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ABSTRACT
Certain biochemical reactions can only be triggered after binding a sufficient number of particles to a specific target region such as an enzyme
or a protein sensor. We investigate the distribution of the reaction time, i.e., the first instance when all independently diffusing particles are
bound to the target. When each particle binds irreversibly, this is equivalent to the first-passage time of the slowest (last) particle. In turn,
reversible binding to the target renders the problem much more challenging and drastically changes the distribution of the reaction time. We
derive the exact solution of this problem and investigate the short-time and long-time asymptotic behaviors of the reaction time probability
density. We also analyze how the mean reaction time depends on the unbinding rate and the number of particles. Our exact and asymptotic
solutions are compared to Monte Carlo simulations.
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I. INTRODUCTION
Diffusion-controlled reactions play an important role in many

chemical and biological processes. In a typical scenario, particles
diffuse in a confining domain toward a specific target region to
react or to trigger a biological event.1–9 Various aspects of such
diffusive search processes have been investigated, with the partic-
ular emphasis on first-passage times (FPTs) that characterize how
fast a single particle finds a single target. The distribution of the
first-passage time τ is usually described by the survival probability,
S(t) = P{τ > t}, or, equivalently, by the probability density func-
tion H(t) = −dS(t)/dt. The distribution and, particularly, the mean
value ⟨τ⟩ and the associate reaction rate have been thoroughly
analyzed.10–41

As the diffusive search is typically long, many independent
searchers are generally involved to speed up this process. In this
setting, the arrival of the fastest particle among N particles can trig-
ger the reaction. If τ1, . . . , τN denote the FPTs of these particles, the
fastest first-passage time (fFPT) is T 0

1,N = min{τ1, . . . , τN}. As the
particles search independently, the distribution of the fFPT is simply
given as

P{T 0
1,N > t} = P{τ1 > t} . . .P{τN > t} = [S(t)]N . (1)

Similarly, the first-passage time T 0
K,N of the Kth fastest particle to

arrive onto the target is governed by the following law:

P{T 0
K,N > t} =

K−1

∑
j=0
(

N
j
)[S(t)]N−j

[1 − S(t)]j, (2)

where (N
j ) is the binomial coefficient. The associated probability

density follows immediately,

H0
K,N(t) = −

dP{T 0
K,N > t}
dt

= K(
N
K
)[S(t)]N−K

[1 − S(t)]K−1H(t). (3)

While these expressions fully characterize the random variable T 0
K,N ,

finding the large-N asymptotic behavior of its moments, ⟨[T 0
K,N]

m
⟩,

is a difficult problem. More generally, random variables T 0
K,N present

an example of extreme value statistics.42

This problem was first studied by Weiss et al. who showed
by analyzing the exact form of S(t) for one-dimensional diffu-
sion on an interval that the mean ⟨T 0

K,N⟩ decreases logarithmically
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slowly with N: ⟨T 0
K,N⟩ ∝ 1/ ln N as N →∞.43 They also briefly con-

sidered higher-order moments and argued the universality of the
logarithmic decay for other diffusive processes. This seminal work
was further extended by several authors.44–51 For instance, Bas-
nayake et al. and Lawley and Madrid gave rigorous mathematical
proofs for the asymptotic behavior of these moments44–46 (see also
Appendix A 1 for new results concerning the behavior of the mean
of the slowest FPT T0

N,N ). In addition, Lawley found the parameters
of the asymptotic Gumbel distribution of T 0

1,N for a large class of
diffusion processes.47 Moreover, this result was extended to the Kth
fastest FPT T 0

K,N , and the asymptotic form of the joint distribution
of {T 0

1,N , . . . ,T 0
K,N}was derived. The logarithmic scaling of the mean

fFPT was evoked to rationalize the redundancy in the number of
searchers in some biological systems, such as the large number of
sperm cells.49,50 We stress, however, that a logarithmic speed up of
the search process is too costly from a practical point of view; for
instance, a ten-fold reduction of the mean time would require more
than twenty thousands of particles. Note that if the starting posi-
tions of N particles are uniformly distributed in the domain, the
logarithmic decay is replaced by a much faster power law decay:
⟨T 0

1,N⟩ ∝ 1/N for partially reactive targets and ⟨T 0
1,N⟩ ∝ 1/N2 for

perfectly reactive targets.48 More generally, the power law decay 1/N
was shown to emerge as a transient regime of moderately large N if
the target is small or if finding the target requires escaping a poten-
tial well.51 Moreover, as the mean value is not always the relevant
time scale of the process,30,33,52 evolutionary optimization of diffu-
sive search does not necessarily aim at reducing the mean value of
the fFPT.

In the above discussion, each particle that arrived onto the tar-
get was supposed to remain on it forever. In particular, the number
N(t) of particles bound to the target at time t is a non-decreasing
stochastic process that increases by 1 at the arrival of each new par-
ticle. As a consequence, the Kth fastest FPT T 0

K,N is equal to the first
instance TK,N = inf{t > 0 : N(t) = K} when K particles among N
are bound to the target. In many chemical and biological settings,
however, binding to the target is a reversible process, i.e., each par-
ticle remains on the target for some waiting time, unbinds from it,
and resumes its bulk diffusion. The waiting time is usually consid-
ered to be an independent random variable obeying an exponential
law with the rate koff. As each unbinding event diminishes N(t) by 1,
the number of bound particles is no longer a non-decreasing process
(Fig. 1). Even though the dynamics of all particles is Markovian (i.e.,
their positions and states at time t fully determine the probabilities of
their positions and states in the future), the number N(t) of bound
particles is a non-Markovian process. The reversible binding does
not affect the statistics of the first instance T1,N when one particle
(the fastest one) is bound to the target, i.e., Eq. (1) governs the prob-
ability law for T1,N = T 0

1,N . In contrast, the first instance TK,N for K
particles to be bound to the target is no longer equal to the Kth fastest
FPT T 0

K,N . Indeed, before the binding of the Kth particle, some of the
previously bound particles can unbind, and thus, TK,N ≥ T 0

K,N (the
superscript 0 highlights that the first-passage times T 0

K,N correspond
to irreversible binding with koff = 0). Even though the particles are
independent, random waiting times spent by these particles on the
target render the characterization of the reaction times TK,N much
more challenging than that of T 0

K,N . As reversible binding allows
some particles to leave the target before the arrival of the others, they
were termed impatient.53 In Ref. 53, the problem of two impatient

FIG. 1. Illustration of a simulated process N(t) that counts the number of bound
particles at time t with N = 3. Three filled circles indicate the first-crossing times
TK,N for K = 1, 2, 3. On the bottom, there is a schematic representation of the state
of each of three particles: free state (thin dashed line) vs bound state (thick solid
line). Three filled circles indicate the first-passage times T 0

K,N for the first, second,

and third particles (in the order of arrival). While T1,N = T 0
1,N , unbinding events

imply that TK,N ≥ T 0
K,N for any K > 1.

particles diffusing on an interval was mapped onto intermittent dif-
fusion on a square. Solving the latter problem, the mean ⟨T2,2⟩ was
obtained, and the effect of reversible binding was analyzed. Even this
basic case with two particles required sophisticated analysis.

Lawley and Madrid proposed a remarkable approximation to
the general problem.54 Assuming that the first-binding time and the
rebinding time (i.e., the random time between unbinding of a parti-
cle from the target and its next rebinding) can be approximated by
an exponential random variable with some rate ν, the number N(t)
can be modeled by a Markovian birth–death process N(t) between
N + 1 states of 0, 1, 2, . . . , N bound particles,

(4)

(here and throughout the text, bar denotes the quantities corre-
sponding to the Lawley–Madrid approximation). Introducing an
(N + 1) × (N + 1)-dimensional matrix W with zero elements except
for

Wi,i+1 = ikoff, Wi+1,i = (N + 1 − i)ν (i = 1, 2, . . . , N)

and W i,i that are chosen so that W has zero column sums, the distri-
bution of the first-crossing time TK,N = inf{t > 0 : N(t) = K} can
be written as54

P{TK,N > t} =
K

∑
j=1
[exp(W(K)t)]

j,1
, (5)

where W(K) is the K × K matrix obtained by retaining the first
K columns and K rows from W and discarding everything else.
Here, the initial state was assumed to be 0, i.e., no bound parti-
cles. In other words, the distribution is expressed in terms of the
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matrix exponential of W(K). The probability density of TK,N is even
simpler,

HK,N(t) = ν(N − K + 1)[exp(W(K)t)]
K,1

. (6)

Finally, the mean time is fully explicit,

⟨TK,N⟩ =
1
ν

K

∑
m=1

⎛

⎝

1
bm
+

K

∑
j=m+1

(koff/ν)j−m

bj

j−1

∏
i=m

di

bi

⎞

⎠
(7)

with bm = N − K +m and dm = K −m. Lawley and Madrid proved
that N(t) and TK,N are universal bounds to N(t) and TK,N ,

N(t) ≥ N(t) for all t, TK,N ≤ TK,N for all K, (8)

which actually means that

P{N(t) > K} ≥ P{N(t) > K}, (9)

P{TK,N > t} ≤ P{TK,N > t}. (10)

Moreover, when the target region is getting smaller and smaller,
these bounds become more and more accurate.

