Supplemental Material for the article "Semi-analytical computation of Laplacian Green functions in three-dimensional domains with disconnected spherical boundaries"

I. Technical derivations

I.1. Newton's potential

We use the Laplace expansion for the Newton's potential [74],

$$
\begin{equation*}
\frac{1}{\|\boldsymbol{x}-\boldsymbol{y}\|}=\frac{1}{\left\|\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)-\boldsymbol{L}_{i}\right\|}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} \frac{r_{<}^{n}}{r_{>}^{n+1}} Y_{(-m) n}\left(\Theta_{i}, \Phi_{i}\right) Y_{m n}\left(\theta_{i}, \phi_{i}\right), \tag{S1}
\end{equation*}
$$

where $\boldsymbol{L}_{i}=\boldsymbol{y}-\boldsymbol{x}_{i},\left(L_{i}, \Theta_{i}, \Phi_{i}\right)$ are the spherical coordinates of $\boldsymbol{L}_{i}, r_{<}=\min (\| \boldsymbol{x}-$ $\left.\boldsymbol{x}_{i}\|,\| \boldsymbol{L}_{i} \|\right)$ and $r_{>}=\max \left(\left\|\boldsymbol{x}-\boldsymbol{x}_{i}\right\|,\left\|\boldsymbol{L}_{i}\right\|\right)$. For $r_{i}<L_{i}$, one has $r_{<}=r_{i}$ and $r_{>}=L_{i}$ so that

$$
\begin{equation*}
\frac{1}{\|\boldsymbol{x}-\boldsymbol{y}\|}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} \psi_{(-m) n}^{-}\left(L_{i}, \Theta_{i}, \Phi_{i}\right) \psi_{m n}^{+}\left(r_{i}, \theta_{i}, \phi_{i}\right), \tag{S2}
\end{equation*}
$$

from which Eq. (25) follows. If $\boldsymbol{x}_{i}=0$, then this formula is reduced to

$$
\begin{equation*}
\mathcal{G}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{4 \pi} \sum_{n=0}^{\infty} P_{n}\left(\frac{(\boldsymbol{x} \cdot \boldsymbol{y})}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}\right) \frac{\min \{\|\boldsymbol{x}\|,\|\boldsymbol{y}\|\}^{n}}{\max \{\|\boldsymbol{x}\|,\|\boldsymbol{y}\|\}^{n+1}} . \tag{S3}
\end{equation*}
$$

In the opposite case $r_{i}>L_{i}$, one has $r_{>}=r_{i}$ and $r_{<}=L_{i}$ so that

$$
\begin{equation*}
\frac{1}{\|\boldsymbol{x}-\boldsymbol{y}\|}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} \psi_{(-m) n}^{+}\left(L_{i}, \Theta_{i}, \Phi_{i}\right) \psi_{m n}^{-}\left(r_{i}, \theta_{i}, \phi_{i}\right), \tag{S4}
\end{equation*}
$$

from which Eq. (59) follows.

I.2. Derivation of the harmonic measure density

Taking the derivative of Eq. (25) with respect to r_{i}, one finds

$$
\begin{equation*}
\left.\left(\frac{\partial \mathcal{G}(\boldsymbol{x} ; \boldsymbol{y})}{\partial \boldsymbol{n}_{\boldsymbol{x}}}\right)\right|_{\boldsymbol{x} \in \partial \Omega_{i}}=-\sum_{n, m} n V_{m n}^{i} \psi_{m n}^{-}\left(1, \theta_{i}, \phi_{i}\right) \tag{S5}
\end{equation*}
$$

