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ABSTRACT

In this Supplementary Information, we provide mathematical and technical details of our derivation of the analytic solution for
the occupancy probability. We also discuss some additional insights onto this problem.

1 Formal definition of the switching diffusion model

We reproduce here a formal definition of the (M +1)-state switching diffusion model following Ref.1. We consider a two-
component process (XXX t ,νt), in which XXX t is the diffusion process in R3, and νt is the pure jump process with the states at
{0,1, . . . ,M}. When there is no boundary, the process is defined by a standard stochastic equation

dXXX t =
√

2Dνt I dWWW t , (XXX0,ν0) = (xxx, i), (1)

where WWW t is the standard Wiener process in R3, I is the identity matrix, and Di is the diffusion coefficient at the state i. The
jump process is defined for any i 6= j by

P{νt+dt = j | νt = i, XXX s,νs,s≤ t}= ki jdt +o(dt), (2)

where ki j is the rate of transition from the state i to the state j. The propagator p(xxx, i, t|xxx0, i0,0) is the probability density for the
process to be in (the vicinity of) the point xxx in the state i at time t when stated from the point xxx0 in the state i0. The propagator
satisfies (M+1) coupled forward Fokker-Planck equations

∂t p(xxx, i, t|xxx0, i0,0) = Di∆p(xxx, i, t|xxx0, i0,0)+
M

∑
j=0

[
k ji p(xxx, j, t|xxx0, i0,0)− ki j p(xxx, i, t|xxx0, i0,0)

]
, (3)

subject to the initial condition p(xxx, i,0|xxx0, i0,0) = δi,i0 δ (xxx− xxx0). Some properties of the propagator were discussed in2–4 (see
also the references therein).

In turn, for a given smooth function f , the expectation of a functional f (XXX t ,νt) given that the process has started at xxx and i,

u(xxx, i, t) = E{ f (XXX t ,νt) | X0 = xxx,ν0 = i}, (4)

satisfies the (M+1) coupled backward Fokker-Planck (or Kolmogorov) equations for each i,

∂tu(xxx, i, t) = Di∆u(xxx, i, t)+
M

∑
j=0

ki j
(
u(xxx, j, t)−u(xxx, i, t)

)
, (5)

subject to the initial condition u(xxx, i,0) = f (xxx, i) (strictly speaking, this is a terminal condition but as the rates ki j do not depend
on time, one can recast it as the initial condition).
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In the presence of a (partially) reflecting boundary, the diffusion component of the process is modified in a standard way
(via the Skorokhod equation)5–8, whereas the forward and backward Fokker-Planck equations need to be completed by the
associated boundary conditions, see1–3. Setting f = 1, one can interpret u(xxx, i, t) as the probability for a particle started at xxx in
the state i to survive up to time t.

2 General analytical solution
In this section, we present the derivation of the analytical solution for a general case with M buffers. Two particular cases
(without buffer and with one buffer) will be detailed in Sections 3 and 4.

2.1 Survival probabilities
We aim to find the survival probabilities Si(t,xxx) satisfying Eqs. (5) with f = 1 inside the domain

Ω = {xxx ∈ R3 : ρ < |xxx|< R} (6)

between two concentric spheres of radii ρ and R. The rotation symmetry of this domain implies that Si(t,xxx) depend only on the
radial coordinate r = |xxx| so that we can drop the dependence on angular coordinates and write Si(t,r). Equations (5) are subject
to the initial condition

Si(t = 0,r) = 1, (7)

and have to be completed by boundary conditions (see the main text)

ρ
(
∂rSi(t,r)

)
r=ρ

= µi S0(t,ρ), (8a)(
∂rSi(t,r)

)
r=R = 0, (8b)

at the inner and outer spheres, respectively, where

µ0 = µ =
kon

4πρD0NA
, µi = 0 (i = 1, . . . ,M) (9)

are dimensionless reactivities, with NA being the Avogadro number, and kon the on-rate binding constant.
Introducing the Laplace-transformed survival probabilities (denoted by tilde),

S̃i(p,r) =
∞∫

0

dt e−pt Si(t,r), (10)

one can rewrite the above equations as

(p+ ki−Di∆)S̃i−
M

∑
j=0

ki jS̃ j = 1 (ρ < r < R), (11a)

∂rS̃i = 0 (r = R), (11b)

µiS̃i−ρ ∂rS̃i = 0 (r = ρ), (11c)

where ∆ = ∂ 2
r +(2/r)∂r is the radial part of the Laplace operator, and

ki =
M

∑
j=0

ki j. (12)

As the rate kii is undefined, we set kii = 0 for convenience of notations.
We search the Laplace-transformed probabilities in the form

