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Abstract
We develop an encounter-based approach for describing restricted diffusion
with a gradient drift toward a partially reactive boundary. For this purpose,
we introduce an extension of the Dirichlet-to-Neumann operator and use its
eigenbasis to derive a spectral decomposition for the full propagator, i.e. the
joint probability density function for the particle position and its boundary
local time. This is the central quantity that determines various characteristics of
diffusion-influenced reactions such as conventional propagators, survival prob-
ability, first-passage time distribution, boundary local time distribution, and
reaction rate. As an illustration, we investigate the impact of a constant drift
onto the boundary local time for restricted diffusion on an interval. More gen-
erally, this approach accesses how external forces may influence the statistics
of encounters of a diffusing particle with the reactive boundary.

Keywords: boundary local time, reflected Brownian motion, diffusion-
influenced reactions, surface reactivity, Robin boundary condition,
Heterogeneous catalysis
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1. Introduction

Many transport processes in nature and industry are described by an overdamped Langevin
equation for the random position Xt of a particle at time t or, equivalently, by the associated
Fokker–Planck equation for the probability density of that position [1–7]. In the presence
of restricting boundaries or hindering obstacles, the above descriptions have to be adapted
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to account for interactions of the diffusing particle with that boundaries. In physics litera-
ture, one usually deals directly with the Fokker–Planck equation by imposing appropriate
boundary conditions, while its stochastic counter-part is generally ignored. At the same time,
the stochastic differential equation in a confining domain naturally yields additional infor-
mation on the statistics of encounters of the diffusing particle with the boundary, the so-
called boundary local time �t. In a recent work [8], we investigated ordinary restricted dif-
fusion and showed numerous advantages of using the joint probability density for the pair
(Xt, �t) to build up a new encounter-based approach to diffusion-influenced reactions and other
diffusion-mediated surface phenomena. In particular, surface reactions can be incorporated
explicitly via an appropriate stopping condition for the boundary local time. In this way, the
bulk dynamics, determined by the pair (Xt, �t) in a confining domain with a fully inert reflect-
ing boundary, is disentangled from surface reactions, which are imposed later on. Moreover,
this approach allows one to implement new surface reaction mechanisms, far beyond those
described by the conventional Robin boundary condition. For instance, one can introduce an
encounter-dependent reactivity, in analogy with time-dependent diffusion coefficient for bulk
dynamics.

In this paper, we extend the encounter-based approach proposed in [8] to more general
diffusion processes with a gradient drift. Section 2 starts by recalling two conventional descrip-
tions of restricted diffusion and discussing the role of the full propagator in the case of
ordinary restricted diffusion. After this reminder, we present the main results by introduc-
ing an extension of the Dirichlet-to-Neumann operator and using its eigenbasis for deriving
a new spectral decomposition for the full propagator, as well as for various characteristics of
diffusion-influenced reactions. In section 3, we illustrate our general results in a simple setting
of restricted diffusion with a constant drift on an interval (or, equivalently, between parallel
planes). The geometric simplicity of this setting allows us to avoid technical issues and to
get fully explicit formulas that shed light onto the role of the drift onto boundary encounters.
Section 4 presents a critical discussion of the proposed approach and highlights its advantages,
drawbacks and limitations, as well as further perspectives.

2. General spectral approach

2.1. Two conventional descriptions

We first recall two conventional descriptions of restricted diffusion in a bounded domain Ω ⊂
R

d with a smooth boundary ∂Ω. On one hand, it can be described by the Skorokhod stochas-
tic differential equation for the random position Xt = (X1

t , . . . , Xd
t ) of a diffusing particle at

time t:

dXt = μ(Xt)dt +
√

2D dWt − n(Xt)d�t, X0 = x0, (1)

where x0 is the starting point [9–11]. Here the infinitesimal displacement dXt of the parti-
cle has three contributions: (i) the deterministic part with a drift μ(x), (ii) random (thermal)
fluctuations with the standard Gaussian noises dWt whose amplitudes are determined by the
diffusion coefficient D, and (iii) reflections from the boundary ∂Ω along the unit normal vec-
tor −n(x) (oriented inward the domain), whenever the particle hits the boundary. Intuitively,
the last term can be understood as an infinitely strong but infinitely short-ranged force that
repels the particle from the boundary back to the bulk (see a physical rational behind this force
in SM.I of [8]). Such instant reflections are governed by the boundary local time �t —a non-
decreasing stochastic process (with �0 = 0) that increases at each encounter with the boundary
(see figure 1). Curiously, the single Skorokhod equation determines simultaneously two tightly
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related stochastic processes: the position Xt and the boundary local time �t. Once Xt is con-
structed, the boundary local time �t can be obtained by rescaling the residence time of the
particle in the thin boundary layer of width a (see [12–25] and references therein):

�t = lim
a→0

D
a

∫ t

0
dt′ Θ(a − |Xt′ − ∂Ω|)︸ ︷︷ ︸

residence time

, (2)

where Θ(z) is the Heaviside step function (Θ(z) = 1 for z > 0 and 0 otherwise), and |x− ∂Ω|
denotes the distance between a bulk point x and the boundary ∂Ω. From equation (2), one can
see that the boundary local time �t is indeed a non-decreasing process that remains constant
when Xt is the bulk, and increases only when Xt hits the boundary. Even though �t has units
of length, we keep using the canonical term ‘boundary local time’. Note that �t/D has units of
time per length so that its multiplication by the width a of a thin boundary layer approximates
the fraction of time that the particle spent in that layer up to time t.

Throughout this work, we focus on the common physical setting when the drift represents
an external conservative force F(x), which can be written as the gradient of a potential V(x):

μ(x) =
F(x)
γ

=
−∇V(x)

γ
= −D∇Φ(x), (3)

where Φ(x) = V(x)/(kBT) is the dimensionless potential and γ = kBT/D is the friction coeffi-
cient, with kB being the Boltzmann’s constant and T the absolute temperature. We emphasize
that the drift is time-independent while thermal fluctuations are isotropic and independent of
both time and coordinates.

As said earlier, most physical works on restricted diffusion skip the stochastic differen-
tial equation (1) and deal directly with the probability density of the position Xt (also known
as the propagator), Gq(x, t|x0)dx = Px0{Xt ∈ (x, x + dx)}, which obeys the Fokker–Planck
equation [2]

∂tGq(x, t|x0) = LxGq(x, t|x0), (4)

where

Lx = −(∇x · μ(x)) + DΔx (5)

is the Fokker–Planck operator. Setting the probability flux density

Jq(x, t|x0) = μ(x)Gq(x, t|x0) − D∇xGq(x, t|x0), (6)

the Fokker–Planck equation can be understood as the continuity equation expressing the
probability conservation: ∂tGq(x, t|x0) = −(∇ · Jq).

The equation (4) has to be completed by the initial condition Gq(x, 0|x0) = δ(x− x0) stating
that the particle has started from x0 at time t = 0, and by an appropriate boundary condition
that accounts for interactions with the boundary. When the boundary is inert and impermeable
for the particle, the probability flux density in the normal direction to the boundary

jq(s, t|x0) =
(
n(x) · Jq(x, t|x0)

)
|x=s

= (n(s) · μ(s))Gq(s, t|x0) − D(∂nGq(x, t|x0))|x=s, (7)
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Figure 1. Simulated trajectory Xt (blue line) of restricted diffusion on the unit interval
(0, 1) with the starting point x0 = 0 and D = 1, and the boundary local time �t (red line),
rescaled by its value �T at T = 1, for three values of the constant drift: μ = 0 (top),
μ = 2 (middle) and μ = −2 (bottom). Each trajectory was generated by Monte Carlo
simulations with a time step 10−3.
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is zero at any boundary point s ∈ ∂Ω, with ∂n = (n(x) · ∇) being the normal derivative oriented
outwards the domain Ω. In turn, a partially reactive boundary is often described by imposing
that the probability flux density in the normal direction is proportional to Gq(x, t|x0),

jq(s, t|x0) = κGq(s, t|x0) (s ∈ ∂Ω), (8)

with κ (in units m s−1) being the reactivity. This Robin-type boundary condition was intro-
duced by Collins and Kimball in the context of chemical physics and was later investigated
and employed by many authors [26–41]. When κ = 0, one retrieves the fully reflecting bound-
ary, whereas in the opposite limit κ→∞, the left-hand side of this relation vanishes, and one
gets the Dirichlet boundary condition G(x, t|x0)|x∈∂Ω = 0 for a perfectly reactive boundary. As
discussed below, the Robin boundary condition (8) describes one surface reaction mechanism
among many others.

It is well known that the propagator also satisfies the backward Fokker–Planck equation
[2], which reads in our case as

∂tGq(x, t|x0) = L†
x0

Gq(x, t|x0), (9)

where

L†
x0

= (μ(x0) · ∇x0 ) + DΔx0 (10)

is the adjoint Fokker–Planck operator. Since both μ(x) and D are time-independent, solutions
of both Fokker–Planck equations depend on the difference between the terminal and starting
times t and t0 = 0, that allowed us to replace the time derivative −∂t0 by ∂t in equation (9).

The very definition of the propagator Gq(x, t|x0) indicates the deliberate choice of focusing
on the position Xt and ignoring the boundary local time �t in the second description. As shown
in [8] and discussed below, the inclusion of boundary encounters into the theoretical framework
brings numerous advantages.

2.2. Full propagator

We start with restricted diffusion without any surface reaction and introduce the full propa-
gator P(x, �, t|x0) as the joint probability density of Xt and �t in a bounded domain Ω with an
impermeable boundary ∂Ω:

P(x, �, t|x0)dxd� = Px0{Xt ∈ (x, x + dx), �t ∈ (�, �+ d�)}. (11)

In this way, the full propagator is constructed to describe exclusively the diffusive dynamics in
the bulk. As the stochastic solution of the Skorokhod equation (1) is unique [10, 11], the full
propagator is well-defined.