The Lawley–Madrid approximation (LMA) opens a way to
investigate in detail the role of reversible binding onto the statistics
of sophisticated biochemical processes involving the arrival of sev-
eral molecules onto the target region. The prominent example is the
signaling process between neurons when the fusion of a neurotrans-
mitters vesicle with the presynaptic bouton membrane is triggered
by the arrival of five calcium ions onto the sensor protein.2,52,55–59 It
was recently shown by extensive simulations that unbinding events
considerably affect the fusion probability.52

Despite numerous advantages of the LMA, it relies on a rough
assumption that both first-binding and rebinding times can be mod-
eled by an exponential random variable. However, the probability
density of the rebinding time is, in general, more sophisticated; for
instance, in the case of a spherical target, it diverges at short times
as H(t) ∝ t−1/2 (see Appendix B), in sharp contrast to the assumed
exponential density νe−νt that behaves as ν +O(t) as t → 0. This
observation suggests that the LMA does not correctly capture the
short-time behavior that can be relevant for some applications. In
this paper, we undertake a systematic study of the problem of impa-
tient particles in the case K = N. Using the renewal approach, we
derive the exact solution for this problem. We deduce the short-
time and long-time behavior of this solution and compare it with
the LMA predictions and with Monte Carlo simulations. The short-
time asymptotic analysis is also extended to arbitrary K. We show
that the LMA captures the qualitative behavior of the reaction time
distribution at moderate and long times. However, the LMA overes-
timates the mean reaction time and the decay time and fails at short
times. From the practical point of view, the LMA can thus be used
for qualitative estimations, but further improvements are necessary
for getting more accurate results.

This paper is organized as follows. In Sec. II, we start with the
mathematical model of impatient particles, derive the exact form
of the probability density of the reaction time TN,N , and analyze its
short-time and long-time asymptotic behavior. We also obtain the

mean reaction time ⟨TN,N⟩ and the decay time TN of the exponen-
tial decrease of the probability density at long times. We illustrate the
obtained results for a relevant example of restricted diffusion toward
a spherical target. Section III is devoted to a systematic comparison
of the exact solution with two reference solutions: the irreversible
binding case and the LMA. In Sec. IV, we summarize our findings,
discuss eventual applications, and provide final remarks and per-
spectives. Technical details of the asymptotic analysis, the summary
of formulas for restricted diffusion between two concentric spheres,
the numerical implementation of the exact solution, and the descrip-
tion of Monte Carlo simulations are given in Appendixes A–D,
respectively.

II. MAIN RESULTS
A. Mathematical model of impatient particles

We consider N independent indistinguishable point-like par-
ticles diffusing with diffusion coefficient D inside a bounded
Euclidean domain Ω ⊂ Rd. The boundary ∂Ω of Ω is reflecting
everywhere, except for a partially reactive target region Γ. After
hitting the target, a particle can bind to it with some probability
controlled by the reactivity κ.30,37,48,60–73 This binding is reversible,
i.e., the bound particle stays on the target for an independent ran-
dom waiting time distributed according to the exponential law with
the rate koff. After unbinding from the target, the particle resumes
its bulk diffusion from a random uniformly distributed location
on the target boundary until the next time it binds to the target.
We are interested in computing the probability density HN(t∣x0)

= HN,N(t∣x0) of the first instance TN = TN,N when all of the N par-
ticles are bound to the target [i.e., when the process N(t) crosses the
level N for the first time]. As the arrival of N particles to the target
is supposed to trigger some reaction event, the first-crossing time
TN is called the reaction time. For simplicity, we assume that all the
particles are initially free (not bound to the target) and start from
the same initial position x0 ∈ Ω. These starting assumptions can be
easily relaxed.

B. Exact solution
To proceed, we introduce the probability Pt(n∣m) that starting

from m particles bound to the target at time 0, there are n particles
bound to the target at time t. This probability is hard to compute, in
general, due to unbinding events. However, there are two particular
cases for which Pt(n∣m) can be expressed in terms of a single parti-
cle dynamics. Let P(t∣x0) denote the occupancy probability that an
initially free particle that started from a point x0 is bound to the tar-
get at time t. Since all particles are independent, the probability of
finding m bound particles on the target at time t is

Pt(m∣0) = (
N
m
)[P(t∣x0)]

m
[1 − P(t∣x0)]

N−m, (11)

where we have chosen the initial condition that all particles are ini-
tially free. Similarly, if Q(t) denotes the probability that, starting
from the bound state at time 0, the particle is bound to the target
at time t, then

Pt(m∣N) = (
N
m
)[Q(t)]m[1 −Q(t)]N−m. (12)
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The probability density of the reaction time TN can then be obtained
from a standard renewal equation,

Pt(N∣0) = ∫
t

0
dt′ HN(t′)Pt−t′(N∣N). (13)

Switching to Laplace space allows us to get

H̃N(p∣x0) =
L{[P(t∣x0)]

N
}

L{[Q(t)]N}
, (14)

where both L and tilde denote the Laplace transform, e.g.,

f̃ (p) = L[ f (t)] =
∞

∫

0

dt e−pt f (t).

The inversion of the Laplace transform gives the probability density
in the time domain,

HN(t∣x0) = L−1
{
L{[P(t∣x0)]

N
}

L{[Q(t)]N}
}. (15)

The last step consists in relating the probabilities P(t∣x0) and
Q(t) to the first-passage time statistics of a single particle. This can
be done in a standard way by summing contributions according to
the number of unbinding events (see, e.g., Ref. 52). For instance, one
finds

Q(t) = Ψ(t) +
t

∫

0

dt1 ψ(t1)

t

∫
t1

dt′1 H(t′1 − t1)Ψ(t − t′1) + ⋅ ⋅ ⋅ ,

where Ψ(t) = e−kofft is the probability of staying in the bound state
up to time t, ψ(t) = −dΨ(t)/dt = koffe−kofft is the probability density
of the associated waiting time, and H(t) is the probability density of
the rebinding time. The first term in the above equation is the contri-
bution without unbinding. In the second term, the particle unbinds
at time t1, diffuses in the bulk until the next rebinding at time t′1, and
remains bound until time t. The third and next terms correspond to
2, 3, etc., unbinding events. In the Laplace domain, one simply gets

Q̃(p) = Ψ̃(p) + ψ̃(p)H̃(p)Ψ̃(p) + ⋅ ⋅ ⋅ =
Ψ̃(p)

1 − ψ̃(p)H̃(p)

=
1

p + koff(1 − H̃(p))
. (16)

In turn, the occupancy probability P(t∣x0) includes an additional
step of the first-passage to the target that yields

P̃(p∣x0) = H̃(p∣x0) Q̃(p) (17)

=
H̃(p∣x0)

p + koff(1 − H̃(p))
, (18)

where H̃(p∣x0) is the Laplace transform of the probability density
H(t∣x0) of the first-passage time to the target when the parti-
cle started from a point x0. Note that as the particle is released
after unbinding from a uniformly distributed point on the target
boundary Γ, one also gets

H(t) =
1
∣Γ∣∫

Γ

dx0 H(t∣x0), (19)

where ∣Γ∣ is the Lebesgue measure of Γ (e.g., the area of Γ in the
three-dimensional case). In this way, both probabilities P(t∣x0) and
Q(t) are expressed in terms of the first-passage time probability den-
sity H(t∣x0) for a single particle. In the case N = 1, a comparison
of Eqs. (14) and (17) immediately yields that H1(t∣x0) = H(t∣x0), as
expected.

C. Spectral decompositions
As we deal with restricted diffusion in a bounded domain, the

probabilities P(t∣x0) and Q(t) can be formally deduced from their
Laplace transforms by applying the residue theorem. Let {pn} be
the poles of P̃(p∣x0) that lie on the negative real axis: 0 = p0 > p1
≥ p2 ≥↘ −∞. According to Eq. (18), these poles satisfy the following
equation:

pn + koff(1 − H̃(pn)) = 0. (20)

Note that since the poles of H̃(p∣x0) and H̃(p) are the same, they
cancel each other in Eq. (18) and thus are not included in the set
of poles of P̃(p∣x0). If all the poles are simple, the inverse Laplace
transform yields

P(t∣x0) = P∞ +
∞

∑
n=1

vn(x0) epnt , (21)

where vn(x0) is the residue of P̃(p∣x0) evaluated at the pole pn. The
steady-state limit P∞ corresponds to the pole at 0, which can be
obtained by using the Taylor expansion

H̃(p∣x0) = ⟨e−pτ
⟩x0 = 1 − p⟨τ⟩x0 +O(p2

), (22)

where ⟨τ⟩x0 is the mean FPT to the target for a single particle started
from x0. Similarly, H̃(p) = 1 − p⟨τ⟩ +O(p2

), where ⟨τ⟩ is the mean
rebinding time,

⟨τ⟩ =
1
∣Γ∣∫

Γ

dx0 ⟨τ⟩x0 . (23)

As a consequence, Eq. (18) implies that

P∞ =
1

1 + koff⟨τ⟩
. (24)