Similarly, the derivative of Eq. (24) with respect to r_{i} yields

$$
\begin{aligned}
& \left.\left(\frac{\partial g(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{n}_{\boldsymbol{x}}}\right)\right|_{\partial \Omega_{i}}=\left.\left(\frac{\partial g_{i}\left(r_{i}, \theta_{i}, \phi_{i} ; \boldsymbol{y}\right)}{\partial \boldsymbol{n}_{\boldsymbol{x}}}\right)\right|_{\partial \Omega_{i}}+\left.\sum_{j=1, j \neq i}^{N}\left(\frac{\partial}{\partial \boldsymbol{n}_{\boldsymbol{x}}} g_{j}\left(r_{j}, \theta_{j}, \phi_{j} ; \boldsymbol{y}\right)\right)\right|_{\partial \Omega_{i}} \\
& =\left.\frac{\partial}{\partial \boldsymbol{n}_{\boldsymbol{x}}} \sum_{n, m}\left\{A_{m n}^{i} \psi_{m n}^{-}\left(r_{i}, \theta_{i}, \phi_{i}\right)+\left(\sum_{j=1, j \neq i}^{N} \sum_{l, k} A_{k l}^{j} U_{k l m n}^{(-j,+i)}\right) \psi_{m n}^{+}\left(r_{i}, \theta_{i}, \phi_{i}\right)\right\}\right|_{\partial \Omega_{i}} \\
& =\frac{1}{R_{i}} \sum_{n, m}\left\{(n+1) A_{m n}^{i} \psi_{m n}^{-}\left(R_{i}, \theta_{i}, \phi_{i}\right)-n\left(\sum_{j=1, j \neq i}^{N} \sum_{l, k} A_{k l}^{j} U_{k l m n}^{(-j,+i)}\right) \psi_{m n}^{+}\left(R_{i}, \theta_{i}, \phi_{i}\right)\right\} \\
& =\frac{1}{R_{i}} \sum_{n, m}\left\{(n+1) A_{m n}^{i}-n\left(\sum_{j=1, j \neq i}^{N} \sum_{l, k} \hat{U}_{m n k l}^{i j} A_{k l}^{j}\right)\right\} \psi_{m n}^{-}\left(R_{i}, \theta_{i}, \phi_{i}\right),
\end{aligned}
$$

that can also be written as

$$
\begin{equation*}
\left.\left(\frac{\partial g(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{n}_{\boldsymbol{x}}}\right)\right|_{\partial \Omega_{i}}=\frac{1}{R_{i}} \sum_{n, m}\left\{(2 n+1) A_{m n}^{i}-n(\hat{\mathbf{U}} \mathbf{A})_{m n}^{i}\right\} \psi_{m n}^{-}\left(R_{i}, \theta_{i}, \phi_{i}\right) \tag{S6}
\end{equation*}
$$

Recalling Eq. (31), one gets a simpler form

$$
\begin{equation*}
\left.\left(\frac{\partial g(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{n}_{\boldsymbol{x}}}\right)\right|_{\partial \Omega_{i}}=\frac{1}{R_{i}} \sum_{n, m}\left[(2 n+1) A_{m n}^{i}-n \hat{V}_{m n}^{i}\right] \psi_{m n}^{-}\left(R_{i}, \theta_{i}, \phi_{i}\right) \tag{S7}
\end{equation*}
$$

Combining these results, we get Eq. (34) for the harmonic measure density.

I.3. Computation of the flux

The flux of particles onto the ball Ω_{i} is

$$
\begin{align*}
J_{i} & :=\left.\int_{\partial \Omega_{i}} d \boldsymbol{s}\left(-D \frac{\partial n}{\partial \boldsymbol{n}_{\boldsymbol{y}}}\right)\right|_{\boldsymbol{y}=\boldsymbol{s}}=-\left.n_{0} D \int_{\partial \Omega_{i}} d \boldsymbol{s}\left(\frac{\partial P_{\infty}}{\partial \boldsymbol{n}_{\boldsymbol{y}}}\right)\right|_{\boldsymbol{y}=\boldsymbol{s}} \\
& =\left.4 \pi n_{0} D \sum_{j=1}^{N} \int_{\partial \Omega_{i}} d \boldsymbol{s}\left(\frac{\partial A_{00}^{j}}{\partial \boldsymbol{n}_{\boldsymbol{y}}}\right)\right|_{\boldsymbol{y}=\boldsymbol{s}}, \tag{S8}
\end{align*}
$$

where we used Eqs. (109, 115). According to Eq. (42), the derivative of A_{00}^{j} can be expressed as a linear combination of the derivatives of $\hat{V}_{m n}^{k}$. We show that