In order to incorporate surface reactions, we exploit the microscopic interpretation of the
boundary condition (8) by introducing a thin reactive layer of width a near the boundary and
counting the number of times, N a

t , that the diffusing particle has crossed this layer up to time t.
Each crossing can be understood as an encounter with the boundary during which the particle
might interact with it. The self-similar character of Brownian motion implies that after the first
encounter with the boundary, the particle returns infinitely many times to that boundary [42].
As a consequence, the number N a

t diverges as a → 0, but its rescaling by a yields a nontrivial
limit—the boundary local time:

�t = lim
a→0

aN a
t . (12)
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This representation is equivalent to equation (2) and yields an alternative approximation to the
boundary local time.

At each encounter, the particle can react with the boundary with some probability pa 

aκ/D or resume its diffusion in the bulk [31, 33, 43]. Such reaction attempts are supposed to
be independent from each other and from the diffusion process. Denoting by T the time of the
successful reaction event, one gets in the limit a → 0:

P{T > t} = E{(1 − pa)N
a
t } ≈ E{(1 − aκ/D)�t/a} ≈ E{e−(κ/D)�t} = P{�t < �̂}, (13)

where we introduced an independent random threshold �̂ obeying the exponential law:

P{�̂ > �} = e−q�, with q = κ/D. (14)

In other words, the successful reaction event occurs when the boundary local time �t crosses
the random threshold �̂. As first suggested in [35], this relation can actually be used as the
definition of the first-reaction time T :

T = inf{t > 0 : �t > �̂}, (15)

in analogy with the definition of the first-passage time: TFPT = inf{t > 0 : Xt ∈ ∂Ω}. More-
over, as the boundary local time remains zero until the first encounter, the first-passage time
can also be defined as TFPT = inf{t > 0 : �t > 0}, i.e. as the first crossing of the zero threshold.
The boundary local time offers thus a unified way of treating perfectly and partially reactive
boundaries.

By definition, the conventional propagator Gq(x, t|x0) is the probability density of finding
the particle in a vicinity of x at time t, given that the particle has started at x0 and not reacted
on the boundary up to time t. According to equation (13), the survival of the particle means
that �t < �̂. As a consequence, the conventional propagator is given by the full propagator
P(x, �, t|x0), multiplied by the survival probability of that particle up to time t, P{T > t} =

P{�t < �̂}, and integrated over all possible values of the boundary local time:

Gq(x, t|x0) =
∫ ∞

0
d� e−q�︸︷︷︸

=P{�<�̂}

P(x, �, t|x0). (16)

The parameter q stands in the subscript of the propagator to highlight its dependence on q
through the boundary condition (8). In other words, the propagator for partially reactive bound-
ary is obtained as the Laplace transform (with respect to �) of the full propagator for purely
reflecting boundary. This relation was established in [8] for ordinary diffusion without drift.
Whenever surface reactions are independent from bulk dynamics, the above arguments can be
applied, in particular, equation (16) holds for more general diffusion processes with a drift.
Note also that this relation can also be deduced from the rigorous probabilistic analysis of a
more general Robin boundary value problem presented in [44]. We emphasize that the bound-
ary local time �t depends exclusively on the diffusive dynamics in the confining domain Ω with
a purely reflecting boundary, whereas the threshold �̂ depends exclusively on the reactivity q,
allowing one to disentangle these two aspects of diffusion-controlled reactions. This disentan-
glement opens a way to investigate much more elaborate surface reaction mechanisms when the
exponential distribution of the random threshold �̂ is replaced by another distribution (see [8]
for details). As a consequence, the unique full propagator P(x, �, t|x0) can determine a variety
of conventional propagators by choosing an appropriate stopping condition. In summary, the
stochastic foundation (1) for both conventional and encounter-based approaches is the same,
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but the ways of incorporating surface reactions are different (Robin boundary condition versus
random threshold �̂).

While the full propagator P(x, �, t|x0) determines any conventional propagator Gq(x, t|x0)
via equation (16), its inverse Laplace transform with respect to q can in turn be used to
access the full propagator. However, the implicit dependence of the conventional propaga-
tor on q as the parameter in the boundary condition (8) makes difficult further explorations
of such an inverse, even numerically. To overcome this limitation, a spectral representation of
the full propagator was derived in [8] for ordinary diffusion. Here we aim at extending this
representation to restricted diffusion with a gradient drift.

2.3. Spectral decompositions

In the following, we mainly deal with Laplace-transformed quantities with respect to time t,
denoted by tilde. For instance,

G̃q(x, p|x0) =
∫ ∞

0
dt e−pt Gq(x, t|x0) (17)

is the Green’s function for the Fokker-Planck equation, which admits both forward and
backward forms:⎧⎨

⎩
(p− Lx)G̃q(x, p|x0) = δ(x − x0) (x ∈ Ω)

j̃q(x, p|x0) = κG̃q(x, p|x0) (x ∈ ∂Ω)
(forward) (18)

and ⎧⎨
⎩

(p− L†
x0

)G̃q(x, p|x0) = δ(x − x0) (x0 ∈ Ω)

∂n0G̃(x, p|x0) + qG̃q(x, p|x0) = 0 (x0 ∈ ∂Ω)
(backward), (19)

where

j̃q(x, p|x0) = (n(x) · μ(x))G̃q(x, p|x0) − D∂nG̃q(x, p|x0) (x ∈ ∂Ω) (20)

is the Laplace-transformed probability flux density.
In [8], we considered ordinary restricted diffusion (without drift) and employed the so-

called Dirichlet-to-Neumann operatorMp that associates to a given function f on the boundary
∂Ω another function on that boundary such that Mp f = (∂nu)|∂Ω, where u(x) satisfies (p−
DΔ)u(x) = 0 in Ω and u|∂Ω = f . In other words, Mp maps the Dirichlet boundary condition
onto Neumann boundary condition. Relying on the fact that the self-adjoint operator Mp on a
bounded boundary has a discrete spectrum (see [45–51] for mathematical details), we derived
the following spectral decomposition

G̃q(x, p|x0) = G̃∞(x, p|x0) +
1
D

∑
n

V (p)
n (x)[V (p)

n (x0)]∗

q + μ(p)
n

, (21)

where μ(p)
n are the eigenvalues of Mp, while V (p)

n (x) are projections of j̃∞(x, p|x0) onto the
eigenfunctions v(p)

n of that operator (see below for details; note that equation (21) is not used
in the following derivation and is reproduced here just for motivation). The inverse Laplace
transform of this relation with respect to q yielded the spectral decomposition of the Laplace-
transformed full propagator:
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P̃q(x, �, p|x0) = G̃∞(x, p|x0)δ(�) +
1
D

∑
n

V (p)
n (x)[V (p)

n (x0)]∗ e−�μ
(p)
n . (22)

A naive extension of this approach to restricted diffusion with drift would fail. In fact, even
though an appropriate Dirichlet-to-Neumann operator could be introduced by replacing the
equation (p− DΔ)u = 0 by (p− Lx)u = 0 or (p− L†

x0
)u = 0, such an extension would not in

general be self-adjoint and thus would require much more elaborate spectral tools.
To overcome this limitation, we reformulate the problem in terms of the symmetrized

Fokker–Planck operator [2]

L̄ = De
1
2Φ(x)∇xe−Φ(x)∇xe

1
2Φ(x) = DΔ−

(
(∇ · μ(x))

2
+

|μ(x)|2
4D

)
, (23)

where the second term in the last relation is the multiplication by the explicit drift-dependent
function (here, the operator∇ acts only on μ(x)). To avoid mathematical subtleties, we assume
that the second term is a smooth bounded function on Ω. With the aid of this expression, the
Fokker–Planck operator and its adjoint can be written as

L = e−
1
2Φ(x)L̄e

1
2Φ(x) = D∇xe−Φ(x)∇xeΦ(x), (24)

L† = e
1
2Φ(x)L̄e−

1
2Φ(x) = DeΦ(x)∇xe−Φ(x)∇x. (25)

In order to reduce the original problem to that with L̄, one can represent the Green’s function
as

G̃q(x, p|x0) = e
1
2Φ(x0)− 1

2Φ(x)g̃q(x, p|x0), (26)

so that forward and backward equations imply two equivalent boundary value problems for the
new function g̃q(x, p|x0):

(p− L̄x)g̃q(x, p|x0) = δ(x − x0) (x ∈ Ω), (27)

(∂n + q + φ(x)) g̃q(x, p|x0) = 0 (x ∈ ∂Ω), (28)

and

(p− L̄x0 )g̃q(x, p|x0) = δ(x − x0) (x0 ∈ Ω), (29)(
∂n0 + q + φ(x0)

)
g̃q(x, p|x0) = 0 (x0 ∈ ∂Ω), (30)

with

φ(x) =
1
2

(∂nΦ(x)) = − 1
2D

(n(x) · μ(x)) (x ∈ ∂Ω). (31)

As the forward and backward problems are now identical, their solution is symmetric with
respect to the exchange of x and x0: g̃q(x, p|x0) = g̃q(x0, p|x).

We search for the following representation:

g̃q(x, p|x0) = g̃∞(x, p|x0) +
1
D

u(x, p|x0), (32)
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where the new function u(x, p|x0) satisfies

(p− L̄x0 )u(x, p|x0) = 0, (33)

subject to the boundary condition at x0 ∈ ∂Ω:

0 = (∂n0 + q)G̃q(x, p|x0)

= (∂n0 + q)

(
G̃∞(x, p|x0) +

e
1
2Φ(x0)− 1

2Φ(x)

D
u(x, p|x0)

)

= ∂n0G̃∞(x, p|x0) +
e

1
2Φ(x0)− 1

2Φ(x)

D

(
∂n0 + q + φ(x0)

)
u(x, p|x0),

i.e. (
∂n0 + q + φ(x0)

)
u(x, p|x0) = e

1
2Φ(x)− 1

2Φ(x0) j̃′∞(x0, p|x) (x0 ∈ ∂Ω), (34)

where

j̃′∞(x0, p|x) = −D∂n0G̃∞(x, p|x0) (x0 ∈ ∂Ω). (35)

Since the normal derivative ∂n0 acts on x0 of G̃q(x, p|x0), this function differs in general from
j̃∞(x, p|x0) given in equation (20). We also emphasize that the order of x0 and x in this notation
has been changed, in order to keep the convention that the first argument of j is a point on the
boundary.