The mean rebinding time ⟨τ⟩ can be found explicitly by writing
the boundary value problem for the mean FPT,

⎧⎪⎪
⎨
⎪⎪⎩

DΔ⟨τ⟩x0 = −1 (x0 ∈ Ω),
−D∂n⟨τ⟩x0 = κ1Γ(x0)⟨τ⟩x0 (x0 ∈ ∂Ω),

(25)

where 1Γ(x0) is the indicator function of Γ: 1Γ(x0) = 1 if x0 ∈ Γ and
0 otherwise. Integrating the first relation over x0 ∈ Ω and applying
Green’s formula, one gets

−∣Ω∣ = ∫
Ω

dx0 DΔ⟨τ⟩x0 = ∫

∂Ω

dx0 D∂n⟨τ⟩x0

= −∫

Γ

dx0 κ⟨τ⟩x0 = −κ∣Γ∣⟨τ⟩,
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from which

⟨τ⟩ =
∣Ω∣
κ∣Γ∣

, (26)

where ∣Ω∣ is the volume of the domain. For a spherical target of
radius ρ, the reactivity can be expressed in terms of the forward
constant kon = κ(4πρ2NA) (with NA ≈ 6.02 ⋅ 1023 mol−1 being the
Avogadro number)1,62 so that the mean rebinding time also reads as
⟨τ⟩ = NA∣Ω∣/kon. Defining the dimensionless quantity

η = koff⟨τ⟩ =
koff∣Ω∣
κ∣Γ∣

=
koff∣Ω∣NA

kon
, (27)

we simply get P∞ = 1/(1 + η).
In general, the poles are not necessarily simple. In particular,

if the unbinding rate koff is such that H̃(−koff) = 0, then −koff is
the pole of P̃(p∣x0) of higher order than 1. For instance, if −koff is
the pole of order 2, the corresponding term in the spectral expan-
sion (21) is of the form te−kofft . As the set of zeros of the function
H̃(p) is discrete, we will ignore such specific values of the unbinding
rate koff.

Introducing

P̃(p) =
1
∣Γ∣∫

Γ

dx0 P̃(p∣x0) = H̃(p) Q̃(p), (28)

we can express Q̃(p) from Eq. (16) as

Q̃(p) =
1

p + koff
+

koff

p + koff
P̃(p), (29)

which in the time domain reads

Q(t) = e−kofft + koff

t

∫

0

dt′ e−kofft′ P(t − t′). (30)

This relation implies that Q(t) monotonously decreases from
Q(0) = 1 to Q(∞) = P∞ (see Appendix A 4). Substituting Eq. (21)
into this relation, we get

Q(t) = P∞ +Q0e−kofft +
∞

∑
n=1

qnepnt , (31)

where

Q0 = 1 − P∞ −
∞

∑
n=1

qn,

qn =
vn

1 + pn/koff
(n = 1, 2, . . .),

vn =
1
∣Γ∣∫

Γ

dx0vn(x0),

and we assumed that −koff is not the pole. On the one hand,
evaluating P̃(p) at p = −koff, one finds

P̃(−koff) =
P∞
−koff

−
∞

∑
n=1

vn

koff + pn
.

On the other hand, Eq. (18) implies

P̃(−koff) =
H̃(−koff)

−koff + koff(1 − H̃(−koff))
= −

1
koff

,

yielding Q0 ≡ 0, and thus,

Q(t) = P∞ +
∞

∑
n=1

qnepnt . (32)

In summary, Eqs. (15), (21), and (32) fully determine the exact
form of the probability density HN(t∣x0) in terms of the first-passage
time statistics H(t∣x0) of a single particle. Even if H(t∣x0) is known
explicitly (see an example in Appendix B), a numerical implementa-
tion of this exact solution remains challenging because it involves the
following: finding zeros {pn} of Eq. (20), evaluation of the residues
at these poles, computation of spectral expansions (21) and (32),
and finally the inverse Laplace transform in Eq. (15). The practi-
cal details of this computation are discussed in Appendix C. At the
same time, our exact solution opens a way to investigate the asymp-
totic behavior of the exact probability density HN(t∣x0) in a rather
general setting. Before turning to this analysis, we discuss the mean
reaction time.

D. Mean reaction time
Relation (15) allows one to access the moments of the reaction

time,

⟨Tk
N⟩ = (−1)k lim

p→0

∂k

∂pk
L{[P(t∣x0)]

N
}

L{[Q(t)]N}
. (33)

In particular, the mean reaction time is

⟨TN⟩ = lim
p→0
(
L{t[P(t∣x0)]

N
}

L{[Q(t)]N}
−
L{[P(t∣x0)]

N
}L{t[Q(t)]N}

(L{[Q(t)]N})2 ).

As both P(t∣x0) and Q(t) tend to P∞ in the long-time limit, setting
p = 0 in the above Laplace transforms would yield divergence. To
overcome this issue, one can add and subtract the term PN

∞ to each
Laplace transform, e.g.,

L{t[P(t∣x0)]
N
} =

∞

∫

0

dt t e−pt
([P(t∣x0)]

N
− PN
∞ + PN

∞)

= PN
∞/p

2
+ a1 + o(1) (p→ 0),

where

ak =

∞

∫

0

dt tk
([P(t∣x0)]

N
− PN
∞). (34)

Introducing also

bk =

∞

∫

0

dt tk
([Q(t)]N − PN

∞), (35)

we compute the above limit as

⟨TN⟩ =
b0 − a0

PN
∞

=

∞

∫

0

dt
[Q(t)]N − [P(t∣x0)]

N

PN
∞

. (36)
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Higher-order moments of TN can be expressed in a similar way.
For N = 1, this relation implies that ⟨T1⟩ = ⟨τ⟩x0 , as expected. Equa-
tion (36) is a generalization of the expression for the mean slowest
FPT governed by the probability density in Eq. (3),

⟨T0
N,N⟩ =

∞

∫

0

dt(1 − [1 − S(t)]N). (37)

In fact, if there is no unbinding (koff = 0), one gets Q(t) = 1, P∞ = 1,
and P(t∣x0) = 1 − S(t∣x0). In Appendix A 1, we derive the large-N
asymptotic behavior of this mean time,

⟨T0
N,N⟩ ∝ ⟨τ⟩ ln N (N →∞). (38)

The unbinding mechanism drastically changes this asymptotic
behavior into

⟨TN⟩ ∝
(1 + koff⟨τ⟩)N

koffN
(N →∞), (39)

i.e., a very slow logarithmic increase turns into exponential growth
controlled by the unbinding rate koff (see Appendix A 2). As a conse-
quence, when many particles are needed to trigger the reaction, even
a small unbinding rate can considerably alter predictions of the irre-
versible setting. We emphasize, however, that Eq. (39) captures only
the large-N asymptotic behavior and is not applicable at small N. In
particular, a non-monotonous dependence of the right-hand side of
Eq. (39) on koff and N is not reproduced for the mean reaction time
(see further discussion in Appendix A 2).

E. Long-time behavior
The probability density HN(t∣x0) can be formally obtained via

the inverse Laplace transform in Eq. (14) by finding the poles pn,N
of the function H̃N(p∣x0) in the complex plane and applying the
residue theorem. This is a difficult task, even numerically, especially
for large N. We focus, therefore, on the pole p1,N with the smallest
absolute value that determines the decay time TN = 1/∣p1,N ∣ of the
probability density at long times,

HN(t∣x0) ∝ e−t/TN (t →∞). (40)

As P(t∣x0) admits the spectral decomposition (21) with the
poles pn, the poles of the numerator L{[P(t∣x0)]

N
} of Eq. (14) are

obtained as all linear combinations of the form pn1 + pn2 + ⋅ ⋅ ⋅ + pnN .
In particular, the pole with the smallest absolute value is still p1
(apart from the pole at 0). The situation is more difficult for the
denominatorL{[Q(t)]N}, for which we are looking not for its poles,
but for zeros. Let us search for a zero of this function,

L{[Q(t)]N}(p) =
∞

∑
n1=0

. . .
∞

∑
nN=0

qn1 . . . qnN

p − pn1 − ⋅ ⋅ ⋅ − pnN

, (41)

where we included the pole at 0 by setting p0 = 0 and q0 = P∞. As
p→ 0, the leading term of this expression is qN

0 /p, which can be sep-
arated from the other terms. In the leading-order approximation,
one can set p = 0 in the remaining terms,

0 = L{[Q(t)]N}(p1,N) ≈
qN

0

p1,N
−

∞

∑
n1=0,...
...,nN=0,

n1+⋅⋅⋅+nN>0

qn1 . . . qnN

pn1 + ⋅ ⋅ ⋅ + pnN

. (42)

The multiple sum, from which the term with n1 = n2 = . . . = nN = 0
was subtracted, can be expressed in terms of an integral, yielding an
approximation for the pole p1,N ,

p1,N ≈ −PN
∞

⎛
⎜
⎝

∞

∫

0

dt([Q(t)]N − PN
∞)
⎞
⎟
⎠

−1

. (43)

As a consequence, the decay rate is

TN ≈ P−N
∞

∞

∫

0

dt([Q(t)]N − PN
∞). (44)

Curiously, this expression is very similar to expression (36) for the
mean reaction time.