S̃i(p,r) = ai +
M

∑
j=0

bi j v(δ j,r), (13)

where ai and bi j are unknown coefficients, and

v(δ ,r) =
ρ

r

(
sinh(δ (R− r)/ρ)− (1+β )δ cosh(δ (R− r)/ρ)

)
, (14)
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with

β = (R−ρ)/ρ, (15)

and δ j are unknown factors. In fact, the function v(δ ,r) is a linear combination of two independent solutions eδ r/r and e−δ r/r
of the equation ∆u−δ 2u = 0, and the chosen form (14) ensures the Neumann boundary condition at the outer sphere for any δ :(

∂rv(δ ,r)
)

r=R = 0. (16)

Substituting Eq. (13) into Eq. (11), we get for i = 0, . . . ,M

(p+ ki)

(
ai +

M

∑
j=0

bi j v(δ j,r)
)
− Di

ρ2

M

∑
j=0

bi jδ
2
j v(δ j,r)−

M

∑
`=0

ki`

(
a`+

M

∑
j=0

b` j v(δ j,r)
)
= 1 (17)

Each of these M+1 functional relations must be satisfied for any r ∈ (ρ,R) that implies M+2 relations on coefficients for
each i = 0, . . . ,M:

(p+ ki)ai−
M

∑
`=0

ki`a` = 1 (18)

and

(
p+ ki− (Di/ρ

2)δ 2
j
)
bi j−

M

∑
`=0

ki`b` j = 0. (19)

The first set (18) of M +1 linear equations on ai is uncoupled from the rest and can be solved separately. Inverting the
underlying matrix,

W =


γ0 −k01 −k02 · · · −k0M
−k10 γ1 0 · · · 0
−k20 0 γ2 · · · 0
· · · · · · · · · · · · · · ·
−kM0 0 0 · · · γM

 (20)

(with γi = p+ ki) and applying to the vector (1,1, . . . ,1)†, one gets

a0 =

(
1+

M

∑
i=1

k0i

p+ ki0

)(
p+ k0−

M

∑
i=1

k0iki0

p+ ki0

)−1

=
1
p
. (21)

The other ai can also be found but their contribution will be canceled by µi = 0 for i > 0.
Next, we can treat Eqs. (19) as a set of linear equations on bi j, in which δ j are some parameters. One can note that, for

each j, there are M+1 equations whose form does not depend on j. In other words, we can decouple these equations into
M + 1 blocks, each having M + 1 equations. Let us write δ instead of δ j for one block. The equations in each block are
homogeneous, so that there is either none, or infinitely many solutions. For the existence of solutions, the determinant of the
underlying matrix in front of coefficients bi j should be zero. This matrix has precisely the same form as W in Eq. (20), but with
γi = p+ ki− (Di/ρ2)δ 2. The determinant of this matrix as a function of z = δ 2 is the polynomial of degree (M+1)

H(z) = γ1 · · ·γM

(
γ0−

M

∑
i=1

k0iki0

γi

)
. (22)

The M+1 zeros of this polynomial, zi, determine the unknown δi: δi =
√

zi (here one can use either of two values ±√zi, the
final results remaining unchanged).

For each j, the set (19) of equations on bi j has infinitely many solutions. One can express bi j (for i = 1, . . . ,M) in terms of
b0 j as

bi j =
ki0

p+ ki− (Di/ρ2)δ 2
j

b0 j. (23)
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The remaining M+1 unknowns b0 j are determined by the (M+1) boundary conditions at the inner sphere:(
µiS̃i(p,r)−ρ ∂rS̃i(p,r)

)
r=ρ

= 0 (i = 0, . . . ,M) (24)

that implies (M+1) linear relations

M

∑
j=0

bi jci j = aiµi (i = 0, . . . ,M), (25)

where

ci j =

(
ρ
(
∂rv(δ j,r)

)
r=ρ
−µiv(δ j,ρ)

)
= sinh(βδ j)

(
(1+β )δ 2

j −1−µi
)
+δ j cosh(βδ j)

(
β +µi(1+β )

)
. (26)

Substituting Eqs. (23) into these relations, one gets M+1 linear equations on the remaining M+1 unknowns b0 j:

M

∑
j=0

Ci jb0 j = aiµi (i = 0, . . . ,M), (27)

with

Ci j = ci j×


1 (i = 0),

ki0

p+ ki− (Di/ρ2)δ 2
j

(i > 0). (28)

Inverting the matrix C, one obtains b0 j and thus fully determines S̃i(p,r). Given that µi = 0 for i > 0, b0 j can formally be
written as

b0 j =
µ f0 j(p)
p f (p)

, (29)

with

f (p) = det(C), fi j(p) = (−1)i+ jCi j, (30)

where Ci j is the (i, j) minor of C, i.e., the determinant of the M×M matrix that results from deleting row i and column j of C.
We get thus

S̃0(p,r) =
1
p

(
1+

w(p,r)
f (p)

)
, (31)

where

w(p,r) = µ

M

∑
j=0

f0 j(p)v(δ j,r). (32)

This is the exact analytic solution of the problem in the Laplace domain. In order to get the solution in time domain, one needs
to compute the poles of S̃0(p,r) which are given by zeros of the function f (p) considered in the complex plane (p ∈ C).