In the next step, we introduce a Dirichlet-to-Neumann operator Mp that associates to a
given function f on ∂Ω another function on ∂Ω such that

Mp f = (∂nw + φ(x)w)|∂Ω, with

{
(p− L̄x)w = 0 (x ∈ Ω),

w = f (x ∈ ∂Ω).
(36)

The operator L̄ in equation (23) having the form of a Schrödinger operator, is self-adjoint; in
addition, as the domain is bounded, the drift-dependent term is a bounded perturbation to the
Laplace operator. In analogy with the Laplacian case (see [47, 48] for mathematical details),
one can expect that, under mild assumptions on the drift term, the Dirichlet-to-Neumann oper-
ator Mp is self-adjoint, with a discrete spectrum of real eigenvalues {μ(p)

n }, while its eigen-
functions {v(p)

n } form a complete orthonormal basis in L2(∂Ω). As a proof of this mathematical
statement is beyond the scope of the present paper, we will use it as a conjecture in the fol-
lowing presentation. In other words, we focus on such drifts μ(x), for which this statement
is valid. The Dirichlet-to-Neumann operator Mp allows us to rewrite the boundary condition
(34) in an operator form, from which

u(x, p|x0) = (Mp + q)−1e
1
2Φ(x)− 1

2Φ(x0) j̃′∞(x0, p|x) (x0 ∈ ∂Ω). (37)

Finally, one needs to extend u(x, p|x0) to any x0 ∈ Ω. For this purpose, one multiplies
equation (27) with q = ∞ by u(x, p|x′) and subtracts from it the equation (p− L̄x)u(x, p|x′) =
0 multiplied by g̃∞(x′, p|x0). The integration of both parts over x′ yields

9
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u(x, p|x0) =
∫
Ω

dx′ u(x, p|x′)δ(x′ − x0)

=

∫
Ω

dx′ (u(x, p|x′)(p− L̄x′)g̃∞(x′, p|x0)− g̃∞(x′, p|x0)(p− L̄x′ )u(x, p|x′)
)

= −
∫
Ω

dx′ (u(x, p|x′)DΔx′ g̃∞(x′, p|x0) − g̃∞(x′, p|x0)DΔx′
)

u(x, p|x′)
)

= −
∫
∂Ω

dx′ (u(x, p|x′)D∂n′ g̃∞(x′, p|x0) − g̃∞(x′, p|x0)D∂n′u(x, p|x′)
)

=

∫
∂Ω

dx′u(x, p|x′)e
1
2Φ(x′)− 1

2Φ(x0)∂n′(−DG̃∞(x′, p|x0))

=

∫
∂Ω

dx′u(x, p|x′)e
1
2Φ(x′)− 1

2Φ(x0) j̃∞(x′, p|x0),

where we used Green’s relations and the Dirichlet boundary condition G̃∞(x, p|x0) = 0 at x ∈
∂Ω. As a consequence, we get

G̃q(x, p|x0) = G̃∞(x, p|x0) +
e

1
2Φ(x0)− 1

2Φ(x)

D
u(x, p|x0)

= G̃∞(x, p|x0) +
e−

1
2Φ(x)

D

∫
∂Ω

dx′u(x, p|x′)e
1
2Φ(x′) j̃∞(x′, p|x0)

= G̃∞(x, p|x0) +
1
D

∫
∂Ω

dx′
((

Mp + q
)−1

e−
1
2Φ(x′) j̃′∞(x′, p|x)

)

× e
1
2Φ(x′) j̃∞(x′, p|x0). (38)

Using the eigenfunctions of Mp, one gets the spectral decomposition of the Green’s
function:

G̃q(x, p|x0) = G̃∞(x, p|x0) +
1
D

∑
n

V ′(p)
n (x)[V (p)

n (x0)]∗

q + μ(p)
n

, (39)

where

V (p)
n (x0) =

∫
∂Ω

ds v(p)
n (s) e

1
2Φ(s) j̃∞(s, p|x0), (40)

V ′(p)
n (x) =

∫
∂Ω

ds v(p)
n (s) e−

1
2Φ(s) j̃′∞(s, p|x). (41)

When there is no drift, one has Φ(s) = 0 and thus V ′(p)
n (x) = V (p)

n (x), so that equation (39) is
reduced to the former result (21) derived in [8]. The Laplace inversion of equation (39) with

10
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respect to q yields

P̃(x, �, p|x0) = G̃∞(x, p|x0)δ(�) +
1
D

∑
n

V ′(p)
n (x)[V (p)

n (x0)]∗e−�μ
(p)
n . (42)

This is our main theoretical result, which generalizes the former relation (22) to the case of
restricted diffusion with a gradient drift.

2.4. Various diffusion–reaction characteristics

As said earlier, the full propagator determines various characteristics of diffusion-influenced
reactions. For instance, integrating equations (39) and (42) over x ∈ Ω, one accesses the
Laplace-transformed survival probability and the Laplace-transformed probability density of
the boundary local time, respectively:

S̃q(p|x0) = S̃∞(p|x0) +
1
D

∑
n

V ′(p)
n [V (p)

n (x0)]∗

q + μ(p)
n

, (43)

and

P̃(◦, �, p|x0) = S̃∞(p|x0)δ(�) +
1
D

∑
n

V ′(p)
n [V (p)

n (x0)]∗e−�μ
(p)
n , (44)

where ◦ denotes the marginalized variable x, and

V ′(p)
n =

∫
Ω

dx V ′(p)
n (x). (45)

In appendix A, we derive the following representation for this quantity:

V ′(p)
n =

D
p
μ(p)

n

∫
∂Ω

ds e−
1
2Φ(s)v(p)

n (s). (46)

These expressions generalize our former results for ordinary diffusion without drift from [52,
53].

We recall that the survival probability determines the distribution of the first-reaction time
T on a partially reactive boundary [4]: Sq(t|x0) = Px0{T > t}. At the same time, Sq(t|x0) =
Ex0{e−q�t} is the generating function of the boundary local time �t [8, 41] that allows one to
compute its moments as

Ex0{�k
t } = (−1)k lim

q→0

∂k

∂qk
Sq(t|x0), (47)

from which ∫ ∞

0
dt e−pt

Ex0{�k
t } =

k!
D

∑
n

V ′(p)
n [V (p)

n (x0)]∗

[μ(p)
n ]k+1

. (48)

Multiplying both sides by p, one can also interpret the integral over t as the double average of
the random variable �k

τ with the random exponentially distributed stopping time τ . Similarly,

11
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pP̃(◦, �, p|x0) can be interpreted as the probability density of �τ :

Px0{�τ ∈ (�, �+ d�)} =

∫ ∞

0
dt pe−pt︸ ︷︷ ︸

pdf of τ

Px0{�t ∈ (�, �+ d�)} = pP̃(◦, �, p|x0)d�. (49)

Setting q = 0 in equation (43) and noting that S̃0(p|x0) = 1/p (since S0(t|x0) = 1 for a fully
inert boundary), one gets

S̃∞(p|x0) =
1
p
− 1

D

∑
n

V ′(p)
n [V (p)

n (x0)]∗

μ(p)
n

. (50)

Substituting this expression back into equation (43), one deduces an equivalent spectral
decomposition:

S̃q(p|x0) =
1
p
− 1

D

∑
n

V ′(p)
n [V (p)

n (x0)]∗

μ(p)
n (1 + μ(p)

n /q)
, (51)

from which one also derives the Laplace-transformed probability density of the first-reaction
time:

H̃q(p|x0) = 1 − pS̃q(p|x0) =
p
D

∑
n

V ′(p)
n [V (p)

n (x0)]∗

μ(p)
n (1 + μ(p)

n /q)
. (52)

As Hq(t|x0) can be interpreted as the probability flux of particles, started from x0, onto
the reactive boundary, the total flux Jq(t) is obtained by averaging Hq(t|x0) with the initial
concentration c(x0) of these particles. If the initial concentration is uniform, c(x0) = c0, one
gets in the Laplace domain:

J̃q(p) =
∫
Ω

dx0 c0 H̃q(p|x0) = c0
p
D

∑
n

V ′(p)
n [V (p)

n ]∗

μ(p)
n (1 + μ(p)

n /q)
, (53)

where

V (p)
n =

∫
Ω

dx0 V (p)
n (x0). (54)

Finally, the definition (15) of the first-reaction time T puts forward the importance of thresh-
old crossing by the boundary local time �t. Following [8], let us consider a fixed threshold � and
investigate its first-crossing time T� = inf{t > 0 : �t > �} (note that T = T�̂, i.e. when a fixed
threshold � is replaced by a random threshold �̂). As the boundary local time is a non-decreasing
process, one has P{T� > t} = P{�t < �}, from which the probability density U(�, t|x0) of T�
can be expressed as

U(�, t|x0) = −∂tP{T� > t} = ∂tP{�t > �} = ∂t

∫ ∞

�

d�′ P(◦, �′, t|x0). (55)

In the Laplace domain, the substitution of equation (44) yields

Ũ(�, p|x0) =
p
D

∑
n

V ′(p)
n

μ(p)
n

[V (p)
n (x0)]∗e−�μ

(p)
n . (56)

12
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As T = T�̂, the probability densities of T and T� are related:

Hq(t|x0) =
dP{T ∈ (t, t + dt)}

dt
=

∫ ∞

0
d� qe−q� dP{T� ∈ (t, t + dt)}

dt

=

∫ ∞

0
d� qe−q� U(�, t|x0),

where qe−q� is the probability density of the exponential threshold �̂. As the full propagator
determines a variety of conventional propagators, the probability density U(�, t|x0) determines
a variety of the first-reaction time densities.