$$
\begin{equation*}
I_{m n}^{i j}:=\left.\int_{\partial \Omega_{i}} d s\left(\frac{\partial \hat{V}_{m n}^{j}}{\partial \boldsymbol{n}_{\boldsymbol{y}}}\right)\right|_{\boldsymbol{y}=\boldsymbol{s}}=\delta_{n 0} \delta_{m 0} \delta_{i j} R_{i} \tag{S9}
\end{equation*}
$$

from which Eq. (116) follows. Indeed, for $j=i$, the integral is

$$
\begin{equation*}
I_{m n}^{i i}=\left.\int_{\partial \Omega_{i}} d s \frac{(-1)^{m}}{4 \pi} R_{i}^{2 n+1}\left(-\frac{\partial \psi_{(-m) n}^{-}\left(r_{i}, \theta_{i}, \phi_{i}\right)}{\partial r_{i}}\right)\right|_{r_{i}=R_{i}}=\delta_{n 0} \delta_{m 0} R_{i} \tag{S10}
\end{equation*}
$$

For $j \neq i$, we use the addition theorem (20b) to get

$$
\begin{equation*}
I_{m n}^{i j}=\int_{\partial \Omega_{i}} d s \frac{(-1)^{m}}{4 \pi} R_{j}^{2 n+1} \sum_{l, k} U_{(-m) n k l}^{(-j,+i)}\left(-\frac{\partial \psi_{k l}^{+}\left(r_{i}, \theta_{i}, \phi_{i}\right)}{\partial r_{i}}\right)=0 . \tag{S11}
\end{equation*}
$$

I.4. Residence time

We use Eqs. (32, 25, 20b) to write the residence time \mathcal{T} in a ball Ω_{I} of radius R_{I} centered at \boldsymbol{x}_{I} as

$$
\begin{align*}
\mathcal{T}(\boldsymbol{y}) & =\frac{1}{D} \int_{\Omega_{I}} d \boldsymbol{x} G(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{D} \int_{\Omega_{I}} d \boldsymbol{x}\left\{\sum_{n, m} V_{m n}^{I} \psi_{m n}^{+}\left(r_{I}, \theta_{I}, \phi_{I}\right)\right. \\
& \left.-\sum_{j=1}^{N} \sum_{n, m} A_{m n}^{j} \sum_{l, k} U_{m n k l}^{(-j,+I)} \psi_{k l}^{+}\left(r_{I}, \theta_{I}, \phi_{I}\right)\right\} \\
& =\frac{4 \pi R_{I}^{3}}{3 D}\left\{\frac{1}{4 \pi L_{I}}-\sum_{j=1}^{N} \sum_{n, m} A_{m n}^{j} \psi_{m n}^{-}\left(L_{I j}, \Theta_{I j}, \Phi_{I j}\right)\right\} \tag{S12}
\end{align*}
$$

where $\boldsymbol{L}_{I j}=\boldsymbol{x}_{j}-\boldsymbol{x}_{I},\left(L_{I j}, \Theta_{I j}, \Phi_{I j}\right)$ are the spherical coordinates of $\boldsymbol{L}_{I j}, L_{I}=\left\|\boldsymbol{y}-\boldsymbol{x}_{I}\right\|$, and $V_{m n}^{I}$ is given by Eq. (26) which is modified for the ball Ω_{I}.

I.5. Integrals over balls

One can compute the integral of $\psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)$ over any ball Ω_{I} (of radius R_{I} and centered at \boldsymbol{x}_{I}), which is not overlapping with the ball Ω_{j}. In fact, denoting the local spherical coordinates associated to Ω_{I} as $\left(r_{I}, \theta_{I}, \phi_{I}\right)$, one can use the $\mathrm{I} \rightarrow \mathrm{R}$ addition theorem (20b) for $r_{I}<L_{I j}$ to write