The survival probability S̃0(p,r) also determines the probability density of the first binding time, ψ̃1(p,r) = 1− pS̃0(p,r),
from which

ψ̃1(p,r) =−w(p,r)
f (p)

. (33)

In the general case ki0 > 0 (i.e., when buffers cannot bind calcium ions forever), one can show that ψ̃1(0,r) = 1 that corresponds
to the normalization of the probability density ψ1(t,r) (we omit the related asymptotic analysis of the minors fi j(p) and of f (p)
as p→ 0; see the example for one buffer in Sec. 4). As a consequence, p = 0 is not a pole of S̃0(p,r), and S0(t,r) vanishes in
the long time limit. In turn, if ki0 = 0 for some i, the calcium ions can be trapped forever by that buffer, and S̃0(t,r) reaches a
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nonzero limit (the fraction of such trapped ions). In this specific case, ψ̃1(0,r)< 1, i.e., the normalization of ψ1(t,r) does not
hold. In practice, even if ki0 is very small, it is nonzero, and this pathologic situation does not occur. Note also that S̃0(p,r)
determines the moments of the first binding times; in particular, the mean time is simply

〈T 〉=
∞∫

0

dt t ψ1(t,r) =
∞∫

0

dt S0(t,r) = S̃0(0,r), (34)

where we integrated by parts and used that ψ1(t,r) =−∂tS0(t,r) and S0(∞,r) = 0.

2.2 Occupancy probability
As discussed in the Methods Section, the probability density of the first binding times determines the occupancy probability
P(t,r) in the Laplace domain as

P̃(p,r) = ψ̃1(p,r) Q̃(p), (35)

where

Q̃(p) =
(

p+ koff(1− ψ̃(p,ρ))
)−1

. (36)

Substituting Eq. (33) into this equation yields

Q̃(p) =
(

p+ koff + pkoff

M

∑
j=0

b0 j v(δ j,ρ)

)−1

. (37)

Next, substituting this expression and Eq. (75) into Eq. (35), we get explicitly

P̃(p,r) =−w(p,r)
F(p)

, (38)

with

F(p) = (p+ koff) f (p)+ koff w(p,ρ). (39)

The poles of P̃(p,r) are given by zeros of the function F(p):

F(pn) = 0 (n = 0,1, . . .). (40)

One can invert the Laplace transform by using the residue theorem. In particular, if the poles are simple, one gets

P(t,r) =
∞

∑
n=0

b̄n w(pn,r) exp(pnt), (41)

where

b̄n =−
1

lim
p→pn

∂pF(p)
, (42)

in which the derivative can be computed by using

∂

∂ p
v(δ ,r) =−

(
cosh(βδ )+β (1+β )δ sinh(βδ )

)
∂δ

∂ p
(43)

and

∂

∂ p
ci j =

∂δ j

∂ p

{
cosh(βδ j)

(
µi +β (1+β )δ 2

j
)
+δ j sinh(βδ j)

(
µiβ (1+β )+(β 2 +2β +2)

)}
. (44)
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It can checked that p0 = 0 whereas the other poles are strictly negative: pn < 0. As a consequence, as t→ ∞, the probability
P(t,r) approaches a stationary value P∞, which is independent of the starting point r and given by the residue at p0 = 0.
Summarizing these results, the occupancy probability takes the form

P(t,r) = P∞ +
∞

∑
n=1

exp(pnt)
M

∑
j=0

b j
n v(δ j(pn),r) , (45)

where

b j
n = µ f0 j(pn) b̄n. (46)

Setting

αn = ρ
√
−pn/D0, α

( j)
n =−iδ j(pn), b( j)

n = ib j
n,

one can rewrite the occupancy probability in a more conventional form:

P(t,r) = P∞ +
∞

∑
n=1

exp
(
−α

2
n D0t/ρ

2) M

∑
j=0

b( j)
n u(α( j)

n ,r), (47)

where

u(δ ,r) =
ρ

r

(
sin(δ (R− r)/ρ)− (1+β )δ cos(δ (R− r)/ρ)

)
. (48)

We note that the functions S̃0(p,r) and P̃(p,r) involve complicated combinations of roots (e.g., square roots, see below)
emerging from the zeros of the polynomial H(z) in Eq. (22). As a consequence, the use of the residue theorem for evaluating
the inverse Laplace transform of these functions is not straightforward as one needs to introduce cuts in the complex plane to
properly deal with such multivariate functions. In addition, the application of Eq. (41) relies on the assumption of simple poles.
In this paper, we do not provide rigorous mathematical analysis of both statements. In turn, we have checked the correctness
and the accuracy of the derived formulas in time domain by comparison with the numerical inversion of the Laplace transform
(not shown).