2.5. Probabilistic interpretation

To conclude this section, we provide some probabilistic insights onto the above results. For
this purpose, we write an alternative representation of the Green’s function:

G̃q(x, p|x0) = G̃∞(x, p|x0) +
∫
∂Ω

ds1

∫
∂Ω

ds2 j̃∞(s1, p|x0)G̃q

× (s2, p|s1) j̃′∞(s2, p|x). (57)

This relation claims that either a random trajectory starting from x0 goes directly to x without
hitting the boundary (the first term), or this trajectory hits the boundary at least once before
arriving at x (the second term). In the latter case, the Markov property of restricted diffusion
implies the product of three contributions in the Laplace domain: the particle hits the boundary
for the first time at some point s1 (the factor j̃∞(s1, p|x0)), moves inside the domain until the
last hit of the boundary at some point s2 (the factor G̃q(s2, p|s1)), and finally goes directly to
the bulk point x (the factor j̃′∞(s2, p|x)). A direct definition of the last factor would require
conditioning Brownian trajectories to avoid hitting the boundary. A simpler approach consists
in the simultaneous time and drift reversal (i.e. μ(x) →−μ(x)) in the diffusive dynamics, for
which j′∞(s2, t|x) can be understood as the probability flux density onto the absorbing boundary
at the point s2 at time t when starting from x. In this way, one restores the reversal symmetry
of restricted diffusion, in particular, one gets G′

q(x0, t|x) = Gq(x, t|x0) and thus

j̃′∞(x0, p|x) = −D∂n0G̃′
∞(x0, p|x). (58)

When there is no drift, one simply has Gq(x0, t|x) = G′
q(x0, t|x) = Gq(x, t|x0) and also

j′∞(s, t|x) = j∞(s, t|x).
Comparison of equations (38) and (57) implies that

(Mp + q)s1De
1
2Φ(s2)− 1

2Φ(s1)G̃q(s2, p|s1)︸ ︷︷ ︸
=g̃q(s2,p|s1)

= δ(s1 − s2) (s1, s2 ∈ ∂Ω),

i.e. Dg̃q(s2, p|s1) can be understood as the kernel density of the operator (Mp + q)−1.

3. Constant drift on an interval

In order to illustrate the derived spectral decompositions, we consider a simple yet informa-
tive setting of restricted diffusion on an interval (0, L) with a constant drift μ. This problem is
mathematically equivalent to restricted diffusion between parallel plates given that the lateral
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motion along the plates does not affect boundary encounters. For instance, this mathemati-
cal setting can describe the motion of a charged particle in a constant electric field inside a
capacitor. The geometric simplicity of the problem will allow us to get fully explicit formulas
and thus to clearly illustrate the effect of the drift onto the statistics of boundary encounters.
Qualitatively, a drift toward the boundary tends to keep the particle in a vicinity of the bound-
ary and thus to enlarge the number of encounters, whereas the reversed drift is expected to
result in the opposite effect. However, these effects have not been studied quantitatively, to
our knowledge.

The constant drift corresponds to the potential Φ(x) = −μx/D. Expectedly, the
Fokker–Planck operator L = D∂2

x − μ∂x is not self-adjoint, whereas the symmetric operator,
which takes a simple form

L̄ = D∂2
x − μ2/(4D) = D(∂2

x − γ2), γ = − μ

2D
, (59)

is self-adjoint.

3.1. Dirichlet-to-Neumann operator

As the boundary of an interval consists of two endpoints, the pseudo-differential operator Mp

is reduced to a 2 × 2 matrix. In fact, a general solution of the equation (p− L̄)u = 0 has the
form u(x) = c+eβx + c−e−βx , with β =

√
p/D + γ2 and two coefficients c± to be fixed by

boundary conditions. Any ‘function’ on the boundary can thus be obtained as a superposition
of two linearly independent vectors: f1 = (1, 0)† and f2 = (0, 1)†, where the first and second
components stand for the values at the endpoints x = 0 and x = L, respectively. According to
equation (36), the operator Mp acts as

Mp

(
u(0)
u(L)

)
=

(
(∂nu)x=0 + φ(0)u(0)
(∂nu)x=L + φ(L)u(L)

)
, (60)

where φ(0) = − 1
2 (∂xΦ)x=0 = μ/(2D) = −γ and φ(L) = 1

2 (∂xΦ)x=L = γ. The boundary
‘function’ f1 = (1, 0)† is obtained with

c+ =
−1

e2βL − 1
, c− =

1
1 − e−2βL

, (61)

while f2 = (0, 1)† corresponds to

c+ =
eβL

e2βL − 1
, c− = − eβL

e2βL − 1
. (62)

We get then

Mp =

(
β ctanh(βL) − γ −β/ sinh(βL)
−β/ sinh(βL) β ctanh(βL) + γ

)
. (63)

Expectedly, this is a Hermitian matrix with two real positive eigenvalues,

μ(p)
± = β ctanh(βL) ±

√
γ2 +

β2

sinh2(βL)
, (64)
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and orthonormal eigenvectors:

v(p)
± =

−1√(
μ(p)
± − (Mp)11

)2
+ (Mp)2

12

(
(Mp)12

μ(p)
± − (Mp)11

)
. (65)

To distinguish two eigenmodes, here we use the subscripts + and − instead of the index n
employed in section 2.

3.2. Dirichlet Green’s function

To complete the computation, one needs to evaluate the probability flux densities. In appendix
B, we recall the derivation of the Green’s function on the interval. For perfectly reactive
endpoints, one has

G̃∞(x, p|x0) =
e−γ(x−x0)

βD sinh(βL)
×
{

sinh(β x̄0) sinh(βx) (0 < x < x0),

sinh(β x̄) sinh(βx0) (x0 < x < L),
(66)

where x̄ = L − x and x̄0 = L − x0. The Laplace-transformed probability flux density reads
then

j̃∞(0, p|x0) =
(
μG̃∞(x, p|x0) + D∂xG̃∞(x, p|x0)

)∣∣∣
x=0

=
eγx0 sinh(β x̄0)

sinh(βL)
, (67)

j̃∞(L, p|x0) =
(
μG̃∞(x, p|x0) − D∂xG̃∞(x, p|x0)

)∣∣∣
x=L

=
eγ(x0−L) sinh(βx0)

sinh(βL)
. (68)

Similarly, we have

j̃′∞(0, p|x) =
(

D∂x0 G̃∞(x, p|x0)
)∣∣∣

x0=0
=

e−γx sinh(β x̄)
sinh(βL)

, (69)

j̃′∞(L, p|x) =
(
−D∂x0 G̃∞(x, p|x0)

)∣∣∣
x0=L

=
e−γ(x−L) sinh(βx)

sinh(βL)
. (70)

Expectedly, the functions j̃∞(0, p|x0) and j̃′∞(0, p|x0) differ only by the sign of the drift (here,
the sign of γ).

3.3. Propagators

According to equations (40) and (41), one has to project the probability flux densities onto the
eigenfunctions ofMp to get V (p)

n and V ′(p)
n . As the boundary consists of two endpoints, integrals

are reduced to sums with two contributions:

V (p)
± (x0) = v(p)

± (0) j̃∞(0, p|x0) + v(p)
± (L)eγL j̃∞(L, p|x0)

=
eγx0

sinh(βL)

(
v(p)
± (0) sinh(β x̄0) + v(p)

± (L) sinh(βx0)
)

,

V ′(p)
± (x) = v(p)

± (0) j̃′∞(0, p|x) + v(p)
± (L)e−γL j̃′∞(L, p|x)

=
e−γx

sinh(βL)

(
v(p)
± (0) sinh(β x̄) + v(p)

± (L) sinh(βx)
)
.
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As a consequence, equations (39) and (42) imply

G̃q(x, p|x0) = G̃∞(x, p|x0) +
1
D

(
V (p)
+ (x0)V ′(p)

+ (x)

q + μ(p)
+

+
V (p)
− (x0)V ′(p)

− (x)

q + μ(p)
−

)
(71)

and

P̃(x, �, p|x0) = G̃∞(x, p|x0)δ(�) +
1
D

(
V (p)
+ (x0)V ′(p)

+ (x)e−�μ
(p)
+ + V (p)

− (x0)V ′(p)
− (x)e−�μ

(p)
−
)
. (72)

Note that when the particle starts from one of the endpoints, the first term vanishes, and one
also has V (p)

± (0) = v(p)
± (0) and V (p)

± (L) = eγLv(p)
± (L). While the Green’s function G̃q(x, p|x0) for

partially reactive endpoints was known (and could be derived in a direct way, see appendix B),
the explicit form (72) of the Laplace-transformed full propagator presents a new result. These
expressions in the no drift limit are detailed in appendix C.

3.4. Mean boundary local time

Rewriting equation (46) explicitly as

V ′(p)
± =

Dμ(p)
±

p

(
v(p)
± (0) + e−γLv(p)

± (L)
)

, (73)

we get from equation (48) the Laplace transform of the mean boundary local time:∫ ∞

0
dt e−pt

Ex0{�t} =
1
p

∑
±

v(p)
± (0) + e−γLv(p)

± (L)

μ(p)
±

× eγx0

sinh(βL)

(
v(p)
± (0) sinh(β x̄0) + v(p)

± (L) sinh(βx0)
)

, (74)

where the sum contains only two terms. Note that higher-order moments of �t can be written
in a similar way. Using the exact solution (74) in the Laplace domain, one can analyze the
short-time and long-time behavior of the mean boundary local time. Here we only sketch the
major points whereas the computational details are given in appendix D.