The accuracy of this approximation depends on various para-
meters such as koff and N. In fact, in order to get the sum in Eq. (42),
we neglected p1,N under the assumption that ∣p1,N ∣ is much smaller
than ∣p1∣. As N increases, the reaction event occurs at longer times,
i.e., the decay time increases, and the approximation gets more
accurate. In turn, the case N = 1 is the worst for this approxima-
tion (see discussion in Appendix A 3). Similarly, as koff increases,
the particles unbind more often and the decay time increases,
yielding a more accurate approximation. Note that approximation
(43) can be improved by accounting perturbatively for next-order
corrections.

F. Short-time behavior
At short times, the main contribution to the probability density

of the first-passage time comes from the particles that follow almost
“direct trajectories” to the target.27,33,44 As a consequence, the short-
time behavior is generally given as

H(t∣x0) ≈ Cx0 tα e−δ
2
/(4Dt)

(t → 0), (45)

where δ is the distance between the starting point x0 and the tar-
get region Γ, tα is a power law correction, and Cx0 is the prefactor
depending on the starting point, the shape of the domain, and the
reactivity κ. Note that δ is either the Euclidean distance (i.e., the
length of the shortest interval connecting x0 and Γ) or the geodesic
distance along the shortest curvilinear path from x0 and Γ that
bypasses eventual obstacles. As a rigorous derivation of this rela-
tion is beyond the scope of this paper, we use it as an assumption,
under which the following results are valid (see an example in
Appendix B 3).

When the starting point x0 lies on the target, δ = 0 and
Eq. (45) implies H(t) ≈ Ctα with C = (1/∣Γ∣)∫Γdx0 Cx0 , from which
H̃(p) ≈ CΓ(α + 1)p−1−α as p→∞. If α > −2, the leading term in the
denominator of Eq. (18) is p that implies for any x0,

P̃(p∣x0) ≈
H̃(p∣x0)

p
, (46)

which in the time domain gives

P(t∣x0) ≈

t

∫

0

dt′ H(t′∣x0) = 1 − S(t∣x0). (47)

When x0 ∉ Γ, the integral of Eq. (45) yields in the lowest order

P(t∣x0) ≈
4DCx0

δ2 tα+2 e−δ
2
/(4Dt), (48)
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from which Eq. (11) implies

Pt(N∣0) ≈ (
4DCx0

δ2 )
N

tN(α+2) e−Nδ2
/(4Dt). (49)

At short times, one has Q(t) ≈ 1, and thus, Pt(N∣N) ≈ 1 so that

H̃N(p∣x0) ≈ pL{Pt(N∣0)}, (50)

which, in turn, gives us the short-time behavior

HN(t∣x0) ≈
∂Pt(N∣0)

∂t
≈

Nδ2

4D
(

4DCx0

δ2 )
N

tN(α+2)−2 e−Nδ2
/(4Dt).

(51)

This leading-order asymptotic relation can be improved by com-
puting the next-order term in the integral of Eq. (45) that yields
the correction O(t) to Eq. (51), which is still independent of the
unbinding rate koff. In turn, koff appears in the correction O(t2

)

by using Q(t) ≈ 1 − kofft instead of Q(t) ≈ 1 in the above deriva-
tion. The integral of this expression yields, in the leading order, the
following:

SN(t∣x0) ≈ 1 − (
4DCx0

δ2 )
N

tN(α+2) e−Nδ2
/(4Dt). (52)

It is easy to see that for N = 1, the leading term of the short-
time behavior in Eq. (45) is recovered. We note that the short-time
behavior of the reaction time density HN(t∣x0) is identical to that of
the probability density H0

N,N(t) of the first-passage time T0
N,N . This

result is independent of the unbinding rate koff because the probabil-
ity of an unbinding event is small at times t ≪ k−1

off . As a consequence,
for any K, one can approximate the short-time behavior of TK,N by
that of T 0

K,N , for which the probability density is given explicitly by
Eq. (3). Substituting here the short-time asymptotic relations (45),
(47), and (48), we then get

HK,N(t) ≈ H0
K,N(t)

≈ (
N
K
)

Kδ2

4D
(

4DCx0

δ2 )
K

tK(α+2)−2 e−Kδ2
/(4Dt), (53)

which generalizes Eq. (51).

III. DISCUSSION
In order to illustrate our general results, we consider a relevant

example of restricted diffusion inside a reflecting sphere of radius
R toward a partially reactive spherical target of radius ρ located at
the origin. This geometrical setting is a simplified model of pas-
sive diffusion inside the cytoplasm toward the nucleus. It was also
employed to model diffusion of calcium ions inside a presynaptic
bouton toward a calcium-sensing protein.52 The distribution of the
first-passage time of a single particle was investigated in Ref. 33.
In the presence of unbinding events, the exact spectral decompo-
sitions for both probabilities P(t∣x0) and Q(t) were derived in Ref.
52. Appendix B summarizes former results needed for studying the
problem of impatient particles.

The numerical method for evaluating the probability density
HN(t∣x0) in Eq. (15) is described in Appendix C. To validate the
accuracy of this exact solution, we also performed Monte Carlo

TABLE I. Mean reaction time ⟨TN⟩ and the decay time TN for restricted diffusion
toward a spherical target of radius ρ = 1 and reactivity κ = 1, surrounded by a reflect-
ing concentric sphere of radius R = 10, for N particles started from ∣x0∣ = 5 with
D = 1 (see Appendix B for details). Monte Carlo (MC) values of ⟨TN⟩ were esti-
mated from 106 realizations (see Appendix D); its theoretical values were obtained by
numerical integration of Eq. (36), while LMA values were given by Eq. (7). Theoret-
ical values of the decay time TN were estimated by fitting SN(t∣x0)/HN(t∣x0) over
a selected range of times; approximate values were obtained by numerical integra-
tion of Eq. (44), while the LMA values were deduced from the inverse of the smallest
eigenvalue of the matrix −W (N). Note that all times here should be multiplied by 103.

Mean ⟨TN⟩(×103
) Decay time TN(×103

)

N koff Theory MC LMA Theory Approx. LMA

2 0.003 1.20 1.21 1.47 1.04 0.76 1.33
0.03 3.90 3.94 6.45 3.87 3.83 6.42

3 0.003 2.01 2.03 3.08 1.71 1.46 2.83
0.03 27.9 28.3 81.3 28.0 27.8 81.3

simulations, as described in Appendix D. In the following, we set
ρ = 1 and D = 1 to fix the units of length and time. The radius of
outer reflecting sphere is set as R = 10 so that the target is rela-
tively small. All the particles start from a fixed point x0 such that
either ∣x0∣ = 5 (relatively far from the target) or ∣x0∣ = 2 (relatively
close to the target). To analyze the effect of unbinding events, we
fix the reactivity κ = 1 (and thus the forward constant kon) and
vary the unbinding rate koff. For κ = 1, the mean rebinding time
⟨τ⟩ in Eq. (26) is equal to 333. Setting koff = 0.003 or koff = 0.03,
we can thus examine two settings of moderate (η = 1) and strong
(η = 10) unbinding kinetics, respectively. We will compare our
exact solution in Eq. (15) with Monte Carlo simulations, the LMA,
the irreversible binding solution, and the short-time asymptotic
relation.

Table I shows the mean reaction time for N = 2 and N = 3 with
two unbinding rates koff, showing an excellent agreement between
Eq. (36) and Monte Carlo simulations. In turn, the LMA overesti-
mates the mean reaction time, the largest deviation corresponding
to stronger unbinding rate koff and larger N. In addition, Table I
shows the decay time in the same setting. Expectedly, our approx-
imation (44) is least accurate for N = 2 and the small unbinding rate
koff = 0.003 (see Sec. II E). At N = 3, the agreement is better. More-
over, for faster unbinding with koff = 0.03, approximation (44) is in
excellent agreement with the exact values for both N = 2 and N = 3.
In contrast, the LMA predictions are much less accurate.

A. Comparison with irreversible binding case
First, we note that the limit of irreversible binding can be

achieved by setting either koff = 0 or κ = ∞. In fact, in the latter
case, any particle that unbinds from the target immediately rebinds
and thus never leaves the target. As a consequence, the natural
parameter characterizing the unbinding kinetics is the dimension-
less quantity η defined by Eq. (27). When η is small, unbinding
kinetics is usually considered as irrelevant. In the following, we
consider the irreversible binding limit by keeping κ fixed and
setting koff → 0.
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For irreversible binding, the short-time behavior of the proba-
bility density HK,N(t∣x0) is given by Eq. (53). In turn, the long-time
behavior follows from the spectral expansion of the probability den-
sity H(t∣x0) of the first-passage time. In fact, as restricted diffusion
occurs in a bounded domain, the governing Laplace operator, −Δ,
has a discrete spectrum, i.e., a countable set of eigenvalues 0 <
λ1 ≤ λ2 ≤ λ3 ≤ . . .↗∞ that are associated with L2(Ω)-normalized
eigenfunctions {un(x)} forming a complete orthonormal basis in
L2(Ω).74 As a consequence, the survival probability admits the
standard spectral decomposition75

S(t∣x0) =
∞

∑
n=1

cn un(x0)e−Dtλn , cn = ∫
Ω

dx un(x), (54)

from which Eq. (3) implies

H0
N,N(t∣x0) ≈ N Dλ1 c1u1(x0)e−Dtλ1 . (55)

When the target is small, one has

λ1 ≈
κ∣Γ∣

D∣Ω∣
=

1
D⟨τ⟩

, (56)

where we used Eq. (26) for the mean rebinding time. Therefore, we
get

H0
N,N(t∣x0) ∝ e−t/⟨τ⟩

(t →∞). (57)

One sees that the decay time here, ⟨τ⟩, does not depend on N,
in sharp contrast to the exponential growth of TN in Eq. (44) for
reversible binding.