In summary, the analytic solution requires three numerical steps: (i) computation of δ 2
j as the zeros of Eq. (22); (ii) inversion

of the matrix C in Eq. (28), from which f0 j(p), f (p) and thus b0 j are found; and (iii) finding the zeros of f (p) (for getting
S0(t,r)) or of F(p) (for getting P(p,r)) for the inversion of the Laplace transform. We emphasize that δ j and b0 j depend on p,
i.e. one needs to perform the first two steps for all values of p at which S̃0(p,r) has to be found. In practice, the number of
buffers, M, is not large so that these numerical steps can be done very rapidly and with any accuracy. We will discuss the cases
M = 0 (Sec. 3) and M = 1 (Sec. 4), for which (some of) these steps can be done analytically.

2.3 Steady-state limit P∞

As time t goes to infinity, the occupancy probability P(t,r) from Eq. (47) approaches the steady-state limit P∞, which is
determined by the residue of P̃(p,r) at the pole p = 0. Even though all the formulas determining P̃(p,r) are given, the
computation of this residue is technically involved, see the related analysis below for the particular cases of no buffer and one
buffer. For this reason, we prefer to rely here on qualitative physical arguments that allow us to get the exact form of P∞ without
tedious computations.

In the steady-state, the system reaches an equilibrium between the free state, the buffer-bound states, and the sensor-bound
state. Moreover, as the binding/unbinding kinetics on the sensor occurs only through the free state, one can separate the
kinetics with the sensor and the kinetics with the buffers. The equilibrium kinetics with the sensor can be understood as
a two-state switching model, governed by two exchange rates: koff describes the transition from the sensor-bound state
to the free state, whereas an effective rate k0,s = kon c0 characterizes the opposite transition, where c0 is the equilibrated
(homogeneous) concentration of calcium ions. If p0 is the equilibrium fraction of calcium ions in the free state, then the
conventional concentration (in M = mol/liter) reads c0 = p0/(NAV ), where V = 4π(R3−ρ3)/3 is the volume of the active
zone. In this setting, the occupancy probability (i.e., the probability of finding the calcium ion bound to the sensor) is simply
P∞ = k0,s/(k0,s + koff) or, equivalently,

P∞ =
1

1+ koff
NAV

kon p0

. (49)
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The fraction p0 of calcium ions in the free state can be determined from the equilibrium between the free state and
buffer-bound states. For this purpose, we only consider the dynamics of the (M+1)-state switching model governed by the
transition matrix W from Eq. (20) with γi = ki (i.e., at p = 0). The steady-state distribution is determined by the eigenvector
of W † that corresponds to the eigenvalue 0: (1,k01/k10,k02/k20, . . . ,k0M/kM0)

†. After normalization to 1, the probability of
finding the calcium ion in the free state (i.e., the fraction of calcium ions in this state) is

p0 =

(
1+

M

∑
j=1

k0 j

k j0

)−1

. (50)

We get therefore

P∞ =

(
1+ koff

NAV
kon

(
1+

M

∑
j=1

k0 j

k j0

))−1

. (51)

The same expression for P∞ is retrieved for cases M = 0 (Sec. 3) and M = 1 (Sec. 4) from the rigorous computation of the
residue.

3 No buffer case

The survival probability for no buffer case is well known (see9 and references therein). For illustrative purposes, we retrieve
this survival probability from our general approach. This step is also needed for finding the occupancy probability P(t,r).

When there is no buffer (M = 0), Eq. (22) is reduced to H = γ0 = p− (D0/ρ2)δ 2 = 0, from which δ0 = ρ
√

p/D0.
The matrix C consists of a single element C00 = c00, from which f00(p) = 1, f (p) = c00, and thus b00 = µ/(pc00). The
Laplace-transformed survival probability becomes then

S̃0(p,r) =
1
p
+

µ v(δ0,r)
pc00(p)

, (52)

where c00(p) is given by Eq. (26). Setting δ0 = iα̂ , one can rewrite the equation f (p) = 0 on the poles of S̃0(p,r) in a
trigonometric form

sin(α̂β ) =
(β +(1+β )µ) α̂

1+µ +(1+β )α̂2 cos(α̂β ), (53)

which has infinitely many nonnegative solutions denoted as α̂n, enumerated by n = 0,1,2, . . . (we use hat symbol here to
distinguish the quantities determining S0(t,r) from similar quantities determining P(t,r) below). The poles are p̂n =−D0α̂2

n/ρ2.
Note that the pole corresponding to α̂0 = 0 provides the contribution −1/p that precisely compensates the term a0 = 1/p, and
thus it will be excluded. The inverse Laplace transform is then obtained by the residue theorem:

S0(t,r) =
∞

∑
n=1

b̂n u(α̂n,r) exp
(
−α̂

2
n D0t/ρ

2), (54)

where

b̂n =
2µ

α̂n

(
cos(α̂nβ )

[
µ−β (β +1)α̂2

n
]
− α̂n sin(α̂nβ )

[
β (β +1)µ +(β 2 +2β +2)

])−1

(55)

and u(δ ,r) is given by Eq. (48). The derivative with respect to t yields the probability density of the first-binding time

ψ1(t,r) =
D0

ρ2

∞

∑
n=1

α̂
2
n b̂n u(α̂n,r) exp

(
−α̂

2
n D0t/ρ

2). (56)

Occupancy probability P(t,r)
The computation of the probability P(t,r) follows the same lines. Setting δ0 = iα in Eq. (39), one gets

F =
iD0

ρ2

{
sin(αβ )

(
(α2−λ )((1+β )α2 +1+µ)+λ µ

)
−α cos(αβ )

(
(α2−λ )(β +µ(1+β ))+λ µ(1+β )

)}
, (57)
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from which the equation on α reads

sin(αβ ) =

[
α2(β +µ(1+β ))−λβ

]
α cos(αβ )

α4(1+β )+α2(1+µ−λ (1+β ))−λ
, (58)

where λ = koffρ
2/D0. This equation has infinitely many positive zeros that we denote as αn, with n = 1,2, . . . (the zero α0 = 0

will be considered separately). These zeros determine the poles: pn = −D0α2
n/ρ2. Since w(pn,r) = iµuαn(r) with u(δ ,r)

given by Eq. (48), we obtain by the residue theorem

P(t,r) =
1

1+λ
(β+1)3−1

3µ

+
∞

∑
n=1

bn u(αn,r)e−α2
n D0t/ρ2

, (59)

where the first term comes from the residue at p = 0, and

bn =−
iµ

lim
p→pn

(
∂pF(p)

) = iµ
ρ2

2D0αn

(
∂α F(α)

)
α=αn

. (60)

Recalling the definition of dimensionless parameters λ , µ and β , one easily checks that the first term in Eq. (59) coincides with
the steady-state limit P∞ in Eq. (51).

Taking the derivative of Eq. (57) with respect to α , one gets an explicit formula for bn:

bn =
2µ

sin(αnβ )
(
α2

n w1 +w2
)
+αn cos(αnβ )

(
α2

n w3 +w4
) , (61)

with

w1 = 4(1+β )+β (β +µ(1+β )),

w2 = 2(1+µ−λ (1+β ))−λβ
2,

w3 = β (1+β ),

w4 = β (1+µ−λ (1+β ))−3(β +µ(1+β )).

(62)

Limiting cases
In the limit koff = 0 (or λ = 0), there is no desorption event, and Q̃(p) = 1/p according to Eq. (36). In this case,

P̃(p,r) =
ψ̃1(p,r)

p
=

1− S̃0(p,r)
p

,

and thus P(t,r) = 1−S0(t,r), as expected. One can also check that the solutions αn coincide with α̂n.
In turn, in the limit of perfectly adsorbing sensor (i.e., with infinitely fast binding kinetics: kon = µ = ∞), Eq. (53) is

reduced to

sin(α̂nβ ) = (1+β )α̂n cos(α̂nβ ), (63)

and the survival probability becomes

S0(t,r) =
2ρ

r

∞

∑
n=1

exp
(
−α̂

2
n D0t/ρ

2)× sin
(
α̂n

R−r
ρ

)
− (1+β )α̂n cos

(
α̂n

R−r
ρ

)
α̂n
(
cos(α̂nβ )−β (1+β )α̂n sin(α̂nβ )

) . (64)

The probability density ψ1(t,r) = −∂tS0(t,r) is obtained by taking the derivative with respect to t. Note that in this limit,
the unbinding events are effectively suppressed as a particle that unbinds from such a sensor immediately re-binds. As a
consequence, one gets again P(t,r) = 1−S0(t,r).

Other results
Mean first-binding time
The mean first-binding time reads

〈T 〉r = S̃0(0,r) =
2rρ(R3−ρ3)/µ +2ρR3(r−ρ)− rρ2(r2−ρ2)

6rρ2D0
, (65)
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while the mean excursion time (at r = ρ) is

〈T 〉ρ =
R3−ρ3

3D0ρµ
=

ρV
µD0A

. (66)

where V is the volume of the domain Ω0 and A is the area of the sensor. As a consequence, the mean first-binding time, which
is essentially proportional to the volume of the active zone, is a useless characteristics in this situation. In turn, the mode (i.e.,
the position of the density maximum, i.e., the most probable value) is representative.