The long-time regime refers to the situation when a particle has enough time to explore
the whole confining domain a number of times, i.e. Dt  L2. This regime corresponds to the
limit p→ 0, for which μ(p)

+ ≈ 2γ ctanh(γL) + O(p) and μ(p)
− ≈ p tanh(γL)

2γD + O(p2). As the other
‘ingredients’ in equation (74) converge to finite limits as p→ 0 (and γ �= 0), one deduces the
long-time asymptotic behavior:

Ex0{�t} 
 2γ ctanh(γL)Dt + O(1) (t →∞). (75)

Expectedly, the long-time behavior does not depend on the starting point x0. In the no drift
limit, γ → 0, the constant in front of the leading term approaches 2D/L, yielding

Ex0{�t} 
 2Dt
L

+ O(1) (t →∞), (76)

in agreement with the general long-time behavior for ordinary diffusion in bounded domains
[41]. The factor γ ctanh(γL) is an even monotonously increasing function: whatever the sign of
the drift, it tends to increase the mean boundary local time in the long-time limit by keeping
the particle closer to the boundary and thus enhancing their encounters.
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The behavior is totally different in the short-time limit. First, the initial position of the par-
ticle plays the crucial role. Indeed, the particle started in the bulk (i.e. 0 < x0 < L) needs some
time for traveling to the boundary in order to make the very first encounter (i.e. to get �t > 0).
As a consequence, the mean Ex0{�t} vanishes exponentially fast as t → 0 (see appendix D for
details). In contrast, when the particle starts on the boundary, Ex0{�t} exhibits a power-law
behavior. We derived the short-time asymptotic formula (D.5) for E0{�t} that can be written
as

E0{�t} ≈ F(−γ
√

Dt)
γ

(t → 0), (77)

with

F(x) = −1
2

erf(x) + x2 (1 − erf(x)) − |x| e−x2

√
π

, (78)

where erf(x) is the error function. By introducing the time scale tμ = 1/(Dγ2) = 4D/μ2 asso-
ciated to the drift, we can distinguish the cases of positive and negative drifts, as well as the
limits of very short (t � tμ) and intermediate short (tμ � t � L2/D) times.

(a) For a positive drift (i.e. μ > 0 and γ < 0), one has F(x) 
 −2x/
√
π + x2 + O(x3) as x =

|γ|
√

Dt → 0, and thus

E0{�t} ≈ 2
√

Dt√
π

− 1
2
|μ|t (t � tμ, μ > 0). (79)

The leading,
√

t-term remains unaffected by the drift, which enters in the next-order cor-
rection. In particular, one retrieves the result from [41] for restricted diffusion without
drift. In turn, for intermediate short times t  tμ, one uses F(x) ≈ 1/2 as x →∞ to get

E0{�t} ≈ D
2|μ| (tμ � t � L2/D, μ > 0). (80)

In summary, a positive drift slightly diminishes the mean boundary local time via the next-
order correction in equation (79), and then leads to a constant value controlled by |γ|,
before reaching the long-time regime. This behavior agrees with the probabilistic picture,
in which a positive drift facilitates the departure of the particle from the left endpoint x0.
In a typical realization, the particle started from x0 = 0 hits the left endpoint a number
of times and then diffuses toward the right endpoint. The plateau in equation (80) corre-
sponds, on average, to the passage from the left to the right endpoint, during which the
boundary local time does not change.

(b) For a negative drift (i.e. μ < 0 and γ > 0), the situation is different. At very short times,
one has F(x) 
 x2 + O(x3) as x = −γ

√
Dt → 0 and thus

E0{�t} ≈ 1
2
|μ|t (t � tμ, μ < 0). (81)

Here, the linear slope, which is generally reminiscent of the long-time behavior, is con-
trolled by the drift, which keeps the particle in the vicinity of the left endpoint. For inter-
mediate short times, one has F(x) 
 2x2 + 1/2 as x →−∞. Neglecting the constant 1/2
in comparison to 2x2 in this limit, one gets

E0{�t} ≈ |μ|t (tμ � t � L2/D, μ < 0), (82)
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Figure 2. Mean boundary local time Ex0{�t} on the unit interval (L = 1), with D =
1, x0 = 0, and five values of μ, as shown in the legend. Dashed and dash-dotted lines
illustrate respectively the short-time relation (79) with μ = 0 and the long-time relation
(76) for the case without drift. Ex0{�t} was obtained via a numerical Laplace transform
inversion by a modified Talbot algorithm (see appendix E).

i.e. the linear growth remains valid at intermediate times as well. Finally, at long times,
the linear scaling is retrieved again, with the slope being controlled by the length of the
interval (if the drift is not too strong).

Figure 2 illustrates the above picture. The red solid line presents the mean boundary local
time E0{�t} for restricted diffusion without drift, which agrees well with both long-time and
short-time asymptotic relations (76), (79). Four other curves plotted by symbols show E0{�t}
in the presence of drift (with four different values of μ). At long times, the drift shifts the
curves upwards in the loglog plot due the prefactor γ ctanh(γL) in front of t in equation (75).
The effect is the same for both positive and negative drifts. At short times, we retrieve the
asymptotic behavior described above by equations (79)–(82) for positive and negative drifts.
In particular, one clearly sees the plateau region in the case μ = 20. In turn, this region is not
present for μ = 2 because the time window of this regime, tμ � t � L2/D, is empty, given
that tμ = L2/D = 1.

3.5. Distribution of the boundary local time

To get the distribution of the boundary local time �t, it is enough to integrate the full propagator
over x. In fact, if P(◦, �, t|x0) denotes the probability density of �t, its Laplace transform reads

P̃(◦, �, p|x0) = S̃∞(p|x0)δ(�) +
1
D

(
V (p)
+ (x0)V ′(p)

+ e−�μ
(p)
+ + V (p)

− (x0)V ′(p)
− e−�μ

(p)
−
)

,

(83)

where

S̃∞(p|x0) =
1
p

(
1 − sinh(β x̄0)eγx0 + sinh(βx0)e−γ x̄0

sinh(βL)

)
. (84)

For illustration purposes, we consider the situation when the particle is already on the bound-
ary, so that there is no contribution from the first term in equation (83). As the problem is
invariant under reflection with respect to the center of the interval (i.e. changing x0 to L − x0)
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along with changing μ to −μ, one can focus on the starting point x0 = 0. Figure 3 illustrates
the behavior of the probability density P(◦, �, t|0) of the boundary local time �t. According
to equation (83), the Laplace transform of this function reaches a constant as �→ 0, and
rapidly vanishes at large �. These properties are preserved in time domain, even though the
value of the constant at small � depends on time t. As the short-time limit corresponds to
p→∞, the value P̃(◦, 0, p|0) weakly depends on the drift, and so does P(◦, 0, t|0), as one can
see on the panel (a) for t = 0.01. Expectedly, the distribution is shifted to the right (toward
larger �) by a negative drift which keeps the particle in the vicinity of the left endpoint and
thus facilitates encounters. In contrast, a positive drift has the opposite effect. At an inter-
mediate time t = 0.1 (panel (b)), the small-� behavior of P(◦, �, t|0) is more sensitive to the
drift, in particular, the constant plateau at �→ 0 is strongly attenuated by a strong negative
drift (μ = −20) because small values of � are highly unlikely. A similar trend is also visible
for strong positive drift (μ = 20) which facilitates the passage to the right endpoint. Finally,
at moderately long time t = 1 (panel (c)), there is almost no difference in the effect of pos-
itive and negative drifts. The distribution becomes peaked around the mean value at large
drifts μ = ±20.

To complete this section, we briefly discuss the probability density pP̃(◦, �, p|x0) of the
boundary local time �τ , which is stopped at a random time τ with an exponential distribu-
tion: P{τ > t} = e−pt. Such a stopping time can describe restricted diffusion in a reactive
medium, in which the particle can spontaneously disappear with the rate p; alternatively, it
can describe mortal walkers with a finite lifetime [54, 55]. In this setting, we are interested
in the boundary local time at the death moment, i.e. how many times the particle encoun-
tered the boundary during its lifetime. According to equation (83), the probability density
of �τ is simply a bi-exponential function, whose decay rates are controlled by the eigenval-
ues μ(p)

± . In this setting, equation (83) does not require an inverse Laplace transform anymore
and thus allows for a complete, fully explicit and elementary study. We skip this analysis and
illustrate the behavior of the probability density on figure 4. As previously, a negative drift
keeps the particle near the left endpoint and enhances its encounters with that boundary, yield-
ing higher probability for larger values of �τ . In turn, a strong positive drift results in two
constant levels of the probability density: a higher plateau at small �, which corresponds to
encounters with the right endpoint, and a lower plateau at larger �, which represents the con-
tribution of encounters with the left endpoint (as in the case of the negative drift). In fact,
when the particle leaves the left endpoint, it spends a considerable part of its lifetime to dif-
fuse toward the right endpoint, during which the boundary local time does not change. As
a consequence, one gets small �τ for such realizations. We note that the qualitative behav-
ior for two considered reaction rates p = 0.1 and p = 1 is very similar, except that the decay
at large � is faster for p = 1 because the particles with the shorter lifetime get on average
smaller �τ .

4. Discussion

In this paper, we extended the encounter-based approach developed in [8] to restricted dif-
fusion with a gradient drift. This approach relies on the Langevin (or Skorokhod) stochastic
differential equation that describes simultaneously the position of a particle and its bound-
ary local time. Quite naturally, their joint probability density P(x, �, t|x0), that we called
the full propagator, appears to be the fundamental characteristics of restricted diffusion.
This quantity is independent of surface reactions and thus properly describes the dynam-
ics alone. In turn, the conventional propagator, which accounts for surface reactions through
the Robin boundary condition, can then be deduced as the Laplace transform of P(x, �, t|x0)
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Figure 3. Probability density P(◦, �, t|x0) of the boundary local time �t on the unit inter-
val (L = 1), with D = 1, x0 = 0, and five values of μ (given in the legend) and three
values of t: (a) t = 0.01, (b) t = 0.1, and (c) t = 1. Vertical dashed lines indicate the
corresponding mean boundary local times E0{�t}. Both P(◦, �, t|x0) and E0{�t} were
obtained via a numerical Laplace transform inversion by a modified Talbot algorithm
(see appendix E).
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Figure 4. Probability density pP̃(◦, �, p|x0) of the boundary local time �τ (stopped at a
random time τ exponentially distributed with rate p) on the unit interval (L = 1), with
D = 1, five values of μ (given in the legend), and two values of the rate p: (a) p = 0.1
and (b) p = 1.