Lawley found that the mean of the FPT T 0
K,N was determined

for any fixed K as47

⟨T 0
K,N⟩ ≈

C
ln N

(N →∞), (58)

with some constant C and higher-order corrections 1/(ln N)2

depending on K. However, this behavior cannot be applied to K = N.
In Appendix A 1, we show that

⟨T0
N,N⟩ ≈ C′ ln N (N →∞), (59)

with another constant C′ determined by the decay time of the sur-
vival probability for a single particle. Even though the mean arrival
time of the slowest particle differs by a factor (ln N)2 from that of the
fastest particle, the need for N particles to trigger the reaction event
does not considerably slow down the irreversible reaction kinetics.
This observation is totally different in the case of reversible bind-
ing, for which the mean reaction time ⟨TN⟩ in Eq. (39) exhibits an
exponential growth with N.

FIG. 2. Probability density HN(t∣x0) of the reaction time TN for restricted diffusion between concentric spheres of radii ρ = 1 and R = 10 with D = 1, κ = 1, three values
of koff (see the legend), two starting positions ∣x0∣ = 5 [(a) and (b)] and ∣x0∣ = 2 [(c) and (d)], and two values of N: N = 2 [(a) and (c)] and N = 3 [(b) and (d)]. Symbols
show empirical histograms from Monte Carlo simulations with 106 particles. Thick lines indicate our exact solution (15) evaluated numerically as described in Appendix C,
whereas thin lines show the Lawley–Madrid approximation (6). The thin gray solid line represents the short-time asymptotic behavior (51).
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B. Comparison with the LMA
Now, we compare our exact results to the Lawley–Madrid

approximation. This approximation was designed under assump-
tion that the rebinding time distribution can be approximated by
an exponential law: S(t) ≈ S(t) = e−νt , with an appropriate rate ν.
There are two natural choices for this rate. In order to get the correct
long-time behavior of the survival probability, one can set ν = Dλ1 to
match the leading term of the exact spectral expansion (54). Alterna-
tively, as the rebinding time τ is approximated by an exponential law,
one can set ν = 1/⟨τ⟩. When the target is small and weakly reactive,
Eq. (56) indicates that 1/⟨τ⟩ is close to Dλ1, and both choices yield
the same result. One sees that the approximate equality 1/⟨τ⟩ ≈ Dλ1
ensures the self-consistence of the Lawley–Madrid approximation
and can thus serve as a practical indicator of its validity. As a con-
sequence, the LMA is expected to capture the long-time behavior of
the probability density HN(t∣x0) in the limit of small targets. In the
remaining part of this section, we assume that the validity conditions
of the LMA are fulfilled and set ν = 1/⟨τ⟩.

First, we look at the mean reaction time. Lawley and Madrid
analyzed the asymptotic behavior of their Eq. (7) in two limits:
(i) when K is fixed and N →∞, in which case ⟨TK,N⟩ ∼ ⟨τ⟩K/N,
i.e., essentially a linear growth with K; (ii) when 1/(1 + koff⟨τ⟩)
< K/N < 1 is fixed, in which case ⟨TK,N⟩ exhibits a very rapid
growth.54 While the limiting case K = N was not discussed, we
deduced the asymptotic behavior of Eq. (7) by using similar tools,

⟨TN,N⟩ ≈
(1 + koff⟨τ⟩)N

koffN
(N ≫ 1). (60)

This expression coincides with Eq. (39) that we obtained from
the exact solution (36). This highlights that the LMA qualitatively
captures the long-time behavior. In turn, as discussed earlier and
illustrated in Table I, both Eq. (7) and its asymptotic form (60)
overestimate the mean reaction time.

Let us now turn to approximation (6) of the probability density.
Denoting by 0 > ν1 ≥ ⋅ ⋅ ⋅ ≥ νN the negative eigenvalues of the matrix
W(N), one sees that the long-time asymptotic behavior is determined
by the largest eigenvalue ν1,

HN,N(t) ∝ e−t/TN (t →∞), (61)

with TN = −1/ν1. In turn, the short-time approximation reads

HN,N(t) ≈
N
⟨τ⟩
(t/⟨τ⟩)N−1

+O(tN
) (t → 0), (62)

where the lower-order powers of t vanish because of the three-
diagonal structure of the matrix W(N), whereas the prefactor in
front of the leading term tN−1 is [(W

(N)
)

N−1
]N,1

(N−1)! = N/⟨τ⟩N−1. Expect-
edly, this asymptotic behavior is different from relation (51) derived

FIG. 3. Cumulative distribution function P{TN < t} = 1 − SN(t∣x0) of the reaction time TN for restricted diffusion between concentric spheres of radii ρ = 1 and R = 10
with D = 1, κ = 1, three values of koff (see the legend), two starting positions ∣x0∣ = 5 [(a) and (b)] and ∣x0∣ = 2 [(c) and (d)], and two values of N: N = 2 [(a) and (c)] and
N = 3 [(b) and (d)]. Symbols show the empirical cumulative distribution function from Monte Carlo simulations with 106 particles. Thick lines indicate the integral of our
exact solution (15) evaluated numerically, as described in Appendix C, whereas thin lines show the Lawley–Madrid approximation (5). The thin gray solid line represents the
short-time asymptotic behavior (52).
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from our exact solution. Note that in the limit koff → 0, the assumed
exponential law for the rebinding time implies

lim
koff→0

HN,N(t) =
N
⟨τ⟩

e−t/⟨τ⟩
(1 − e−t/⟨τ⟩

)
N−1. (63)

Figure 2 illustrates the behavior of the probability density
HN(t∣x0) for two values N = 2 and N = 3 and two starting positions
∣x0∣ = 5 and ∣x0∣ = 2. First of all, we note that the probability den-
sity is broad, spanning over 4–6 orders of magnitude in time. At
short times, the probability density HN(t∣x0) does not depend on
the unbinding rate koff, yielding the universal behavior of the left
tail of the distribution given by Eq. (3). Note that the short-time
asymptotic relation (51) is not accurate on the considered range
of times but captures correctly the leading-order term. This rela-
tion can be improved by including next-order corrections. At the
timescale 1/koff, the unbinding mechanism starts to play a role,
yielding deviations from the irreversible binding case. These devi-
ations are actually visible already at t ≳ 5 for koff = 0.03 and t ≳ 50
for koff = 0.003. As unbinding events slow down the reaction, the
right tail of the distribution is shifted toward longer times as koff
increases. In fact, the long-time decay (40) is determined by the
exponential function with the decay time TN increasing with koff.
Note that Monte Carlo simulations are in perfect agreement with
the exact solution.

The comparison with the LMA reveals its advantages and limi-
tations. The LMA correctly captures the behavior of the probability
density for moderate and long times, the agreement being better as
koff is smaller. One sees that the LMA systematically overestimates
the decay time that controls the long-time behavior (see Table I).
Deviations become larger as N and koff increase. Expectedly, the
LMA totally fails at short times. Deviations are stronger when the
particles start closer to the target. In fact, when ∣x0∣ = 2, there is a
notable maximum around t ∼ 1 that is not captured by the LMA.
The most probable time determining the position of this maximum
is several orders of magnitude smaller than the mean reaction time.
This maximum can be relevant for applications when the source of
particles is close to the target (see Ref. 52 for further discussions).
Nevertheless, the explicit character of the Lawley–Madrid approxi-
mation and a much simpler computation of the probability density
via Eq. (6) make it a valuable tool for a first-step analysis of reversible
reactions with multiple particles. Further improvements of the LMA
present an important perspective.

Figure 3 represents a complementary view onto the behavior of
the reaction time TN by showing its cumulative distribution function
1 − SN(t∣x0).