$$
\begin{align*}
\int_{\Omega_{I}} d \boldsymbol{x} \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right) & =\sum_{l, k} U_{m n k l}^{(-j,+I)} \int_{\Omega_{I}} d \boldsymbol{x} \psi_{k l}^{+}\left(r_{I}, \theta_{I}, \phi_{I}\right) \\
& =\frac{4 \pi R_{I}^{3}}{3} U_{m n 00}^{(-j,+I)}=\frac{4 \pi R_{I}^{3}}{3} \psi_{m n}^{-}\left(L_{I j}, \Theta_{I j}, \Phi_{I j}\right), \tag{S13}
\end{align*}
$$

where $\boldsymbol{L}_{I j}=\boldsymbol{x}_{j}-\boldsymbol{x}_{I},\left(L_{I j}, \Theta_{I j}, \Phi_{I j}\right)$ are the spherical coordinates of $\boldsymbol{L}_{I j}$, and the mixed-basis elements are given by Eq. (22b). Similarly, the integral over the sphere $\partial \Omega_{I}$ reads

$$
\begin{equation*}
\int_{\partial \Omega_{I}} d \boldsymbol{s} \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)=4 \pi R_{I}^{2} \psi_{m n}^{-}\left(L_{I j}, \Theta_{I j}, \Phi_{I j}\right) . \tag{S14}
\end{equation*}
$$

Now we consider a more complicated situation when $\Omega_{j} \subset \Omega_{I}$. We split the integration domain Ω_{I} into two subsets, $\Omega_{I}^{<}$and $\Omega_{I}^{>}$, such that

$$
\begin{align*}
& \Omega_{I}^{<}=\left\{\boldsymbol{x} \in \Omega_{I}:\left\|\boldsymbol{x}-\boldsymbol{x}_{I}\right\|<L_{I j}\right\}, \\
& \Omega_{I}^{>}=\left\{\boldsymbol{x} \in \Omega_{I}:\left\|\boldsymbol{x}-\boldsymbol{x}_{I}\right\|>L_{I j}\right\} . \tag{S15}
\end{align*}
$$

In each subset, we can use the appropriate addition theorem to compute the integral. Using Eq. (20b) for $r_{I}<L_{I j}$ and Eq. (20c) for $r_{I}>L_{I j}$, we have

$$
\begin{equation*}
\int_{\Omega_{I}^{<}} d \boldsymbol{x} \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)=\sum_{l, k} U_{m n k l}^{(-j,+I)} \int_{\Omega_{I}^{<}} d \boldsymbol{x} \psi_{k l}^{+}\left(r_{I}, \theta_{I}, \phi_{I}\right)=\frac{4 \pi}{3} L_{I j}^{3} U_{m n 00}^{(-j,+I)} \tag{S16}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{\Omega_{I}^{>}} d \boldsymbol{x} \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right) & =\sum_{l=n}^{\infty} \sum_{k=n+m-l}^{m-n+l} U_{m n k l}^{(-j,-I)} \int_{\Omega_{I}^{>}} d \boldsymbol{x} \psi_{k l}^{-}\left(r_{I}, \theta_{I}, \phi_{I}\right) \tag{S17}\\
& =\sum_{l=n}^{\infty} \sum_{k=n+m-l}^{m-n+l} U_{m n k l}^{(-j,-I)} 2 \pi \delta_{l 0} \delta_{k 0}\left(R_{I}^{2}-L_{I j}^{2}\right)=\delta_{n 0} \delta_{m 0} 2 \pi\left(R_{I}^{2}-L_{I j}^{2}\right),
\end{align*}
$$

where we used $U_{0000}^{(-j,-I)}=1$.
One may also need to compute the integral of $\psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)$ over Ω_{I} without any ball Ω_{i} :

$$
\begin{equation*}
\tilde{\Omega}_{I}=\Omega_{I} \backslash \bigcup_{i=1}^{N} \Omega_{i} \tag{S18}
\end{equation*}
$$

