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Mean first-passage time to a small absorbing target in three-dimensional elongated domains
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We derive an approximate formula for the mean first-passage time (MFPT) to a small absorbing target of
arbitrary shape inside an elongated domain of a slowly varying axisymmetric profile. For this purpose, the
original Poisson equation in three dimensions is reduced to an effective one-dimensional problem on an interval
with a semipermeable semiabsorbing membrane. The approximate formula captures correctly the dependence of
the MFPT on the distance to the target, the radial profile of the domain, and the size and the shape of the target.
This approximation is validated by Monte Carlo simulations.
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I. INTRODUCTION

The concept of first-passage time, i.e., the time taken for a
diffusing particle to arrive at a given location, is very com-
mon in describing many natural phenomena. Nowadays, it
is widely used in chemistry (geometry-controlled kinetics),
biology (gene transcription and foraging behavior of animals),
and many applications (financial modeling, forecasting of ex-
treme events in the environment, time to failure of complex
devices and machinery, and military operations), see [1–20]
and references therein.

Most former works were dedicated to the mean first-
passage time (MFPT), which is also related the overall
reaction rate onto the target region. Since exact formulas for
the MFPT are only available for a few special cases of highly
symmetric domains (such as a sphere or disk), a variety of
powerful methods have been developed. In particular, many
approximate solutions were derived in the so-called narrow
escape limit when the target size goes to 0 [21–35]. While
these asymptotic results are valid for generic domains, their
accuracy can be considerably reduced when the confining do-
main is elongated (e.g., a long truncated cylinder or a prolate
spheroid). In this case, the target region can still be very small
compared to the diameter of the confining domain (i.e., the
size of the domain in the longitudinal direction), but compa-
rable to the size of the domain in the transverse directions.
The effect of the confinement anisotropy on the MPFT was
studied in [36]. Recently, we proposed a simple yet efficient
method for deriving approximate solutions of the MPFT in
elongated domains on the plane [37]. The aim of this paper
is to extend this method to three dimensions and to derive a
general approximate formula for the MFPT in an elongated
three-dimensional domain with reflecting boundaries. The
shape of the domain is assumed to be axisymmetric, smooth,
and slowly varying in the longitudinal direction (without deep
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pockets and enclaves), but otherwise general. The target is
assumed to be small, but also of arbitrary shape. We validate
our findings by Monte Carlo simulations.

II. APPROXIMATE SOLUTION

We consider an elongated axisymmetric domain of length
�, which is determined by a smooth profile r(z):

� = {(x, y, z) ∈ R3 : x2 + y2 < r2(z), 0 < z < �}. (1)

Throughout the paper, we assume that the aspect ratio r0/� of
the domain [with r0 = max{r(z)}] is small and its boundary
profile is smooth, dr(z)/dz � 1. A small absorbing target �

is located inside the domain at (xT , yT , zT ) (see Fig. 1). We
assume that the target diameter is much smaller than the width
of the cross section at which the target is located: diam{�}
� r(zT ).

Similar to planar domains [37], the main analytical formula
will be derived by employing a three-step approximation.
First, the absorbing target is replaced by an absorbing disk of
the same trapping coefficient K ; the disk is oriented perpen-
dicular to the symmetry axis of the domain. Far away from the
target such a replacement is justifiable because at a distance
greater than the size of the target [but still much smaller than
r(zT ) and �] the absorption flux can be characterized by the
first (monopole) moment of the shape of the target, and this
equivalence simply preserves it. The trapping coefficient is
proportional to the electrostatic capacitance C of the target,
K = 4πDC, where D is the diffusion coefficient [38,39]. For
a variety of shapes (e.g., sphere, ellipsoid, cube, prism, per-
turbed axisymmetric shapes, or even some fractals objects),
capacitance is well known or can be accurately estimated from
various approximations, see [39–46] and references therein.
For a disk of radius a, the capacitance is (2/π )a [43]. Know-
ing the capacitance C of a given target shape, one can thus
easily deduce the radius a = (π/2)C of the equivalent absorb-
ing disk.