IV. CONCLUSIONS AND PERSPECTIVES
Diffusion-controlled reactions involving multiple particles are

abundant and particularly relevant in biochemistry. The need for a
sufficient number of bound particles can be considered as a sort of
protection mechanism against spontaneous triggering, as well as a
mean for reliable control of reactions. The overwhelming majority
of former studies in this field were focused on first-passage times
of a single particle, with a straightforward extension to the extreme
statistics of many particles with irreversible binding to the target.
In turn, the problem of impatient particles with reversible binding

seems to remain unnoticed, despite its practical relevance.53 For
instance, five calcium ions have to bind to a calcium-sensing pro-
tein to initiate the release of neurotransmitters for signaling between
neurons.52,55–59 To outline the role of unbinding kinetics onto this
process, we take the following estimates from Ref. 52: R = 300 nm,
kon = 6.35 ⋅ 108 M−1 s−1

= 6.35 ⋅ 105 mol m−3 s−1, and koff = 1.57 ⋅
104 s−1, from which the mean rebinding time is ⟨τ⟩ ≈ 0.1 s; see
Eqs. (26) and (27). As a consequence, η = koff⟨τ⟩ ≈ 1.57 ⋅ 103

≫ 1
so that one cannot simply ignore reversible binding that drastically
changes the distribution of the reaction time.

Even if the particles diffuse independently, their randomly
“asynchronized” waiting times on the target render the problem
of exact characterization of the reaction times TK,N mathemati-
cally challenging. The remarkable work by Lawley and Madrid
brought an elegant approximate solution to this problem.54 The
good accuracy of this approximation, as reported by its authors,
might seem to suggest that this challenging problem is fully solved.
In this paper, we showed that this is far from being the end of
the story.

We focused on the particular case of the first time TN = TN,N
when all N particles are bound to the target. This choice allowed
us to derive, for the first time, the exact complete solution of the
problem of impatient particles, i.e., to express the probability den-
sity of the random variable TN in terms of the first-passage time
distribution of a single particle. This exact solution revealed some
limitations and deficiencies of the LMA. In particular, we showed
that the approximate solution captures the qualitative behavior at
moderate and long times but fails at short times. Moreover, the
LMA overestimates the mean reaction time and the decay time so
that its predictions are inaccurate in some settings. At the same
time, the complexity of the exact solution for TN,N and yet a fully
open problem of finding the exact solution in the general case
TK,N make the LMA a valuable tool for the qualitative analysis
and preliminary estimations. Moreover, the accuracy of the LMA
is expected to be much higher in the limit of very small targets.
We believe that further improvements of the LMA or development
of alternative methods can bring important insights on the prob-
lem of impatient particles. This is an interesting perspective of the
present work.

We also emphasize that impatient particles offer an excellent
example of a physical problem, for which standard numerical meth-
ods may be insufficient for getting the whole picture. In particular,
as the mean reaction time and the decay time grow exponentially
fast with the number of particles, getting the whole distribution of
the reaction time TN was not possible even for moderate N. For
instance, a Monte Carlo simulation with 106 realizations used to plot
the empirical probability density in Fig. 2 took one day on a laptop.
However, this simulation allowed us to get the behavior of HN(t∣x0)

only for a limited range of time scales (e.g., from 102 to 104 for
N = 2). Even though parallelization can easily increase the number
of realizations (say by a factor 100 or 1000), it would not be enough
to get the short-time behavior. As the computational time explodes
with N, we could not complete Monte Carlo simulations even for
moderate values of N such as N = 5 or N = 10. Here, analytical tools
and approximations are indispensable.

While we focused on the setting when all particles start from
the same fixed point x0, our exact solution can be easily extended
to a more general case with distinct starting points. Moreover, the
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starting point of each particle can also be random. In the case of
a uniform distribution of the starting points, the properties of the
fastest FPT T 0

1,N were studied in Ref. 48. An extension to the reaction
time TN is straightforward.

The exact expression (36) for the mean reaction time ⟨TN⟩

opens a way to investigate the role of different parameters onto the
reaction kinetics. A rough approximation allowed us to access the
large-N asymptotic behavior of this quantity. However, the asymp-
totic formula (39) lacks an exact prefactor and also fails at small
N. More accurate analysis of Eq. (36) could hopefully improve this
formula to get a quantitatively accurate description of the mean reac-
tion time. Its extension to other reaction times ⟨TK,N⟩ presents an
exciting perspective.
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APPENDIX A: MATHEMATICAL DETAILS

In this appendix, we discuss some asymptotic relations and
derivations.

1. Mean reaction time for irreversible binding
The mean fastest FPT T 0

1,N and, more generally, the mean Kth
fastest FPT T 0

K,N were thoroughly investigated in the irreversible
binding case.43–47 For any fixed K, the mean value ⟨T 0

K,N⟩ behaves
universally as 1/ln N in the large N limit, whereas the higher-order
corrections O[1/(ln N)2

] depend on K. In turn, the asymptotic
behavior of the slowest FPT T0

N,N was not discussed, to our knowl-
edge. In particular, the former result for any fixed K cannot be
applied to the case K = N. Here, we sketch the main steps of this
analysis, more rigorous derivations being beyond the scope of this
paper.

As the mean time ⟨T0
N,N⟩ is given by Eq. (37), its asymp-

totic analysis is reduced to that of the survival probability S(t∣x0)

for a single particle. It is easy to check that the function f (t)
= 1 − (1 − S(t∣x0))

N monotonously decreases from 1 at t = 0 to 0
as t →∞. The integral in Eq. (37) can be evaluated by approxi-
mating f (t) by the Heaviside step function Θ(tN − t), where tN is
chosen by setting f (tN) = ζ, with ζ being around 1/2 (see below).
This equation yields S(tN ∣x0) = 1 − (1 − ζ)1/N . When N is large, the
right-hand side of this relation is close to 0. In other words, the limit
N →∞ corresponds to large tN , for which the spectral expansion

FIG. 4. Mean slowest FPT ⟨T0
N,N⟩ for restricted diffusion between concentric

spheres of radii ρ = 1 and R = 10 with ∣x0∣ = 5, D = 1, κ = 1, and koff = 0 (irre-
versible binding). Empty circles show the results of a numerical integration of
Eq. (37), the dashed line represents Eq. (A1) with ζ = 0.5, and the solid line
illustrates Eq. (A1) with ζ = 0.428, which was selected to get the best agreement.

(54) can be truncated to a single term, S(tN ∣x0) ≈ c1u1(x0)e−Dλ1tN .
As a consequence, one gets

⟨T0
N,N⟩ ≈ tN ≈ −

ln(1 − (1 − ζ)1/N
) − ln(c1u1(x0))

Dλ1

≈
ln N + ln(c1u1(x0)) − ln ln 1

1−ξ

Dλ1
. (A1)

Even though this approximate relation depends on a somewhat
arbitrary choice of ζ around 1/2, this dependence is weak and cor-
responds to the sub-leading (constant) term, as compared to the
leading term ln N. Note that 1/(Dλ1) is the decay time for a sin-
gle particle, which determines the natural timescale of the problem.
Figure 4 illustrates the dependence of ⟨T0

N,N⟩ on N and its large-N
asymptotic behavior (A1).

2. Mean reaction time
The mean reaction time ⟨TN⟩ is determined by Eq. (36).

We note that the function [Q(t)]N − [P(t∣x0)]
N monotonously

decreases from 1 at t = 0 to 0 as t →∞. We also checked that, for
large N, this function decreases fast enough to allow for truncation
of the integral at some finite time tN , whereas the term [P(t∣x0)]

N is
small for t < tN and can be omitted.

One can thus apply the same approximation as in
Appendix A 1. In fact, we aim at evaluating tN at which [Q(tN)]

N
= ζ

or, equivalently, Q(tN) = ζ1/N , with some ζ around 1/2. As ζ1/N is
close to 1, one considers the short-time approximation, for which
Q(t) = 1 − kofft +O(t2

) [see Eq. (30) and Appendix A 4]. We thus
get tN = (1 − ζ1/N

)/koff ≈ ln(1/ζ)/(Nkoff) as N →∞, from which

⟨TN⟩ ≈
(1 + koff⟨τ⟩)N ln(1/ζ)

koffN
(N →∞), (A2)

where we used Eq. (24). We stress that the prefactor ln(1/ζ) stands
here in front of the leading term, whereas in Appendix A 1, an arbi-
trary parameter ζ appeared only in the sub-leading term in Eq. (A1),
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FIG. 5. The rescaled mean reaction time ⟨TN⟩ koffNPN
∞ (lines) and the rescaled

decay time TN koffNPN
∞ (symbols) as functions of koff for restricted diffusion

between concentric spheres of radii ρ = 1 and R = 10 with ∣x0∣ = 5, D = 1, κ = 1,
and N = 2 (circles and solid line), N = 3 (squares and dashed line), N = 4 (dia-
monds and dashed-dotted line), and N = 5 (triangles and dotted line). Theoretical
values of ⟨TN⟩ and TN were obtained by numerical integration of Eqs. (36) and
(44), respectively.

while the leading term was universal. This feature highlights the defi-
ciency of approximation (A2). Figure 5 compares the exact mean
reaction time ⟨TN⟩ and the asymptotic behavior P−N

∞ /(koffN) for
several values of N. While the overall behavior is correctly cap-
tured, deviations are considerable and depend on the parameters.
The curves shown in Fig. 5 can be interpreted as the dependence
of ln(1/ζ) on koff and N. Further improvements of this approxima-
tion present an interesting perspective. Note also that the asymp-
totic behavior (A2) with ln(1/ζ) = 1 is identical to Eq. (60) from
the LMA.