We only consider the case when each ball Ω_{i} can be either included into Ω_{I} (i.e., $\Omega_{i} \subset \Omega_{I}$), or lie outside Ω_{I} (i.e., $\Omega_{i} \cap \Omega_{I}=\emptyset$). In other words, we do not allow the ball Ω_{I} to cut any ball Ω_{i}. In this case, the integral over $\tilde{\Omega}_{I}$ is simply the integral over Ω_{I} minus the integrals over each Ω_{i}. First, we have

$$
\begin{equation*}
\int_{\Omega_{j}} d \boldsymbol{x} \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)=\delta_{n 0} \delta_{m 0} 2 \pi R_{J}^{2} \tag{S19}
\end{equation*}
$$

(although $\psi_{m n}^{-}$is singular at $r_{j}=0$, this singularity is integrable for $n=0$ due to the radial weight r^{2}, whereas the symmetry of the integration domain Ω_{j} cancels the contribution from other harmonics with $n>0)$. Second, the integral of $\psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)$ over Ω_{i} (with $i \neq j$) is given by Eq. (S13). Combining all these results, we get

$$
\begin{equation*}
\int_{\tilde{\Omega}_{I}} d \boldsymbol{x} \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)=4 \pi\left\{\delta_{n 0} \delta_{m 0} \frac{R_{I}^{2}-L_{I j}^{2}-R_{J}^{2}}{2}+U_{m n 00}^{(-j,+I)} \frac{L_{I j}^{3}}{3}-\sum_{i} \frac{R_{i}^{3}}{3} U_{m n 00}^{(-j,+i)}\right\} \tag{S20}
\end{equation*}
$$

where the last sum is taken over the balls Ω_{i} (except Ω_{j}) which are included in Ω_{I}. This formula allows one to integrate the solution over any ball Ω_{I} that does not cut balls Ω_{i}.

Using the addition theorem (20c), one can compute an integral over a large sphere $\partial \Omega_{I}$ that englobes a ball Ω_{j}. In fact, since $R_{I}>L_{I j}$ because $\Omega_{j} \subset \Omega_{I}$, one has

$$
\begin{equation*}
\int_{\partial \Omega_{I}} d s \psi_{m n}^{-}\left(r_{j}, \theta_{j}, \phi_{j}\right)=\sum_{l=n}^{\infty} \sum_{k=n+m-l}^{m-n+l} U_{m n k l}^{(-j,-i)} \int_{\partial \Omega_{I}} d s \psi_{k l}^{-}\left(r_{I}, \theta_{I}, \phi_{I}\right)=4 \pi R_{I} \delta_{n 0} \tag{S21}
\end{equation*}
$$

the last equality coming from the rotation symmetry of spherical harmonics $Y_{k l}$ and from the identity $U_{0000}^{(-I,-i)}=1$. Note that this result depends neither on the location, nor on the radius of the ball Ω_{j}.

II. Monopole approximation for interior problems

The monopole approximation for the interior problem of finding chemical reaction rates was discussed in $[48,49,117]$. Here, we briefly present its extension for computing the Green function.

For the interior problem, one needs to modify the elements of $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ corresponding to the outer boundary $\partial \Omega_{0}$:

$$
\begin{equation*}
\hat{U}_{0000}^{i 0}=R_{i} \quad(i>0), \quad \hat{U}_{0000}^{0 j}=\frac{1}{R_{0}} \quad(j>0), \quad \hat{V}_{00}^{0}=\frac{1}{4 \pi R_{0}} \tag{S22}
\end{equation*}
$$

With this modification, the boundary conditions read

$$
\begin{align*}
\left(a_{i}+b_{i}\right) A_{00}^{i}+a_{i} R_{i} \sum_{j(\neq i)=1}^{N} L_{i j}^{-1} A_{00}^{j}+a_{i} R_{i} A_{00}^{0} & =\frac{a_{i} R_{i}}{4 \pi L_{i 0}} \quad(i=\overline{1, N}), \tag{S23a}\\
a_{0} A_{00}^{0}+\frac{a_{0}-b_{0}}{R_{0}} \sum_{j=1}^{N} L_{i j}^{-1} A_{00}^{j} & =\frac{a_{0}-b_{0}}{4 \pi R_{0}} . \tag{S23b}
\end{align*}
$$