Figure 5. (a) An interval of length L with two reflecting endpoints and a linearly decreas-
ing potential Φ(x) that describes a positive drift; (b) An infinite line with equally spaced
discrete points {nL} and a triangular periodic potential Φ(x) that describes alternating
positive and negative drifts.

with respect to the boundary local time �. This relation reflects the Bernoulli character
of the surface reaction mechanism when the particle attempts to react at each encounter
with equal probabilities and these trials are independent from each other. Most impor-
tantly, other surface reaction mechanisms can be implemented in a very similar way by
replacing the exponential stopping condition. The disentanglement of the diffusive dynam-
ics from surface reactions presents thus one of the major advantages of the encounter-based
approach.

In order to derive a spectral decomposition for the Laplace-transformed full propagator, we
introduced an appropriate Dirichlet-to-Neumann operator based on the symmetrized version
of the Fokker–Planck operator. We illustrated the advantages of this approach in the case of
restricted diffusion on an interval with a constant drift. In particular, we analyzed the distribu-
tion of the boundary local time and showed the effects of both positive and negative drifts at
short and long times. We note that restricted diffusion on the interval (0, L) with reflecting end-
points is equivalent to that on an infinite line and on a circle. As a consequence, the obtained
exact formula for the distribution of the boundary local time can also describe (i) the boundary
local time on discrete points {nL}n∈Z equally spaced on an infinite line with a periodic trian-
gular potential (see figure 5), and (ii) the boundary local time on an even number of equally
spaced points on a circle.
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Throughout the manuscript, the whole boundary was supposed to be reactive. In many appli-
cations, however, one deals with a reactive region R ⊂ ∂Ω on otherwise inert impermeable
boundary, and aims at finding the distribution of first-reaction times on that region. In this case,
the Robin boundary condition (8) is replaced by mixed Robin–Neumann boundary condition

jq(s, t|x0) =

{
κGq(s, t|x0) (s ∈ R),

0 (s ∈ ∂Ω \ R).
(85)

As discussed in [53], an extension of the encounter-based approach to this setting is straight-
forward. In fact, one focuses on the boundary local time on the reactive region R, which is
obtained by substituting ∂Ω by R in equation (2). The former derivations remain valid, if the
definition (36) of the Dirichlet-to-Neumann operator Mp is generalized as

Mp f = (∂nw + φ(x)w) |R, with

⎧⎪⎪⎨
⎪⎪⎩

(p− L̄x)w = 0 (x ∈ Ω),

w = f (x ∈ R),

∂nw + φ(x)w = 0 (x ∈ ∂Ω \ R).

(86)

In other words, the operator Mp associates to a function f on the reactive region R another
function on R, keeping the reflecting boundary condition for the solution w on the remaining
inert region ∂Ω \ R. Examples of this extension for ordinary diffusion were given in [53]. As
the reactive region does not need to be connected, the problem of multiple reactive sites can
be treated in this framework. In addition, one can include an absorbing region A ⊂ ∂Ω that
kills the particle upon the first encounter. In this way, one can investigate surface reactions
on R for a sub-population of particles that avoid hitting A. An implementation of this setting
consists in adding the boundary conditionw = 0 onA in the definition (86) of the Dirichlet-to-
Neumann operator (see further discussions in [57]). To get more subtle insights onto reactions
on different reactive sites (e.g. competition between them), one can introduce the individual
boundary local time on each site and look at their joint distribution [57]. However, appropriate
spectral decompositions in this setting are yet unknown.

The proposed encounter-based approach can be further developed in different directions.
On one hand, one can dwell on a rigorous proof of the spectral decompositions, on mathe-
matical conditions for the boundary smoothness, on the spectral properties of the introduced
extension of the Dirichlet-to-Neumann operatorMp, and on their probabilistic interpretations.
In particular, we assumed that Mp is a self-adjoint operator with a discrete spectrum, with-
out discussing eventual limitations on the drift μ(x). Moreover, one can further extend the
present approach to unbounded domains with a compact boundary (e.g. the exterior of a ball).
While such an extension was already realized for diffusion without drift (see, e.g. [56]), some
limitations on the drift μ(x) can be expected to ensure the discrete spectrum of the Dirichlet-
to-Neumann operator. Yet another mathematical direction is related to the asymptotic analysis
of the narrow-escape problem when only a small fraction of the boundary is reactive. On the
other hand, one can further explore the advantages of the encounter-based approach for var-
ious physical settings. For instance, one can consider the effect of local potentials near the
boundary (such as, e.g. electrostatic repulsion or attractive interactions) onto the statistics of
boundary encounters. One can consider other surface reaction mechanisms [8] and investigate
how the drift may affect them. To some extent, such an approach can provide a microscopic
model for so-called intermittent diffusions, in which a particle alternates diffusions in the bulk
and on the surface [58–67]. Similarly, this approach may also help for studying diffusion with
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reversible binding to the boundary, the so-called sticky boundary condition, when the particle
stays on the boundary for a random waiting time and then unbinds to resume its bulk diffu-
sion. The effects of this reversible binding onto reaction rates and first-passage times were
thoroughly investigated for ordinary diffusion (see [68–72] and references therein), as well as
for more sophisticated processes such as diffusion with stochastic resetting [73–76] or veloc-
ity jump processes [77–81]. Since binding to the boundary can be understood as a reaction
event on that boundary, the binding time can be described as the first moment when the bound-
ary local time exceeds an exponentially distributed threshold, as in equation (13). Changing
the probability law for the random threshold allows one to incorporate more sophisticated
binding mechanisms (see [8] for details). Curiously, the unbinding event implies resetting of
the boundary local time.

Numerous advantages of the encounter-based approach urge for its extensions to even more
general diffusion processes, in particular, with general space-dependent drift and volatility
matrix. Such an extension would have to overcome two major difficulties.

(a) When the diffusivity varies in the bulk, the reactivity parameter q = κ/D becomes space-
dependent as well. As a consequence, the probability of reaction at each encounter depends
on the position of that encounter. This dependence would thus prohibit using the Laplace
transform relation (16) between the full propagator and the conventional propagator.
Following [44], one would thus need to introduce a functional of q(Xt) to account for
the cumulative effect of multiple reaction attempts (see also discussion in [57]). Note
that a similar difficulty appears in the case of ordinary diffusion toward a heteroge-
neously reactive boundary, in which case the space-dependent reactivity κ renders q to
be space-dependent as well [41].

(b) Even if the diffusivity remains constant, an extension to a general drift becomes chal-
lenging. In fact, the Fokker–Planck operator can be reduced to a self-adjoint form with
real eigenvalues only in the case of a gradient drift [82]. Even though an appropriate
Dirichlet-to-Neumann operator can potentially be introduced in a more general case, such
an operator is likely to be non-self-adjoint that would raise considerable challenges in
the spectral analysis. Moreover, the numerical computation of the related spectral proper-
ties may also be difficult. Nevertheless, further mathematical works in this direction are
expected to shed light onto more general diffusion-influenced reactions.

More generally, one can go beyond the framework of stochastic differential equations with
Gaussian noises. In the simplest case of random walks on a lattice or a graph, the boundary
local time is the number of visits of a given subset of vertices, which can be interpreted as
partially reactive sites or localized traps. Szabo et al showed how to express the related propa-
gator in terms of the propagator without trapping [83]. This concept was recently extended
to more general random walks [84]. Another interesting extension concerns diffusion pro-
cesses with stochastic resetting [73–76], which can be implemented either for the position,
or for the boundary local time, or for both processes. The renewal character of such reset-
tings may allow getting rather explicit results in the Laplace domain. Moreover, the main idea
of the encounter-based approach can be potentially applied to other examples of stochastic
dynamics such as, e.g. velocity jump processes (including run-and-tumble motion) [77–81]
and continuous-time random walks (including even Lévy flights). However, one would need
to properly define the boundary local time (or its analog), as well as an appropriate governing
operator (such as the Dirichlet-to-Neumann operator), whose spectral properties would deter-
mine the full propagator. Feasibility, mathematical rigor and practical value of such extensions
are still open.
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Appendix A. Auxiliary relation

In this appendix, we obtain equation (46) by extending the derivation from [41].
First, the integral of equation (18) over x ∈ Ω yields

p
∫
Ω

dx G̃∞(x, p|x0) = 1 +

∫
Ω

dx (DΔ− (∇μ))G̃∞(x, p|x0)

= 1 +

∫
∂Ω

dx D∂nG̃∞(x, p|x0).

Taking the normal derivative with respect to x0 at x0 = s0 ∈ ∂Ω and multiplying by −D/p, we
get ∫

Ω

dx j̃′∞(s0, p|x) = −D
p

∫
∂Ω

dx D(∂n0∂nG̃∞(x, p|x0))|x0=s0 . (A.1)

Our intention is to exchange the order of normal derivatives in the right-hand side in order to get
j̃′∞(s0, p|x). However, as this function is singular in the vicinity of x ≈ s0, one cannot simply
exchange the order. To proceed, we use equation (26) and evaluate the following derivatives:

∂n0∂nG̃∞(x, p|x0) = ∂n0∂ne−
1
2Φ(x)+ 1

2Φ(x0)g̃∞(x, p|x0)

= e−
1
2Φ(x)+ 1

2Φ(x0)
(
−φ(x)∂n0 g̃∞(x, p|x0) + ∂n0∂ng̃∞(x, p|x0)

)
,

∂n∂n0G̃∞(x, p|x0) = ∂n∂n0e−
1
2Φ(x)+ 1

2Φ(x0)g̃∞(x, p|x0)

= e−
1
2Φ(x)+ 1

2Φ(x0)
(
φ(x0)∂ng̃∞(x, p|x0) + ∂n∂n0 g̃∞(x, p|x0)

)
.

