Supplemental Material for the article “Semi-analytical com-
putation of Laplacian Green functions in three-dimensional
domains with disconnected spherical boundaries”

I. Technical derivations

1.1. Newton’s potential
We use the Laplace expansion for the Newton’s potential [74],
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where L; = y — x;, (L;,0;,®;) are the spherical coordinates of L;, r« = min(||x —
x|, | L;||) and r~ = max(||x — x;||, || L;||). For r; < L;, one has r- = r; and r~ = L; so
that
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from which Eq. (25) follows. If @; = 0, then this formula is reduced to
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In the opposite case r; > L;, one has r~ = r; and r- = L; so that
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from which Eq. (59) follows.
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1.2. Derivation of the harmonic measure density
Taking the derivative of Eq. (25) with respect to r;, one finds
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Similarly, the derivative of Eq. (24) with respect to r; yields
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that can also be written as
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Recalling Eq. (31), one gets a simpler form
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Combining these results, we get Eq. (34) for the harmonic measure density.
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1.3. Computation of the flux
The flux of particles onto the ball ; is
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where we used Eqgs. (109, 115). According to Eq. (42) the derivative of A7, can be

expressed as a linear combination of the derivatives of V| We show that
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from which Eq. (116) follows. Indeed, for j = 4, the integral is
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For j # i, we use the addition theorem (20b) to get
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1.4. Residence time
We use Eqgs. (32, 25, 20b) to write the residence time 7 in a ball € of radius R;
centered at x; as
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where L;; = xj—x, (L;;, 015, r;) are the spherical coordinates of Ly;, Ly = ||y — x|,
and VI is given by Eq. (26) which is modified for the ball Q.

1.5. Integrals over balls

One can compute the integral of v, (r;,0;,¢;) over any ball Q; (of radius R; and
centered at x;), which is not overlapping with the ball ;. In fact, denoting the local
spherical coordinates associated to Q; as (rr,0r,¢5), one can use the I-R addition
theorem (20b) for r; < Ly; to write
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where L;; = x; — @y, (L7j,071;,®;;) are the spherical coordinates of Ly;, and the

mixed-basis elements are given by Eq. (22b). Similarly, the integral over the sphere 9
reads
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Now we consider a more complicated situation when ©; C €2;. We split the integration
domain §; into two subsets, Q7 and 7, such that
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In each subset, we can use the appropriate addition theorem to compute the integral.
Using Eq. (20b) for r; < Ly; and Eq. (20c) for r; > Ly;, we have
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One may also need to compute the integral of v, (r;,0;,¢;) over Q; without any
ball Q;:
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We only consider the case when each ball ; can be either included into Q; (i.e., Q; C Qj),
or lie outside Q; (i.e., Q; N Q; = 0). In other words, we do not allow the ball Q; to cut
any ball €;. In this case, the integral over Q; is simply the integral over ; minus the
integrals over each €2;. First, we have
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(although .., is singular at r; = 0, this singularity is integrable for n = 0 due to
the radial weight 72, whereas the symmetry of the integration domain §; cancels the
contribution from other harmonics with n > 0). Second, the integral of ¥, (r;,0;, ¢;)
over €; (with i # j) is given by Eq. (S13). Combining all these results, we get
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where the last sum is taken over the balls ; (except §2;) which are included in ;. This
formula allows one to integrate the solution over any ball €2; that does not cut balls €2;.

Using the addition theorem (20c), one can compute an integral over a large sphere
0f); that englobes a ball Q;. In fact, since Ry > L; because Q; C €y, one has
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the last equality coming from the rotation symmetry of spherical harmonics Y; and from

the identity U(gooo Y — 1. Note that this result depends neither on the location, nor on
the radius of the ball ;.

II. Monopole approximation for interior problems

The monopole approximation for the interior problem of finding chemical reaction
rates was discussed in [48, 49, 117]. Here, we briefly present its extension for computing
the Green function.

For the interior problem, one needs to modify the elements of U and V corresponding
to the outer boundary 0€:

. 1 . - 1
Ugtoo = R (i >0), Ugtoo = Re (7 >0), Voo = IRy (522)
With this modification, the boundary conditions read
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If ap # 0, one can express AY, from the last equation and substitute it into the former
ones that yields a closed system of linear equations on Ay, for ¢ =1, N:
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Finally, if ag = 0 (i.e., the Neumann boundary condition at the outer boundary), the
last relation in Eq. (S23) is reduced to
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In this case, Egs. (S23) can be written as
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with ¢; = a;R;/(a; + b;) (for ¢ = 1, N). Summing these equations over ¢ from 1 to N,

one gets
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where C = ¢; + ... + cy. Expressing AY, from this relation, one gets a closed system of
linear equations on Af, for i =1, N:
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