If $a_{0} \neq 0$, one can express A_{00}^{0} from the last equation and substitute it into the former ones that yields a closed system of linear equations on A_{00}^{i} for $i=\overline{1, N}$:

$$
\begin{equation*}
\left(\frac{a_{i}+b_{i}}{R_{i}}-c_{0}\right) A_{00}^{i}+a_{i} \sum_{j(\neq i)=1}^{N}\left(\frac{1}{L_{i j}}-c_{0}\right) A_{00}^{j}=\frac{a_{i}}{4 \pi}\left(\frac{1}{L_{i 0}}-c_{0}\right), \tag{S24}
\end{equation*}
$$

with $c_{0}=\left(a_{0}-b_{0}\right) / R_{0}$.
Finally, if $a_{0}=0$ (i.e., the Neumann boundary condition at the outer boundary), the last relation in Eq. (S23) is reduced to

$$
\begin{equation*}
\sum_{j=1}^{N} A_{00}^{j}=\frac{1}{4 \pi} \tag{S25}
\end{equation*}
$$

In this case, Eqs. (S23) can be written as

$$
\begin{equation*}
A_{00}^{i}+c_{i} \sum_{j(\neq i)=1}^{N} L_{i j}^{-1} A_{00}^{j}+c_{i} A_{00}^{0}=\frac{c_{i}}{4 \pi L_{i 0}} \quad(i=\overline{1, N}) \tag{S26}
\end{equation*}
$$

with $c_{i}=a_{i} R_{i} /\left(a_{i}+b_{i}\right)($ for $i=\overline{1, N})$. Summing these equations over i from 1 to N, one gets

$$
\begin{equation*}
\frac{1}{4 \pi}+\sum_{i=1}^{N} c_{i} \sum_{j(\neq i)=1}^{N} L_{i j}^{-1} A_{00}^{j}+C A_{00}^{0}=\sum_{i=1}^{N} \frac{c_{i}}{4 \pi L_{i 0}} \tag{S27}
\end{equation*}
$$

where $C=c_{1}+\ldots+c_{N}$. Expressing A_{00}^{0} from this relation, one gets a closed system of linear equations on A_{00}^{i} for $i=\overline{1, N}$:

$$
\begin{equation*}
A_{00}^{i}+c_{i} \sum_{j(\neq i)=1}^{N} L_{i j}^{-1} A_{00}^{j}+\frac{c_{i}}{C}\left(\sum_{k=1}^{N} \frac{c_{k}}{4 \pi L_{k 0}}-\frac{1}{4 \pi}-\sum_{k=1}^{N} c_{k} \sum_{j(\neq k)=1}^{N} L_{k j}^{-1} A_{00}^{j}\right)=\frac{c_{i}}{4 \pi L_{i 0}} \tag{S28}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{00}^{i}+c_{i} \sum_{j(\neq i)=1}^{N} L_{i j}^{-1} A_{00}^{j}-\frac{c_{i}}{C} \sum_{j=1}^{N} A_{00}^{j} \sum_{k(\neq j)=1}^{N} c_{k} L_{k j}^{-1}=\frac{c_{i}}{4 \pi L_{i 0}}-\frac{c_{i}}{C}\left(\sum_{k=1}^{N} \frac{c_{k}}{4 \pi L_{k 0}}-\frac{1}{4 \pi}\right) \tag{S29}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{00}^{i}\left(1-\frac{c_{i}}{\ell_{i}}\right)+c_{i} \sum_{j(\neq i)=1}^{N} A_{00}^{j}\left(L_{i j}^{-1}-\frac{c_{i}}{\ell_{j}}\right)=\frac{c_{i}}{4 \pi}\left(\frac{1}{L_{i 0}}+1-\frac{1}{C} \sum_{k=1}^{N} \frac{c_{k}}{L_{k 0}}\right) \tag{S30}
\end{equation*}
$$

where we denoted

$$
\begin{equation*}
\ell_{j}^{-1}=\frac{1}{C} \sum_{k(\neq j)=1}^{N} c_{k} L_{k j}^{-1} \tag{S31}
\end{equation*}
$$