Asymptotic analysis of the smallest eigenvalue
The long-time behavior of ψ1(t,r), Q(t), and the probability P(t,r), is determined by the smallest absolute value of the pole
|p1| of the underlying Laplace-transformed quantity. Let us first consider the density ψ1(t,r), for which the smallest |p1| is
determined by α̂1. Denoting x = α̂1β and assuming that x→ 0, one can use the Taylor expansion of Eq. (53) to determine the
asymptotic behavior of α̂1 for large β . In the lowest order in 1/β , we get

α̂
2
1 '

3µ

(1+µ)β 3 '
3µρ3

(1+µ)R3 . (67)

According to Eq. (54), the above relation determines the slowest decay rate of the survival probability, ρ2/(D0α̂2
1 ), which is

close to the mean time (66) when ρ � R.

Short-time asymptotic behavior
The short-time asymptotic behavior corresponds to the limit p→∞. In this limit, Eq. (38) becomes in the leading order in 1/p:

P̃(p,r)'
µ
√

D0 exp
(
−(r−ρ)

√
p/D0

)
r p3/2 , (68)

from which the short-time asymptotic behavior follows for r > ρ

P(t,r)' 4(D0t)3/2µ√
πr(r−ρ)2 exp

(
−(r−ρ)2/(4D0t)

)
. (69)

This asymptotic behavior is applicable at times as short as t� (r−ρ)2/(4D0). In turn, for r = ρ , Eq. (68) yields

P(t,ρ)' 2
√

D0µ√
πρ

t1/2 (t→ 0) . (70)

4 One buffer case
For a single buffer (M = 1), Eq. (22) reads

H =
(

p+ k01− (D0/ρ
2)z
)(

p+ k10− (D1/ρ
2)z
)
− k01k10, (71)

and its two zeros determine δ0 and δ1:

δ
2
0 =

ρ2

2D0D1

(
D0(p+ k10)+D1(p+ k01)−

√
(D0(p+ k10)−D1(p+ k01))2 +4D0D1k01k10

)
, (72)

δ
2
1 =

ρ2

2D0D1

(
D0(p+ k10)+D1(p+ k01)+

√
(D0(p+ k10)−D1(p+ k01))2 +4D0D1k01k10

)
. (73)

Getting

f (p) =C00C11−C01C10,

f00(p) =C11, f01(p) =−C10
(74)

from the 2×2 matrix C, one obtains the coefficients b0 j

b00 =
C11 µ

p(C00C11−C01C10)
,

b01 =−
C10 µ

p(C00C11−C01C10)
,

(75)
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where the elements Ci j are given explicitly by Eq. (28). We obtain thus

S̃0(p,r) =
1
p
+b00 v(δ0,r)+b01 v(δ1,r). (76)

In order to invert the Laplace transform, one needs to determine the poles of S̃0(p,r) that are given by the zeros p̂n of the
function f (p). There are infinitely many zeros and they are nonpositive: p̂n ≤ 0. To compute the residues, one needs the
derivative of f (p) with respect to p, which can be evaluated by using Eq. (44) and

∂δ j

∂ p
=

ρ2

2δ j

2p+ k01 + k10− (D0 +D1)δ
2
j /ρ2

D0(p+ k10)+D1(p+ k01)−2D0D1δ 2
j /ρ2 . (77)

Finally, we proceed to check that the two zeros of f (p), p = 0 and p =−(k01 + k10), are not the poles of S̃0(p,r), and thus
excluded from the analysis.

(i) In the limit p→ 0, we get

δ
2
0 ' ρ

2 k01 + k10

D0k10 +D1k01
p+O(p2), (78a)

δ
2
1 '

ρ2(D0k10 +D1k01)

D0D1
+O(p), (78b)

v(δ0,ρ)'−δ0−δ
3
0 (β

3/3+β
2/2)+O(δ 5

0 ), (78c)

C00 ' µδ0 +δ
3
0

(
β 3

3
+β

2 +β +µ

(
β 3

3
+

β 2

2

))
+O(δ 5

0 ),

C10 ' δ
3
0

(
β 3

3
+β

2 +β

)
+O(δ 5

0 ), (78d)

whereas C01 and C11 approach constants. We get thus

b00 '
µ

p
C11

µδ0C11−O(δ 3
0 )

=
1

δ0 p
+O(p−1/2),

b01 '−
µ

p
O(δ 3

0 )

µδ0C11−O(δ 3
0 )

= O(1).
(79)

Since v(δ0,r) =−δ0 +O(δ 3
0 ), the singularities from a0 = 1/p and b0v(δ0,r) cancel each other so that p = 0 is not a pole of

S̃0(p,r).
(ii) Setting p =−(k01 + k10)+ ε , one has

δ
2
0 =−D0k01 +D1k10

D0D1
+O(ε),

δ
2
1 =

k01 + k10

D0k01 +D1k10
ε +O(ε2).