Second, we introduce the semipermeable semiabsorbing
boundary (membrane) across the domain that passes through
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the equivalent absorbing disk, i.e., at z = zT , where zT is the
longitudinal target location. In line with the conventional ar-
guments of effective medium theory, the trapping of the target
can approximately be captured by means of this boundary
with some effective reactivity κ . A similar approach, often
referred to as the lump parameter approximation, has been
applied in many areas of physics and engineering (effec-
tive acoustic impedance of perforated screens [47], effective
electric conductance of lattices and grids [48], and effective
boundary condition for porous materials [49–51]). To relate
the effective trapping rate of the membrane with the geomet-
rical setting, we assume that the effective trapping rate of the
membrane is equal to the trapping flux of the particles induced
by the presence of the target,

κ = K (rT )

S(zT )
, (2)

where S(z) = πr2(z) is the cross-sectional area at height z.
We stress that K and thus κ depend on the radial position

rT =
√

x2
T + y2

T of the target (an equivalent disk) in the cross
section of the domain. In other words, the trapping coefficient
K (rT ) of the target inside the confining domain is different
from its value K0 in the open space (when � = R3). More-
over, it is the latter dependence that determines the MFPT
properties. Calculation of the position-dependent trapping co-
efficient K is one of the main ingredients of the proposed
method. In the Appendix we proposed the approximation

K = K0�(a/r(zT ), rT /r(zT )), (3)

where the function �(ν, η), defined by Eq. (A1), is deduced
by interpolating two analytical results for rT = 0 (at the sym-
metry axis of the domain) and rT = R − a (near the domain
wall). This function accounts for the relative target size ν =
a/r(zT ) and the relative traversal deviation η = rT /r(zT ) of
the target from the center of the domain cross section.

Third, after its release at some point in the elongated
domain, a Brownian particle frequently bounces from the
reflecting walls while gradually diffusing along the domain
towards the target. The shape of the walls [defined by r(z)]
can additionally create the so-called entropic drift, which can
either speed up or slow down the arrival at the target [4,11,12].
In any case, the information about the particle’s initial lateral
location (e.g., across the domain) becomes rapidly irrelevant
and the original MFPT problem, governed by the Poisson
equation, is essentially reduced to the one-dimensional prob-
lem. While the classical Fick-Jacobs equation determines
the concentration of particles averaged over the cross sec-
tion of the tube (see [4,11,12] and references therein), the
survival probability is determined by the backward diffusion
equation with the adjoint diffusion operator [52]. In particular,
the MFPT T (z) in an elongated domain satisfies [4,11–13]

d

dz

[
S(z)

dT

dz

]
= −S(z)

D
. (4)

As the results of these approximations, the original problem
of finding the MFPT to a small target of arbitrary shape in a
general elongated domain is reduced to the one-dimensional
problem, which can be solved analytically.

We sketch only the main steps of the solution, while the de-
tails in a similar case of planar domains can be found in [37].
We search for the solution of Eq. (4) in the intervals (0, zT )
and (zT , �). Integrating this equation over z and imposing
Neumann (reflecting) boundary conditions at z = 0 and z = l ,
we get

T (z) =
{

C− − ∫ z
0 dz′ V (z′ )

DS(z′ ) , 0 < z < zT

C+ − ∫ �

z dz′ V (l )−V (z′ )
DS(z′ ) , zT < z < �,

(5)

where V (z) = ∫ z
0 dz′S(z′) is the volume of the (sub)domain

restricted between 0 and z. The integration constants C± are
determined by imposing the effective semipermeable semiab-
sorbing boundary condition at the target location z = zT ,

T (zT − 0) = T (zT + 0), (6)

D

[
dT

dz
(zT + 0) − dT

dz
(zT − 0)

]
= κ T (zT ), (7)

where κ is given by Eq. (2). The first relation ensures the con-
tinuity of the MFPT, whereas the second condition states that
the difference between the diffusion fluxes at two sides of the
semipermeable boundary at zT is equal to the reaction flux on
the target (an equivalent disk). The latter flux is proportional to
T , with an effective reactivity κ equal to the effective trapping
rate of the target [Eq. (2)]. Finally, substituting Eq. (5) into
Eqs. (6) and (7), we get the solution of the problem