In a first approximation, one may attempt to set the factor
ln(1/ζ) to 1, as in Eq. (60). The non-monotonous dependence of
the right-hand side of the asymptotic form (A2) on koff and N may
suggest that the mean reaction time can be optimized with respect to
these parameters. In fact, its derivative with respect to N vanishes at

Nc =
1

ln(1 + koff⟨τ⟩)
, (A3)

suggesting that ⟨TN⟩ can be minimized with respect to N when
koff⟨τ⟩ is small enough. Similarly, the derivative with respect to koff
vanishes at

koff, c =
1

(N − 1)⟨τ⟩
, (A4)

suggesting a minimum of ⟨TN⟩. However, this fictitious optimality
results from a rough asymptotic formula (A2) and does not occur
when the exact solution (36) is considered (see Fig. 6). This example
illustrates danger of relying on approximate solutions and urges for
a more elaborate analysis of the exact solution.

3. The decay time for N = 1
As mentioned in Sec. II E, approximation (44) of the decay time

TN is least accurate in the case N = 1. To illustrate this point, we note

FIG. 6. Mean reaction time ⟨TN⟩ (symbols) and its asymptotic form (39) as func-
tions of N for restricted diffusion between concentric spheres of radii ρ = 1 and
R = 10 with ∣x0∣ = 5, D = 1, κ = 1, and two values of koff. Theoretical values of
⟨TN⟩ were obtained by numerical integration of Eq. (36).

that the integral in Eq. (44) can be found explicitly for N = 1. In fact,
one has

∞

∫

0

dt(Q(t) − P∞) = lim
p→0
(Q̃(p) −

P∞
p
)

= lim
p→0
(

1
p + koff(1 − H̃(p))

−
P∞
p
)

= lim
p→0
(

1
p + koff(p⟨τ⟩ − p2⟨τ2/2⟩ +O(p3))

−
P∞
p
)

=
1
2

P2
∞koff⟨τ

2
⟩,

where we used Eq. (24). As a consequence, approximation (44) reads

p1,1 ≈ −
2

P∞koff⟨τ2⟩
. (A5)

Note that for restricted diffusion between concentric spheres, the
second moment of the rebinding time is known explicitly; see
Eq. (B6). However, a similar approximation can be used to estimate
the first pole of Q̃(p) by expanding H̃(p) in Eq. (16) up to the second
order in p, from which p1 ≈ −2/(P∞koff⟨τ2

⟩). In other words, p1,1
turns out to be identical to p1, thus invalidating the approximation
in the case N = 1.

4. Behavior of the function Q(t)
According to Eq. (30), Q(t) is a monotonously decreasing

function. In fact, the time derivative of Eq. (30) reads

Q′(t) = −koff(Q(t) − P(t)). (A6)

Comparing the probabilities P(t) and Q(t) of finding the particle
bound to the target, one realizes that the former includes an addi-
tional step of binding to the target and thus P(t) ≤ Q(t), implying
Q′(t) ≤ 0. This property can also be deduced in a more formal way.
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In fact, as P(t) is the convolution of Q(t) and H(t) [see Eq. (28)], its
integration by parts yields

P(t) =
t

∫

0

dt′ Q(t − t′)H(t′)

= −[Q(0)S(t) − S(0)Q(t)] +
t

∫

0

dt′ Q′(t − t′)S(t′).

Since S(0) = Q(0) = 1, one deduces

Q′(t) = −koff

⎛
⎜
⎝

S(t) −
t

∫

0

dt′ S(t′)Q′(t − t′)
⎞
⎟
⎠

, (A7)

where S(t) ≥ 0 is the survival probability. Applying a sort of induc-
tion argument, one can check that the right-hand side is negative.
Note also that this relation implies Q′(0) = −koff and thus Q(t)
≈ 1 − kofft +O(t2

) as t → 0.

APPENDIX B: DIFFUSION BETWEEN CONCENTRIC
SPHERES

In this appendix, we summarize former results needed for
evaluating the probability density of the reaction time TN for the
practically relevant scenario of particles diffusing in a shell-like
domain Ω = {x ∈ R3 : ρ < ∣x∣ < R} bounded between two concentric
spheres of radii ρ and R. The inner sphere is a partially reactive target
with reactivity κ, whereas the outer sphere is reflecting. The rota-
tional symmetry of the problem allows for an explicit solution by
separation of variables.3,75,76 The first-passage time distribution was
discussed in Ref. 33, whereas the exact solution for the probability
P(t∣x0) was given in Ref. 52.

1. First-passage time density
The probability density of the first-passage time can be found

by separation of variables in a standard way (see Ref. 33 for details).
The rotational symmetry implies that H(t∣x0) and other related
quantities depend only on time t and the radial coordinate r = ∣x0∣.
In the Laplace domain, one has

H̃(p∣x0) =
g(r)

g(ρ) − g′(ρ)D
κ

, (B1)

where

g(r) =
R
√

p/D cosh ξ − sinh ξ
r
√

p/D
, (B2)

with ξ = (R − r)
√

p/D, and g′(r) is given by

g′(r) =
(1 − Rrp/D) sinh ξ − ξ cosh ξ

r2
√

p/D
. (B3)

The moments of the first-passage time can be found as

⟨τk
⟩x0 = (−1)k lim

p→0

∂kH̃(p∣x0)

∂pk . (B4)

Setting ∣x0∣ = ρ, one also determines the moments of the rebinding
time, e.g.,

⟨τ⟩ =
R3
− ρ3

3κρ2 (B5)

and

⟨τ2
⟩ =

2(R3
− ρ3
)

2

9κ2ρ4 +
2(5R6

− 9R5ρ + 5R3ρ3
− ρ6
)

45Dκρ3 . (B6)

The inversion of the Laplace transform in Eq. (B1) by means of
the residue theorem yields

H(t∣x0) =
D
ρ2

∞

∑
n=1

α̂2
n ĉn u(α̂n, ∣x0∣) e−Dtα̂2

n/ρ
2

, (B7)

with

u(α, r) =
ρ sin(α R−r

ρ ) − Rα cos(α R−r
ρ )

r
,

ĉn = −
2 μρ2

α̂n
[(μR(R − ρ) + R2

+ ρ2
)α̂n sin(α̂nβ)

+ (R(R − ρ)α̂2
n − μρ

2
) cos(α̂nβ)]

−1
,

(B8)

and α̂n (with n = 1, 2, . . .) denoting the positive solutions of the
trigonometric equation

tan(αβ) =
α(β + (1 + β)μ)

1 + μ + (1 + β)α2 , (B9)

with

μ = κρ/D, β = (R − ρ)/ρ. (B10)

Note that the survival probability is obtained by integrating Eq. (B7),

S(t∣x0) =
∞

∑
n=1

ĉn u(α̂n, ∣x0∣) e−Dtα̂2
n/ρ

2

. (B11)

2. The occupancy probability
In turn, the spectral expansion (21) of the occupancy probabil-

ity P(t∣x0) was derived in Ref. 52, with vn(x0) = cnu(αn, ∣x0∣), where
u(α, r) is given by Eq. (B8), pn = −α2

nD/ρ2, and

cn =
2 μ

sin(αnβ)(α2
nw1 +w2) + αn cos(αnβ)(α2

nw3 +w4)
,

where

w1 = 4(1 + β) + β(β + μ(1 + β)), (B12a)
w2 = 2(1 + μ − λ(1 + β)) − λβ2, (B12b)

w3 = β(1 + β), (B12c)
w4 = β(1 + μ − λ(1 + β)) − 3(β + μ(1 + β)), (B12d)

λ = koffρ2
/D, and αn are strictly positive solutions of the trigonomet-

ric equation

sin(αnβ) =
[α2

n(β + μ(1 + β)) − λβ]αn cos(αnβ)
α4

n(1 + β) + α2
n(1 + μ − λ(1 + β)) − λ

, (B13)
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enumerated by n = 1, 2, . . .. Note that the coefficients vn determining
Q(t) in Eq. (32) are simply vn = cnu(αn, ρ).

3. Short-time asymptotic behavior
Here, we focus on the short-time behavior of H(t∣x0). As

the solution in Eq. (B7) depends only on the radial coordinate
r = ∣x0∣, we replace x0 by r in the following expressions. Setting
s = (R − ρ)2p/D and ν = D/(κρ), we can rewrite H̃(p∣r) as

H̃(p∣r) =
β
√

s cosh(
√

s R−r
R−ρ) − sinh(

√
s R−r

R−ρ)

r/ρ

× ((ν + β)
√

s cosh(
√

s) − (1 + ν − γs) sinh(
√

s))−1,

(B14)

where γ = νβ2ρ/R. We first study the case r = ρ, for which

H̃(p∣ρ) =
1 − 1

β
√

s tanh(
√

s)

1 + ν/β − 1+ν−γs
β
√

s tanh(
√

s)
. (B15)

For large s, tanh(
√

s) = 1 +O(e−2
√

s
), which further implies

H̃(p∣ρ) ≈
β
√

s − 1
(ν + β)

√
s − (1 + ν) + γs

=
1
γ
(

A1
√

s + x1
+

A2
√

s + x2
),

where

x1,2 =
(ν + β) ±

√
(ν + β)2 + 4γ(1 + ν)

2γ
(B16)

and

A1 =
1 + βx1

x1 − x2
, A2 =

1 + βx2

x2 − x1
. (B17)

Using the following inverse Laplace transform:

L{ 1
√

s + a
} =

1
√
πτ
− aea2τerfc(a

√
τ) = fa(τ) (B18)

[where erfc(z) is the complementary error function], we find the
short-time approximation

H(t∣ρ) ≈ D
A1 fx1(

Dt
(R−ρ)2 ) + A2 fx2(

Dt
(R−ρ)2 )

(R − ρ)2γ
. (B19)

Using fa(τ) ≈ 1/
√
πτ − a + 2a2√τ/π +O(τ), one gets

H(t∣ρ) ≈
κ

√
πDt
+ κ(1/ρ + κ/D) + 2

κ(1/ρ + κ/D)2
√
π

√
Dt +O(t).