Since the function g̃∞(x, p|x0) is symmetric, one can exchange the order of normal derivatives.
In addition, one has

j̃∞(x, p|x0) = −D∂n

(
e−

1
2Φ(x)+ 1

2Φ(x0)g̃∞(x, p|x0)
)

= φ(x)DG̃∞(x, p|x0) − De−
1
2Φ(x)+ 1

2Φ(x0)∂ng̃∞(x, p|x0),

j̃′∞(x0, p|x) = −D∂n0

(
e−

1
2Φ(x)+ 1

2Φ(x0)g̃∞(x, p|x0)
)

= −φ(x0)DG̃∞(x, p|x0) − De−
1
2Φ(x)+ 1

2Φ(x0)∂n0 g̃∞(x, p|x0).
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Combining these relations and noting that j̃∞(x, p|x0) = j̃′∞(x0, p|x) = δ(x − x0) when both x
and x0 belong to the boundary ∂Ω, we get

∂n0∂nG̃∞(x, p|x0) − ∂n∂n0G̃∞(x, p|x0) =
φ(x) + φ(x0)

D
δ(x − x0). (A.2)

This relation allows us to rewrite equation (A.1) as∫
Ω

dx j̃′∞(s0, p|x) =
D
p

∫
∂Ω

dx (∂n j̃′∞(s0, p|x)) − 2Dφ(s0)
p

. (A.3)

We multiply both sides of this equation by e−
1
2Φ(s0) f (s0) with a suitable function f (s0) and

integrate over s0 ∈ ∂Ω:∫
∂Ω

ds0 e−
1
2Φ(s0) f (s0)

∫
Ω

dx j̃′∞(s0, p|x)

=
D
p

∫
∂Ω

ds0e−
1
2Φ(s0) f (s0)

⎧⎨
⎩
∫
∂Ω

ds (∂n j̃′∞(s0, p|s)) − 2φ(s0)

⎫⎬
⎭ . (A.4)

Our aim is to show that the right-hand side can be represented via the Dirichlet-to-Neumann
operator. For this purpose, we note that the solution of the equation (p− L̄)u = 0 with Dirichlet
boundary condition u = f on ∂Ω can be written as

u(x) =
∫
Ω

dx0
[
u(x0)(p− L̄x0 )g̃∞(x, p|x0) − g̃∞(x, p|x0)(p− L̄x0 )u(x0)

]

=

∫
∂Ω

dx0u(x0)(−D∂n0g̃∞(x, p|x0))

=

∫
∂Ω

dx0u(x0)
(
−D∂n0e

1
2Φ(x)− 1

2Φ(x0)G̃∞(x, p|x0)
)

=

∫
∂Ω

ds0 f (s0)e
1
2Φ(x)− 1

2Φ(s0) j̃′∞(s0, p|x).

As a consequence, the action of the Dirichlet-to-Neumann operator is

(Mp f )(s) = φ(s) f (s) + (∂nu)x=s

= φ(s) f (s) +
∫
∂Ω

ds0 f (s0)e−
1
2Φ(s0)∂n

(
e

1
2Φ(x) j̃′∞(s0, p|x)

)
|x=s

= φ(s) f (s) +
∫
∂Ω

ds0 f (s0)e−
1
2Φ(s0)e

1
2Φ(s)

⎡
⎢⎣φ(s) j̃′∞(s0, p|s)︸ ︷︷ ︸

=δ(s−s0)

+
(
∂n j̃′∞(s0, p|x)

)
|x=s

⎤
⎥⎦

= 2φ(s) f (s) +
∫
∂Ω

ds0 f (s0)e−
1
2Φ(s0)e

1
2Φ(s)

(
∂n j̃′∞(s0, p|x)

)
|x=s.

25



J. Phys. A: Math. Theor. 55 (2022) 045203 D S Grebenkov

This relation allows us to represent the integral over s0 in the right-hand side of
equation (A.4) in terms of Mp:

∫
∂Ω

ds0 e−
1
2Φ(s0) f (s0)

∫
Ω

dx j̃′∞(s0, p|x)

=
D
p

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
∂Ω

ds e−
1
2Φ(s) e

1
2 Φ(s)

∫
∂Ω

ds0e−
1
2 Φ(s0) f (s0)(∂n j̃′∞(s0, p|s))

︸ ︷︷ ︸
=(Mp f )(s)−2φ(s) f (s)

− 2
∫
∂Ω

ds0e−
1
2 Φ(s0) f (s0)φ(s0)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

i.e. ∫
∂Ω

ds0 e−
1
2Φ(s0) f (s0)

∫
Ω

dx j̃′∞(s0, p|x) =
D
p

∫
∂Ω

ds e−
1
2Φ(s)(Mp f )(s). (A.5)

This relation holds for any suitable function f (s) on the boundary. Setting f (s) = v(p)
n (s) to be

an eigenfunction of Mp, one gets immediately

V ′(p)
n =

∫
Ω

dx
∫
∂Ω

ds0 e−
1
2Φ(s0)v(p)

n (s0) j̃′∞(s0, p|x)

︸ ︷︷ ︸
=V ′(p)

n (x)

=
D
p
μ(p)

n

∫
∂Ω

ds e−
1
2Φ(s)v(p)

n (s). (A.6)

Appendix B. Green’s functions on the interval

Even though many Green’s functions on the interval are known (see, e.g. [85]), we provide
here the main steps of the derivation for the Fokker–Planck operator L = D∂2

x − μ∂x for
completeness.

We start with the most general case of Robin boundary conditions at 0 and L, with two
different reactivities q1 and q2. A general solution of the equation (p− L)u = 0 reads u(x) =
c+eα+x + c−eα−x, with

α± =
μ

2D
±
√

p
D

+
μ2

4D2
, (B.1)

and two arbitrary coefficients c±. As usual, one searches for the solution of the equation (18)
in the form

G̃q1,q2 (x, p|x0) =

{
A
[
(1 − h1α−)eα+x − (1 − h1α+)eα−x

]
(0 < x < x0),

B
[
(1 + h2α−)eα+(x−L) − (1 + h2α+)eα−(x−L)

]
(x0 < x < L),

(B.2)
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that satisfies the boundary condition (18) at both endpoints:

(
−∂x + q1 + μ/D

)
G̃q1,q2 (x, p|x0) = 0 (x = 0), (B.3)(

∂x + q2 − μ/D
)

G̃q1,q2 (x, p|x0) = 0 (x = L), (B.4)

where we set h1 = 1/(q1 + μ/D) and h2 = 1/(q2 − μ/D). The unknown coefficients A and
B are then determined by requiring the continuity of G̃q1,q2 (x, p|x0) at x = x0 and the drop of
the derivative by −1/D (i.e. [∂xG̃q1,q2 (x, p|x0)]x=x0+ε − [∂xG̃q1,q2 (x, p|x0)]x=x0−ε →−1/D as
ε→ 0):

A =
eγx0 [(1 − h2γ) sinh(β x̄0) + βh2 cosh(β x̄0)]

2βD
[
sinh(βL)(1 + γ(h1 − h2) + (β2 − γ2)h1h2) + cosh(βL)β(h1 + h2)

] , (B.5)

B = − eγ(x0−L) [(1 + h1γ) sinh(βx0) + βh1 cosh(βx0)]
2βD

[
sinh(βL)(1 + γ(h1 − h2) + (β2 − γ2)h1h2) + cosh(βL)β(h1 + h2)

] , (B.6)

where we used the former notations γ = −μ/(2D), β =
√

p/D + γ2, and x̄0 = L − x0. One
can also write

G̃q1,q2 (x, p|x0) =

{
2Ae−γx [(1 + h1γ) sinh(βx) + h1β cosh(βx)] (0 < x < x0),

−2Be−γ(x−L) [(1 − h2γ) sinh(β x̄) + h2β cosh(β x̄)] (x0 < x < L),

with x̄ = L − x. Setting

U(x) = (1 + h1γ) sinh(βx) + βh1 cosh(βx), (B.7)

V(x) = (1 − h2γ) sinh(β(L − x)) + βh2 cosh(β(L − x)), (B.8)

C =
1

βD
[
sinh(βL)(1 + γ(h1 − h2) + (β2 − γ2)h1h2) + cosh(βL)β(h1 + h2)

] , (B.9)

one can finally get

G̃q1,q2 (x, p|x0) = Ce−γ(x−x0)

{
U(x)V(x0) (0 < x < x0),

U(x0)V(x) (x0 < x < L).
(B.10)

In the particular case of equal reactivities, q1 = q2 = q, one has

U(x) =
Û(x)

q − 2γ
, Û(x) = (q − γ) sinh(βx) + β cosh(βx),

V(x) =
V̂(x)

q + 2γ
, V̂(x) = (q + γ) sinh(β(L − x)) + β cosh(β(L − x)),

C =
Ĉ

q2 − 4γ2
, Ĉ =

1
βD sinh(βL)

(
q2 + 2β ctanh(βL)q + β2 − γ2

) .
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Figure B1. Green’s function G̃q(x, p|x0) (multiplied by p) on the unit interval (L = 1),
with D = 1, x0 = 0.5, several values of p. Six panels correspond to μ = 0 (left column)
and μ = 1 (right right) and q = 10−3 (top row), q = 1 (middle row), and q = 10 (bottom
row).

More explicitly, one gets

G̃q(x, p|x0) = e−γ(x−x0) sinh(β x̄0) sinh(βx)
βD sinh(βL)

× q2 + qβ(ctanh(β x̄0) + ctanh(βx)) − (γ − βctanh(βx))(γ + βctanh(β x̄0))
q2 + 2βctanh(βL)q + β2 − γ2

for 0 < x < x0, and

G̃q(x, p|x0) = e−γ(x−x0) sinh(β x̄) sinh(βx0)
βD sinh(βL)

× q2 + qβ(ctanh(β x̄) + ctanh(βx0)) − (γ − β ctanh(βx0))(γ + βctanh(β x̄))
q2 + 2β ctanh(βL)q + β2 − γ2
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for x0 < x < L. Considering this expression as a function q, one can decompose it into
the sum of partial fractions and then perform the inverse Laplace transform with respect
to q in order to get the full propagator. In this way, one can re-derive the general spectral
decomposition.