T (z) = l2

D
[Uσ (zT /�) − Uσ (z/�)] + l

κ

v(1)

s(zT /�)
, (8)

where we introduced the dimensionless quantities

U−(ζ ) =
∫ ζ

0
dζ ′ v(ζ ′)

s(ζ ′)
, U+(ζ ) =

∫ 1

ζ

dζ ′ v(1) − v(ζ ′)
s(ζ ′)

,

(9)
with

ζ = z/�, S(z) = πr2
0s(z/�), (10)

V (z) = πr2
0�v(z/�), v(ζ ) =

∫ ζ

0
dζ ′s(ζ ′). (11)

The index σ in Eq. (8) is the sign of z − zT , i.e., σ = + for
z > zT and σ = − for z < zT . For a given profile r(z), all
these functions can be easily computed either analytically (see
examples in Table I) or numerically. In the simplest case of the
cylindrical domain, r(z) = r0, we simply get

T (z) =
{

z2
T −z2

2D + �
κ
, 0 � z � zT

(z−zT )(2�−zT −z)
2D + �

κ
, zT � z � �.

(12)

Equation (8) is the main result of the paper. As for the
case of planar domains [37], this equation consists of two
terms. The first (diffusion) term is independent of the size of
the target and is related to the time required for a Brownian
particle to arrive at the proximity of the target from its initial
position. For this reason, the contribution of this term is small
when z ≈ zT , i.e., when the particle’s initial position is near
the target. The second (reaction) term in Eq. (8) describes the
particle absorption by the target when the particle starts in its
vicinity. As it is inversely proportional to the target size, this
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TABLE I. Three examples of symmetric elongated domains de-
fined by setting r(z) = r0ρ(z/�), where ρ(ζ ) is the rescaled radial
profile (ζ = z/�), � is the length of the domain, and r0 = max{r(z)};
v(ζ ) is the rescaled volume in Eq. (11); the functions U±(ζ ) are
given in Eq. (9); and the constant c0 and function c(ζ ) are given by
Eq. (15). Other examples can be deduced from similar expressions
for the planar case [37] due to the identity ρ2(ζ ) = h(ζ ) between the
rescaled profile ρ(ζ ) of a three-dimensional domain and the rescaled
profile h(ζ ) of the analogous two-dimensional domain.

Domain ρ(ζ ) v(ζ ) U−(ζ ) U+(ζ ) c0 c(ζ )

cylinder 1 ζ 1
2 ζ 2 1

2 (1 − ζ )2 1
3 1 − ζ

cone ζ 1
3 ζ 3 1

6 ζ 2 2−3ζ+ζ 3

6ζ

1
15

1−ζ

3ζ

paraboloid ζ 2 1
5 ζ 5 1

10 ζ 2 3ζ 5−5ζ 3+2
30ζ 3

1
35

1−ζ 3

15ζ 3

term dominates in the limit of very small targets. We note that
the dependence on the lateral width of the domain comes only
through the parameter κ .

In many applications, the starting point is not fixed but
uniformly distributed inside the domain. In this case, one often
uses to the volume-averaged MFPT

T = 1

V (l )

∫ �

0
πr2(z)T (z)dz. (13)

By substituting Eq. (8) into this expression we arrive at

T = �2

D
[c0 + c(zT /�)] + �

κ

v(1)

s(zT /�)
, (14)

with

c0 =
∫ 1

0
dζ

v2(ζ )

v(1)s(ζ )
, c(ζ ) =

∫ 1

ζ

dζ ′ v(1)

s(ζ ′)
. (15)

Note also that

U+(ζ ) = c(ζ ) − [U−(1) − U−(ζ )]. (16)