(B20)
For the case of ρ < r < R, we have

H̃(p∣r) ≈
ρ
r

e−
√

s(r−ρ)/(R−ρ)H̃(p∣ρ), (B21)

where we neglected the terms of the order e−2
√

s and e−2
√

sδ with
δ = (R − r)/(R − ρ). Note that if r is close to R (i.e., if δ is very
small), the above approximation would be slightly modified. Since
the Laplace transform is expressed as a product of two terms, the
inverse Laplace transform yields the following convolution:

H(t∣r) ≈
ρ
r∫

t

0
dt′H(t − t′∣ρ)

(r − ρ)e−(r−ρ)
2
/(4Dt′)

√
4πDt′3

, (B22)

which can be evaluated using the asymptotic expression for H(t∣ρ)
to give

H(t∣r) =
ρκe−(r−ρ)

2
/(4Dt)

r
√
πDt

(1 +
2Dt(1 + κρ/D)

ρ(r − ρ)
+ ⋅ ⋅ ⋅ ). (B23)

One can recognize Eq. (45) in the leading term, with α = −1/2 and

Cx0 =
ρκ

r
√
πD

. (B24)

APPENDIX C: NUMERICAL IMPLEMENTATION

Our central formula (15) expresses the probability density
HN(t∣x0) in terms of the accessible probabilities P(t∣x0) and Q(t).
However, its practical implementation requires the computation of
two Laplace transforms, L{[P(t∣x0)]

N
} and L{[Q(t)]N}, and then

the evaluation of the inverse Laplace transform of their ratio. Since
both P(t∣x0) and Q(t) are given as spectral expansions, such a com-
putation becomes numerically difficult, especially at small and large
times when HN(t∣x0) rapidly decays. We also attempted a direct
solution of the following related deconvolution problem:

[P(t∣x0)]
N
=

t

∫

0

dt′ HN(t′∣x0) [Q(t − t′)]N , (C1)

but it was numerically unstable.
To resolve this difficulty, one can integrate Eq. (C1) by parts

to transform it into an integral equation on the survival probability
SN(t∣x0) = P{TN > t},

[Q(t)]N − [P(t∣x0)]
N
= SN(t∣x0) −

t

∫

0

dt′ SN(t′∣x0) qN(t − t′),

(C2)
where we used Q(0) = SN(0∣x0) = 1 and defined

qN(t) = −
d
dt
[Q(t)]N = −N[Q(t)]N−1 dQ

dt
. (C3)

Considering the last term in Eq. (C2) as the application of an integral
operator Q to the function SN(t∣x0), one can formally invert this
relation to get

SN(t∣x0) = (I −Q)−1
([Q(t)]N − [P(t∣x0)]

N
), (C4)

where I is the identity operator. Expanding the operator (I −Q)−1

into the geometric series, one finally expresses the survival probabil-
ity as

SN(t∣x0) =

t

∫

0

dt′([Q(t′)]N − [P(t′∣x0)]
N
)R(t − t′), (C5)
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where

R(t) = (I −Q)−1δ(t)

= δ(t) + qN(t) +
t

∫

0

dt1 qN(t1) qN(t − t1) + ⋅ ⋅ ⋅ , (C6)

i.e., the sum of convolutions of qN(t) with itself of all orders.
In practice, we compute both [Q(t)]N − [P(t∣x0)]

N and qN(t)
over a linear grid of points {0, δ, 2δ, . . . , δ(K − 1)} and then evaluate
convolutions by fast Fourier transform (FFT). In this way, one gets
the survival probability evaluated at grid points,

SN(jδ∣x0) ≈ F−1
{

F{pk}

1 −F{qk}
}, (C7)

with j = 0, 1, . . . , K − 1, where pk = ck([Q(kδ)]N − [P(kδ∣x0)]
N
),

qk = δckqN(kδ), c0 = 1/2, ck = 1 for 0 < k < K and ck = 0 for K ≤ k
< 2K. Here, the coefficient c0 accounts for the integration weight 1/2
of the first point, whereas ck for k ≥ K allow one to pad the vectors by
0 for the proper computation of linear convolutions via direct (F)
and inverse (F−1

) FFTs applied to vectors of length 2K. Note that
the probability density HN(t∣x0) can also be found via FFT as

HN(jδ∣x0) ≈
1
δ
F−1
{(e2πik/(2K)

− 1)
F{pk}

1 −F{qk}
}, (C8)

in analogy with the evaluation of a derivative via standard Fourier
transform: f ′(x) = F−1

{ikF{ f (x)}}.
The time step δ sets the minimal time at which both SN(t∣x0)

and HN(t∣x0) are available and controls the accuracy of the whole
computation. In fact, it determines how accurately discrete sums
approximate convolution integrals. This is particularly important
for the evaluation of F{qk}, whose maximal value is achieved at the
zero frequency,

max{∣F{qk}∣} = F0{qk} =
2K−1

∑
k=0

qk ≈

tmax

∫

0

dt qN(t)

= 1 − [Q(tmax)]
N
≈ 1 − PN

∞ < 1.

As a consequence, 1/(1 −F{qk}) is well defined. However, when
N or koff increase, the maximum approaches to 1. If δ is not small
enough, inaccurate discretization may result in F0{qk} exceeding 1
and thus strong instabilities in the above computation. For the com-
putation of theoretical curves in Fig. 2, we used δ = 0.01 in all cases,
except for the case koff = 0.03 and N = 3, for which δ = 0.005 was
needed.

APPENDIX D: MONTE CARLO SIMULATIONS

Monte Carlo simulations were realized via a standard event-
driven scheme. Each particle was equipped by its internal “clock”
ti and the binary state variable si indicating whether the particle is
bound or not. At time 0, all particles are free (si = 1) and released
from a fixed point x0, with their clocks being set to 0. The particles
diffuse independently and bind the target at random times sampled
from the probability density H(t∣x0). The internal clock of each par-
ticle is thus set to its (individual) first-binding time, while their states

are set to 0 (bound). We emphasize that these FPTs account for par-
tial reactivity of the target, i.e., for eventual failed binding attempts
and reflections from the target, until the successful binding. Selecting
the particle with the minimal internal clock (say, ti), one updates this
clock by adding a random waiting time δi generated from the expo-
nential law with the rate koff and sets its state variable si to 1 (free).
In other words, ti is replaced by ti + δi, which is the instance when
the ith particle unbinds from the target and resumes its diffusion.
From now on, the following step is repeated: one selects the particle
with the minimal internal time (say, tj); if sj = 0 (i.e., at the instance
tj the particle binds to the target), we evaluate the number of bound
particles at time tj, and the simulation is stopped if all particles are
bound; if the simulation is not stopped, the clock tj is updated by
adding either a newly generated random waiting time δj (if sj = 0)
or a random rebinding time τ sampled from the probability density
H(t) (if sj = 1). This step is repeated until the simulation is stopped
(see Fig. 1).

The first-binding times are generated from the known proba-
bility density H(t∣x0) given by Eq. (B7). To sample from a broad
distribution H(t∣x0) spanning several orders of magnitude in time,
we first perform a change of variable ζ = ln t and obtain the asso-
ciated probability density H1(ζ∣x0). Prior to running simulations,
we create a linear grid of possible values ζk, ranging from ζmin
to ζmax, with a step dζ = 0.01, and a grid containing the probabil-
ity weight H1(ζk∣x0)dζ of each value ζk. Using these probability
weights, a (pseudo)-random value of ζ is generated by using the Mat-
lab function randsample, and the corresponding first-binding time
is obtained as eζ . The same method is used for generating rebinding
times from the known probability density H(t).

For the considered example of restricted diffusion between
two spheres, the explicit form of the survival probability H(t∣x0)

is provided in Appendix B. The spectral decomposition (B11) was
truncated at a large order n = 10 000 in order to access accurately the
short-time behavior of H(t∣x0). The zeros α̂n of Eq. (B9) were found
by the bisection method (see Refs. 33 and 52 for details). The grid
bounds ζmin and ζmax depend on the parameters and were chosen
manually to cover a broad range of times whose probability density is
not negligible [e.g., we used ζmin = −15 and ζmax = 10 for computing
H(t) for κ = 1].
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