
00



 =
ci

4πLi0
,

(S28)
or

Ai
00 + ci

N
∑

j( 6=i)=1

L−1
ij A

j
00 −

ci
C

N
∑

j=1

Aj
00

N
∑

k( 6=j)=1

ckL
−1
kj =

ci
4πLi0

−
ci
C

(

N
∑

k=1

ck
4πLk0

−
1

4π

)

,

(S29)
or

Ai
00

(

1−
ci
ℓi

)

+ ci

N
∑

j( 6=i)=1

Aj
00

(

L−1
ij −

ci
ℓj

)

=
ci
4π

(

1

Li0
+ 1−

1

C

N
∑

k=1

ck
Lk0

)

, (S30)

where we denoted

ℓ−1
j =

1

C

N
∑

k( 6=j)=1

ckL
−1
kj . (S31)
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