III. DISCUSSION

We use Monte Carlo simulations to check the accuracy of
the analytical predictions given by Eq. (8) in three geometrical
settings illustrated in Fig. 1: (i) a disk of radius ρ in a truncated
cylinder, (ii) a cube of edge 2ρ in a truncated cone, and (iii) a
sphere of radius ρ in an oscillating profile. The capacitances of
these targets are (2/π )ρ, (4/3)ρ [39,45], and ρ, respectively,
from which the radius a of an effective disk takes the values
ρ, (2π/3)ρ, and (π/2)ρ, respectively. The target is located
at (rT , 0, �/2), where � = 5 is the length of the confining
domains. In each simulation run, a particle is released from
a random point uniformly distributed in the cross section at
z0 = 2. It undertakes independent Gaussian jumps with the
standard deviation σ = √

2Dδ along each coordinate, where
D = 1 and δ = 10−6 is the time step. The particle is reflected
normally on the boundary of the confining domain. The simu-
lation run is stopped when the particle crosses the target. The
first-passage time is estimated as nδ, where n is the number of
steps until stopping. The MFPT is obtained by averaging over
1000 runs.

The approximate solution for a truncated cylinder is given
in Eq. (12), while the general expression (8) is used for two

FIG. 1. Projection onto the xz plane of three domains used for
Monte Carlo simulations: truncated cylinder, with r(z) = 1 (i); trun-
cated cone, with r(z) = 1 + z/� (ii); and a domain with an oscillating
profile r(z) = 1 + 1

2 sin(2πz/�) (iii), with � = 5. The vertical dotted
line shows the symmetry axis in the z direction (r = 0); the hor-
izontal dashed line indicates the location of uniformly distributed
starting points (at z = 2). A target (in black) is located at (xT , 0, �/2):
a disk of radius ρ = 0.2 with xT = 0 (i), a cube of edge 2ρ = 0.4
with xT = 0.6 (ii), and a sphere of radius ρ = 0.2 with xT = −0.4
(iii). On the right is an example of a simulated trajectory inside the
domain with an oscillating profile, colored from dark blue to dark red
according to elapsed time until the first passage to the target (black
sphere) at the center.

other domains. In the case of a truncated cone r(z) = a + bz,
the functions U±(ζ ) can also be found explicitly,

U−(ζ ) = ζ 2(3 + αζ )

6(1 + αζ )
, U+(ζ ) = (1 − ζ )2(3 + 2α − αζ )

6(1 + αζ )
,

with α = b�/a. In turn, for an oscillating profile, it is easier to
calculate U±(ζ ) directly from their definition (9) via numeri-
cal integration.

Figure 2 presents the MFPT as a function of the radial
position rT of the target in the domain. First of all, one can
note the overall agreement between our theoretical predictions
and Monte Carlo simulations. Both theory and simulations
indicate that the MFPT increases when the target is shifted
from the center (rT = 0) towards the boundary of the con-
fining domain (rT = 0.8), even though this effect is weak.
For a larger spherical target [ρ = 0.2, Fig. 2(a)], our approx-
imation slightly underestimates the MFPT in the case (iii) of
an oscillating domain; the agreement is better for a smaller
target [ρ = 0.1, Fig. 2(b)]. The oscillating profile leads to
stronger deviations because lateral variations of diffusivity
were disregarded [see Eq. (17) below]. The accuracy of this
approximation is determined by the average squared ampli-
tude variations of the domain profile, 1

�

∫ �

0 dz(dr/dz)2. For
the three profiles considered (see the caption of Fig. 2), this
average takes the following values: 0 for a straight cylinder,
1/�2 for a truncated cone, and π2/(2�2) for the oscillating
profile. The last value is five times higher than that for the
truncated cone that explains more noticeable deviations from
the theoretical prediction. There are also minor deviations for
the case (i) when the disk is close to the boundary. Despite
these deviations, we conclude that our three-step approxi-
mation accurately captures the properties of the MFPT in
elongated domains. Given the simplistic character of this ap-
proximation, its accuracy is striking. It is worth stressing that
the targets are not too small [e.g., ρ = 0.2 is comparable

054107-3



DENIS S. GREBENKOV AND ALEXEI T. SKVORTSOV PHYSICAL REVIEW E 105, 054107 (2022)

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

M
F

P
T

(b)

disk in a truncated cylinder (i)
cube in a truncated cone (ii)
sphere in an oscillating domain (iii)