Figure B1 illustrates the behavior of the Green’s function G̃q(x, p|x0) (for visual conve-
nience, this function is multiplied by p; in fact, for q = 0, the integral of this function over
x is equal to 1/p). When μ = 1, the right wing of G̃q(x, p|x0) is higher, as the positive drift
facilitates diffusion to the right.

Appendix C. No drift limit

In this Appendix, we briefly describe how the results of section 3 are simplified in the no drift
limit.

In the limit μ→ 0, the eigenvalues of the Dirichlet-to-Neumann operator tend to

μ(p)
± =

β(cosh(βL) ± 1)
sinh(βL)

with β =
√

p/D, (C.1)

while the eigenvectors tend to

v(p)
± =

1√
2

(
1
∓1

)
, (C.2)

so that

V (p)
± (x) = V ′(p)

± (x) =
sinh(β x̄) ∓ sinh(βx)√

2 sinh(βL)
. (C.3)

In this way, we retrieve the Laplace-transformed full propagator for ordinary diffusion without
drift,1 first derived in [57]

P̃(x, �, p|x0) = G̃∞(x, p|x0)δ(�) +
e−�β ctanh(βL)

D

×
{

sinh(β x̄0) sinh(β x̄) + sinh(βx0) sinh(βx)

sinh2(βL)

× cosh

(
β�

sinh(βL)

)
+

sinh(β x̄0) sinh(βx) + sinh(βx0) sinh(β x̄)

sinh2(βL)

× sinh

(
β�

sinh(βL)

)}
. (C.4)

The marginal probability density of the boundary local time in the Laplace domain reads

P̃(◦, �, p|x0) = S̃∞(p|x0)δ(�) +
cosh(βL) − 1
β sinh(βL)︸ ︷︷ ︸
=

tanh(βL/2)
β

sinh(βx0) + sinh(β x̄0)
sinh(βL)

e−β tanh(βL/2)�

D
. (C.5)

1 There is a misprint in the expression (A.7) from [57]: the sign minus in front of the second term should be replaced
by plus, as in equation (C.4).
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Appendix D. Asymptotic behavior

In this Appendix, we provide technical details for the asymptotic analysis of the short-time and
long-time regimes, which correspond to the large-p and small-p limits in the Laplace domain,
respectively.

D.1. Short-time behavior

Under the condition L
√

p/D  1, we get βL  1 and thus find μ(p)
± ≈ β ± |γ|, with expo-

nentially small corrections. Similarly, we have v(p)
+ ≈ (1, 0)† and v(p)

− ≈ (0, 1)† for μ > 0,
whereas the opposite relations hold for μ < 0, namely, v(p)

+ ≈ (0, 1)† and v(p)
− ≈ (1, 0)†. As a

consequence, we get

V (p)
+ (x0) ≈ eγx0−βx0 , V (p)

− (x0) ≈ eγx0−β x̄0 (μ > 0), (D.1)

and

V (p)
+ (x0) ≈ eγx0−β x̄0 , V (p)

− (x0) ≈ eγx0−βx0 (μ < 0). (D.2)

Substituting these expressions into equation (48), we get

∫ ∞

0
dt e−pt

Ex0{�t} ≈ 1
p

(
e−(β−γ)x0

β − γ
+

e−(β+γ)(L−x0)

β + γ

)
, (D.3)

whatever the sign of μ. Using the identity

∫ ∞

0
dt e−pt e−a2/(4t)

(
1√
πt

− b erfcx

(
a

2
√

t
+ b

√
t

))
=

e−a
√

p

√
p+ b

(D.4)

(here erfcx(x) = ex2
(1 − erf(x)) is the scaled complementary error function), the inverse

Laplace transform of equation (D.3) reads

Ex0{�t} ≈
∫ t

0
dt′ e−Dγ2t′

{
eγx0

[
e−x2

0/(4Dt′)

( √
D√
πt′

+ γD erfcx

(
x0√
4Dt′

− γ
√

Dt′
))]

+ eγ(x0−L)

[
e−(L−x0)2/(4Dt′)

( √
D√
πt′

− γD erfcx

(
L − x0√

4Dt′
+ γ

√
Dt′
))]}

≈
∫ t

0
dt′

{
eγx0

[
e−Dγ2t′e−x2

0/(4Dt′)

√
D√
πt′

+ γD e−γx0 erfc

(
x0√
4Dt′

− γ
√

Dt′
)]

+ e−γ(L−x0)

[
e−Dγ2t′e−(L−x0)2/(4Dt′)

√
D√
πt′

− γD eγ(L−x0)erfc

(
L − x0√

4Dt′
+ γ

√
Dt′
)]}

.
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Using the identity∫ t

0
dt′

e−at′−b/t′

√
t′

=

√
π

2
√

a

(
e2

√
ab
(

erf(
√

at +
√

b/t) − 1
)
+ e−2

√
ab
(

erf(
√

at −
√

b/t) + 1
))

,

we get

Ex0{�t} ≈ eγx0

2|γ|
[
−e|γ|x0erfc(x0/

√
4Dt + |γ|

√
Dt) + e−|γ|x0erfc(x0/

√
4Dt − |γ|

√
Dt)

]

+
e−γ x̄0

2|γ|
[
−e|γ|x̄0erfc(x̄0/

√
4Dt + |γ|

√
Dt) + e−|γ|x̄0erfc(x̄0/

√
4Dt − |γ|

√
Dt)

]

+ γD
∫ t

0
dt′
{

erfc

(
x0√
4Dt′

− γ
√

Dt′
)
− erfc

(
x̄0√
4Dt′

+ γ
√

Dt′
)}

.

In particular, for x0 = 0, we get after simplifications

E0{�t} ≈ 1
γ

(
erf(γ

√
Dt)

2
+ γ2 Dt erfc(−γ

√
Dt) − |γ|

√
Dt√
π

e−Dγ2t

)
. (D.5)

D.2. Long-time behavior

Let us consider the case γ �= 0. In the limit p→ 0, we get up to O(p2):

β ≈ |γ|+ p
2|γ|D ,

μ(p)
± ≈ |γ|ctanh(|γ|L)

(
1 +

p
2γ2D

− pL
|γ|D sinh(2|γ|L)

)

± |γ|ctanh(|γ|L)

(
1 +

1

2 cosh2(|γ|L)

(
p

Dγ2
− pL

|γ|Dctanh(|γ|L)

))
,

so that

μ(p)
− ≈ p

tanh(γL)
2γD

+ O(p2),

μ(p)
+ ≈ 2γ ctanh(γL) + O(p).

We also have

(Mp)11 ≈ γ ctanh(γL)

(
1 +

p
2γ2 D

− pL
γD sinh(2γL)

)
− γ,

(Mp)12 ≈ − γ

sinh(γL)

(
1 +

p
2γ2D

− pL ctanh(γL)
2γD

)
.

In the lowest order, we also get

v(p)
− (0) ≈ 1

cosh(γL)
√

2(1 − tanh(γL))
+ O(p),

v(p)
− (L) ≈

√
(1 − tanh(γL))/2 + O(p).
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Substituting these expressions into equation (74) for x0, we deduce in the leading order∫ ∞

0
dt e−pt

E0{�t} =
2γDctanh(γL)

p2
+ O(1/p), (D.6)

from which equation (75) follows immediately.

Appendix E. On the numerical inversion of the Laplace transform

The inverse Laplace transform f (t) of a function f̃ (p) can be expressed as the Bromwich
integral,

f (t) =
1

2πi

∫
γ

dpept f̃ (p), (E.1)

where γ is a contour from −i∞ to +i∞ in the complex plane that lies on the right to
singularities of f̃ (p). In the basic Talbot algorithm, the contour γ is parameterized as

γ : θ → p(θ) = σ + μ(θ ctan(θ) + νiθ), θ ∈ (−π, π), (E.2)

with three parameters σ, μ and ν whose optimal choice depends on the function f̃ (p) and
determines the convergence rate [86]. Using this contour, the Bromwich integral can be reduced
to

f (t) =
1

2πi

∫ π

−π

dθ
dp
dθ

ep(θ)t f̃ (p(θ)), (E.3)

and then numerically evaluated by quadratures. In this paper, we used a slightly different
contour by Weideman [87]:

γ : θ → p(θ) = N (0.501 7 θ ctan(0.640 7 θ) − 0.6122 + 0.2645iθ) , θ ∈ (−π, π), (E.4)

where the value of N controls the accuracy of computation.

ORCID iDs

Denis S Grebenkov https://orcid.org/0000-0002-6273-9164

References

[1] Carslaw H S and Jaeger J C 1959 Conduction of Heat in Solids 2nd edn (Oxford: Clarendon)
[2] Risken H 1996 The Fokker–Planck Equation: Methods of Solution and Applications 3rd edn (Berlin:

Springer)
[3] Gardiner C W 1983 Handbook of Stochastic Methods for Physics, Chemistry and the Natural

Sciences (Berlin: Springer)
[4] Redner S 2001 A Guide to First Passage Processes (Cambridge: Cambridge University Press)
[5] Schuss Z 2013 Brownian Dynamics at Boundaries and Interfaces in Physics, Chemistry and Biology

(New York: Springer)
[6] Metzler R, Oshanin G and Redner S 2014 First-Passage Phenomena and Their Applications

(Singapore: World Scientific)
[7] Lindenberg K, Metzler R and Oshanin G 2019 Chemical Kinetics: Beyond the Textbook (Singapore:

World Scientific)

32

https://orcid.org/0000-0002-6273-9164
https://orcid.org/0000-0002-6273-9164


J. Phys. A: Math. Theor. 55 (2022) 045203 D S Grebenkov

[8] Grebenkov D S 2020 Phys. Rev. Lett. 125 078102
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