(80)

As a consequence, we get

C01 ' µδ1 = O(ε1/2), C11 ' δ
3
1 = O(ε3/2), (81)

whereas a0, C00 and C10 approach constants. We obtain then

b00 =
µ

p
C11

C00C11−C01C10
= O(1),

b01 =−
µ

p
C10

C00C11−C01C10
' µ

C01 p
' 1

δ1 p
= O(ε−1/2).

(82)

Since v(δ1,r)'−δ1, the term b01v(δ1,r) has no singularity so that p =−(k01 + k10) is not a pole of S̃0(p,r).
We conclude that

S0(t,r) =
∞

∑
n=1

(
b̂0

n v
(
δ0(p̂n),r

)
+ b̂1

n v
(
δ1(p̂n),r

))
exp(p̂nt), (83)
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where v(δ ,r) is given by Eq. (14), and

b̂0
n =

µ C11(p̂n)

p̂n f ′(p̂n)
, b̂1

n =−
µ C10(p̂n)

p̂n f ′(p̂n)
. (84)

The derivative with respect to t yields

ψ1(t,r) =
∞

∑
n=1

(
b̂0

n v
(
δ0(p̂n),r

)
+ b̂1

n v
(
δ1(p̂n),r

))
×|p̂n|exp(p̂nt). (85)

Probability P(t,r)
Similarly, the inversion of P̃(p,r) involves the zeros pn of F(p) from Eq. (39) that can be written explicitly as:

F(p) = (p+ koff) f (p)+ koffµ
(
C11 v(δ0,ρ)−C10 v(δ1,ρ)

)
, (86)

with f (p) from Eq. (74). As previously, one can show that the zero p =−(k01 +k10) is not a pole of P̃(p,r). In turn, p = 0 is a
pole. In fact, using Eqs. (78), one get as p→ 0

F(p)' δ0 p
{

µ C11(0)+λ
D0(k01 + k10)

D0k10 +D1k01

(
β 3

3
+β

2 +β

)
×
(
C11(0)−C01(0)−µ v(δ1(0),ρ)

)}
,

where C01(0), C11(0) and δ1(0) denote the values of these functions evaluated at p = 0. In turn,

w(p,r) = µ
(
C11v(δ0,r)−C10v(δ1,r)

)
'−µC11(0)δ0 +O(δ 3

0 ),

so that the residue at p = 0 is

P∞ =

{
1+λ

D0(k01 + k10)

D0k10 +D1k01

(1+β )3−1
3

× C11(0)−C01(0)−µv(δ1(0),ρ)
µC11(0)

}−1

, (87)

which is independent of the starting point r. After simplifications, we have

P∞ =

(
1+λ

(1+β )3−1
3µ

(1+ k01/k10)

)−1

. (88)

This expression coincides with Eq. (51).
We get thus

P(t,r) = P∞ +
∞

∑
n=1

(
b0

n v(δ0(pn),r)+b1
n v(δ1(pn),r)

)
epnt , (89)

with

b0
n =−

µC11(pn)

F ′(pn)
, b1

n =
µC10(pn)

F ′(pn)
. (90)

One fixed buffer
For the fixed buffer (D1→ 0), Eqs. (72) yield

δ
2
0 =

ρ2

D0

(
p+ k01−

k01k10

p+ k10

)
, δ

2
1 → ∞. (91)

As a consequence, one needs to treat this case separately to avoid diverging terms.
The last relation in Eqs. (91) implies that

ci1 '
1
2
(1+β )δ 2

1 eβδ1 → ∞ (i = 0,1).

In addition, we have

C00 = c00, C10 =
c10k10

p+ k10
, C11 =

c11k10

p+ k10
,
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so that in the limit D1→ 0, we get

b00 =
µ

pc00
, b01 = 0, (92)

given that

C01

C11
=

c01

c11
k10

p+k10−(D1/ρ2)δ 2
1

=
c01

c11
p+k10−(D0/ρ2)δ 2

1
k01

→ 0. (93)

We conclude that

S̃0(p,r) =
1
p
+

µ v(δ0,r)
pc00

, (94)

i.e., we retrieved the solution (52) for the case without buffer, in which δ0 = ρ
√

p/D0 is replaced by δ0 = ρ
√

p′/D0, where

p′ = p+ k01−
k01k10

p+ k10
. (95)