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

M
F

P
T

(a)

disk in a truncated cylinder (i)
cube in a truncated cone (ii)
sphere in an oscillating domain (iii)

FIG. 2. Mean first-passage time as a function of rT for diffusion
towards a target centered at xT = (rT , 0, �/2) with (a) ρ = 0.2 or
(b) ρ = 0.1, D = 1, � = 5, the starting point x0 uniform at the cross
section at z0 = 2, in three settings shown in Fig. 1: (i) a disk of radius
ρ inside a truncated cylinder of radius 1, (ii) a cube of edge 2ρ

inside a truncated cone r(z) = 1 + z/�, and (iii) a sphere of radius
ρ inside an oscillating domain r(z) = 1 + 1

2 sin(2πz/�). Lines show
theoretical predictions (8); symbols present the mean values from
1000 realizations obtained via Monte Carlo simulations with the time
step δ = 10−6.

to the minimal radius of r(0.75�) = 0.5 of the oscillating
domain], the domains are not too elongated (e.g., r0/� = 0.4
for the truncated cone), and the particles are released not
too far from the target (here zT − z0 = 0.5 is comparable to
the target diameter 2ρ = 0.4). In other words, even though
the assumptions of our approximation are not fully satisfied,
its predictions remain in quantitative agreement with Monte
Carlo simulations.

IV. CONCLUSION AND PERSPECTIVES

In this paper we obtained a simple formula (8) for the
MFPT to a small absorbing target of arbitrary shape in
an elongated axisymmetric domain with a slowly changing
boundary profile. This formula expresses the MFPT in terms
of the dimensions of the domain, the form and the size of the
absorbing target, and the target’s relative position inside the
domain. We validated our analytical predictions by numerical
simulations and found excellent agreement. Similar to the

planar domains [37], the validity of the proposed framework
is grounded in the condition of a slowly changing profile
dr(z)/dz � 1. While the final formula (8) and the main steps
of the approximation are very similar to our former results
for the planar domain [37], the additional elements developed
here are crucial for getting a simple yet accurate formula in
three dimensions. The difference between two- and three-
dimensional cases becomes apparent from the fact that the
analytical framework developed for the planar domain [37]
heavily relied on the method of conformal transformations,
which is inapplicable in three dimensions. In fact, at each of
three approximation steps discussed in Sec. II, the original
parameters had to be related to the effective ones; for instance,
we needed to determine the radius of an effective disk and to
obtain an effective reactivity of the cross section. These rela-
tions are not universal and are actually dimension dependent.
In particular, the trapping coefficient K , which was known for
a target in the plane, had to be obtained in three dimensions
(see the Appendix). Its dependence on the target position and
relative size is nontrivial and significant (see Fig. 2).

The replacement of an arbitrary three-dimensional target
by an absorbing disk was one of the key approximations.
There are several ways to rationalize this replacement.
(i) From the probabilistic point of view, when the target is
small compared to the cross-sectional width of the domain,
Brownian motion started sufficiently away from the target
has enough time to explore the space around the target in
order to “average out” its geometric details. In other words,
small targets of different shapes “look” similar to Brownian
particles traveling from far away. (ii) In physical terms, the
diffusive flux onto a small target can in general be repre-
sented via multipole expansions; when the starting point is far
away from the target, the lowest-order term is dominant. This
so-called monopole approximation has been used in many
applications. (iii) Mathematically, the principal eigenvalue of
the Laplace operator in a confining domain with a reflecting
outer boundary and a small absorbing target is proportional to
the capacity of that target, regardless of its shape [53,54]. In
summary, when the target is small, its shape does not matter
and the disk was chosen as the most convenient shape that
allowed us to complete the analysis.

A conventional way of improving the proposed approxi-
mation is to account for the next order in the perturbation ex-
pansion, which entails introduction of the position-dependent
diffusion coefficient [4]

D → D√
1 + [dr(z)/dz]2

. (17)

We note that under this approximation the results for the
cylindrical domain remain uncharged, while an extension of
the main formula (8) is getting more challenging.