The fixed buffer is expected to slow down the arrival onto the sensor because of binding calcium ions and thus stopping their
diffusion. In particular, one can notice this effect in an increase of the mean first-binding time to the sensor, given by S̃0(0,r).
Noting that p′ = 0 from Eq. (95) at p = 0, one finds that the mean first-binding time without buffer, 〈Tnb〉, is multiplied by the
factor (1+ k01/k10) in the presence of a fixed buffer:

〈T 〉= S̃0(0,r) = 〈Tnb〉
(

1+
k01

k10

)
. (96)

The relation to the former solution without buffer allows one to easily invert the Laplace transform. In fact, the former poles
of S̃0(p,r) were p̂n = −D0α̂2

n/ρ2. Inverting the relation (95), one can see that each former pole p̂n splits in two new poles
p̂n,1 =−λn,1 and p̂n,2 =−λn,2, with

λn,1 =
σn−

√
σ2

n −4k10D0α̂2
n/ρ2

2
, (97a)

λn,2 =
σn +

√
σ2

n −4k10D0α̂2
n/ρ2

2
, (97b)

with σn = D0α̂2
n/ρ2 + k01 + k10. As a consequence, the inverse Laplace transform of Eq. (94) becomes

S0(t,r) =
∞

∑
n=1

b̂n u(α̂n,r)
(

cn,1 e−λn,1t + cn,2 e−λn,2t
)
, (98)

where u(δ ,r) is given by Eq. (48), the coefficients b̂n are given by Eq. (55), and the weights

cn,1 =
D0α̂2

n/ρ2

λn,1

1

1+ k01k10
(λn,1−k10)2

, (99a)

cn,2 =
D0α̂2

n/ρ2

λn,2

1

1+ k01k10
(λn,2−k10)2

, (99b)

appear from the change of variables: d p′/d p = 1+ k01k10/(p+ k10)
2, see Eq. (95), and from the factor 1/p in the second term

of Eq. (94). Note that if k01 = k10 = 0, one has λn,1 = 0 and λn,2 = D0α̂2
n/ρ2, and one retrieves Eq. (54).

Note also that λn,1→ k10 and λn,2→ D0α̂2
n/ρ2 as n→ ∞ and thus cn,1→ 0 and cn,2→ 1. In other words, the exchange

kinetics does not affect the high-frequency eigenmodes.
Substituting Eq. (98) into (35, 36), we get

P̃(p,r) =− µ v(δ0,r)
(p+ koff)c00 + koff µ v(δ0,ρ)

, (100)

so that one needs to find zeros of the denominator of this expression. As in the former case for S̃0(p,r), one can expect two
sequences of zeros: pn,1 →−k10 and pn,2 →−∞. In fact, when p→−k10 + 0, p′ from Eq. (95) diverges to −∞, so that
there are infinitely many zeros accumulating towards −k10. This accumulation requires a more subtle numerical procedure to
calculate zeros.
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5 Calcium channel model used for Monte Carlo simulations

We describe a VGCC by a 3-state Hodgkin and Huxley gating model10 so that the calcium release was modeled according to:

C0

2α(V (t))
�

β (V (t))
C1

α(V (t))
�

2β (V (t))
O

k(t)→ Ca2+, (101)

with two closed states C0, C1 and one open state O of the VGCC. Here α(V (t)) and β (V (t)) are voltage dependent rates,
computed as

α(V (t)) = exp(V (t)/20.5),
β (V (t)) = 0.14 exp(−V (t)/15), (102)

for a given AP waveform V (t) in mV. The dynamics starts from the close state C0. The parameters in these rates were adjusted
such that the resulting single channel open probability, current duration, and peak match experimentally observed quantities11.

The calcium ions are released from the open channel with the rate:

k(t) =
g
2e

(V (t)−Vrev), (103)

where g = 3.3 pS (picoSiemen) is the single channel conductance12, e is the elementary charge, and Vrev = −45 mV is the
reversal potential11.
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6 Supplementary Figures

Supplementary Figure 1. P(t,r) with slow unbinding kinetics (kon = 0.157 mM−1ms−1) for 50 (A), 100 (B) and 200 (C)
simultaneously released ions for CD of 15 nm (top row) and 45 nm (bottom row). Black and green lines show respectively
analytical and MC results. The black and blue inset text on each plot represent FWHM error and MAE between analytical and
MC results correspondingly.

Supplementary Figure 2. P(t,r) with fast unbinding kinetics (kon = 1570 mM−1ms−1) for 50 (A), 100 (B) and 200 (C)
simultaneously released ions for CD of 15 nm (top row) and 45 nm (bottom row). Black and green lines show respectively
analytical and MC results. The black and blue inset text on each plot represent FWHM error and MAE between analytical and
MC results correspondingly.
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