Future work may involve an extension of the proposed
framework to more complex geometries (an elongated domain
with a compound piecewise profile) or an extension to the
slightly bent domain (but still with a circular cross section).
These extensions are straightforward; the latter case reduces to
a simple change of the coordinate z in the main equation (8) to
the longitudinal curvilinear coordinate along the bent domain.
The generalization of Eq. (8) to domains with a noncircular
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cross section is also possible, but is more involved and would
require a substantial refinement of the relation (3), while the
main equation (8) remains valid.

We believe that the proposed expression for the MFPT is a
useful tool for some rapid practical estimations as well as for
validation of complex numerical models of particle diffusion
in geometrically constrained settings.

ACKNOWLEDGMENTS

D.S.G. acknowledges partial financial support from the
Alexander von Humboldt Foundation through a Bessel
Research Award. A.T.S. thanks Paul A. Martin for many help-
ful discussions.

APPENDIX: EFFECTIVE TRAPPING COEFFICIENT FOR
AN ABSORBING DISK INSIDE A TUBE

In this Appendix we derive an approximate expression for
the trapping coefficient K of a small disk of radius a in a
reflecting tube with the cross-sectional area S(z) = πr2(z).
For planar domains, the expression for K can be deduced
analytically [37]. Unfortunately, there is no closed-form an-
alytical solution for K in the case of a general position of
the absorbing disk in a three-dimensional tube with reflecting
walls (we note that the classical results for the capacitance
of a small conductor in a tube [55–57] correspond to the
Dirichlet boundary condition on the tube wall). Nevertheless,
there are some analytical results that can be used to conjecture
an accurate interpolating solution.

The trapping coefficient K0 of a target in the whole space
R3 is determined by its capacitance C0, which depends ex-
clusively on the target shape and thus represents its intrinsic
geometric property. However, the presence of the reflect-
ing boundary of a confining domain changes the Brownian
dynamics and thus modifies the trapping coefficient. This
modification is similar to a change of the capacitance of a
small conductor due to the presence of the reflecting bound-
ary. For this reason, the actual trapping coefficient K depends
on the target position inside the confining domain, namely, on
rT and zT , and on the relative size of the target as compared
to the cross section of the confining domain. The dependence
on zT is adiabatic and comes with the slowly changing profile
of the domain, r(z). As K should be an analytic function of

rT , it can be represented as a Taylor series in powers of rT

whose coefficients depend on the disk radius a. Moreover, K
has a weak maximum at the center of the domain (the most
symmetrical configuration) that follows from the symmetry
of the problem and general bounds on the capacitance. As
a consequence, there is no linear term in the Taylor series
expansion. Truncating it up to the second-order term, we can
use the simple ansatz

�(ν, η) ≡ K (ν, η)

K0
= A(ν)[1 − B(ν)η2], (A1)

where K0 = 8aD is the trapping coefficient of a disk of radius
a, η = rT /r(zT ) � 1 is the offset of the disk with respect to the
domain axis, ν = a/r(zT ) � 1 is the relative size of the target
with respect to the domain cross section at zT , and coefficients
A(ν) and B(ν) are to be determined.

For η = 0 (the centered disk) the solution has been derived
by Fock [58], from which we have

A(ν) = 1 + 1.37ν − 0.37ν4

(1 − ν2)2
� 1. (A2)

The second parameter B(ν) can be found from the situation
when the disk touches the wall of the tube. In this case η =
1 − ν and we can write this condition in the form

K

K0
= qA, (A3)

with some constant factor q. The value of factor q can
be deduced from a general scaling argument. It is well
known that the capacitance (and hence the trapping rate)
scales with the square root of the surface area of conductor
(absorber) [39,44]. So the capacitance of any conductor touch-
ing the reflecting wall is approximately

√
2/2 ≈ 0.71 of

its value at the center of the tube (at η = 0), which leads
to Eq. (A3). This conjecture can also be validated with
the analytical results for two touching disks, q = 3

4 [59] or
q = 0.74 [60], and two touching spheres when q = ln 2 ≈
0.69 [39,61], which are reasonably close. From here we
arrive at

B(ν) = 1 − q

(1 − ν)2
> 0. (A4)
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