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First-passage times to anisotropic partially reactive targets
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We investigate restricted diffusion in a bounded domain towards a small partially reactive target in three-
and higher-dimensional spaces. We propose a simple explicit approximation for the principal eigenvalue of the
Laplace operator with mixed Robin-Neumann boundary conditions. This approximation involves the harmonic
capacity and the surface area of the target, the volume of the confining domain, the diffusion coefficient, and
the reactivity. The accuracy of the approximation is checked by using a finite-elements method. The proposed
approximation determines also the mean first-reaction time, the long-time decay of the survival probability, and
the overall reaction rate on that target. We identify the relevant lengthscale of the target, which determines its
trapping capacity, and we investigate its relation to the target shape. In particular, we study the effect of target
anisotropy on the principal eigenvalue by computing the harmonic capacity of prolate and oblate spheroids in
various space dimensions. Some implications of these results in chemical physics and biophysics are briefly
discussed.
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I. INTRODUCTION

Diffusion-controlled reactions play a central role in various
physical, chemical, and biological phenomena [1–10]. At a
single-molecule level, these processes are characterized by the
so-called first-passage time statistics. In a typical setting, a
particle (e.g., a protein or an ion) diffuses inside a confining
domain and searches for a specific target (e.g., an enzyme
or a receptor) to react with. The distribution of the reaction
time (i.e., the first time instance at which the reaction occurs)
depends on the diffusive dynamics, the shapes of the domain
and of the target, its reactivity, and its location with respect to
the starting position of the diffusing particle [11–27]. While
this distribution can in general be obtained by solving the
Fokker-Planck equation with appropriate boundary conditions
[3,28], such a solution remains too formal and not very infor-
mative, except for a few basic domains such as an interval,
concentric circles, or spheres (see, e.g., [29]).

In the case of a small target, more explicit solutions are
available. For instance, matched asymptotic methods can be
employed to compute the mean first-passage time, the small-
est eigenvalue of the governing Laplace operator, and other
characteristics of diffusion-controlled reactions [30–41] (see
also review [42] and references therein). By a different method
based on pseudopotentials, Isaacson and Newby developed
a uniform asymptotic approximation of diffusion to a small
target [43]. When the target is located on the boundary, ho-
mogenization techniques can be applied [44–52] (see also
the discussion in [53]). In some geometric settings, one can
go further and develop self-consistent approximations for the
mean reaction time and its whole distribution [54–58]. In the
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case of elongated domains, the original multidimensional set-
ting can be reduced to an effective one-dimensional problem
that admits explicit solutions [59,60].

When a small target is located inside a confining domain
far from reflecting boundaries, the shape of the target is
generally ignored. In fact, one often dealt with a spherical
target, which is characterized by a single lengthscale—its
diameter (or radius). Even if a small sphere was replaced
by a small cube or a small disk of the same size, its reac-
tion rate or trapping capacity for diffusing particles would be
modified insignificantly (see, e.g., examples in [60]). Several
former studies were dedicated to the impact of the target
shape onto the trapping constant of diffusion-limited reac-
tions [61–71] and, more recently, onto the mean first-passage
time [55]. Despite these works, the role of target anisotropy
in diffusion-controlled reactions remains poorly understood.
In fact, if the target is elongated (e.g., cigar-shaped), there
are at least two relevant geometric lengthscales, namely its
“length” and “width,” and identification of an appropriate
“size” of the target is not clear. In particular, if the “length”
is fixed but the “width” vanishes, such a degenerated target
(a needle) becomes inaccessible to Brownian motion, i.e.,
its trapping constant vanishes. If the target is partially reac-
tive [11,13,44,46,50,52–54,67,72–88], the anisotropy effect is
even more sophisticated.

In this paper, we consider restricted diffusion in a bounded
d-dimensional domain towards a small partially reactive tar-
get. We focus on the principal (smallest) eigenvalue λ1 of the
Laplace operator, which is related to the reaction or trapping
rate and determines the mean first-reaction time and the de-
cay rate of the survival probability (see below). We propose
a simple approximation for λ1, which exhibits an explicit
dependence on the target reactivity. This approximation al-
lows us to identify the proper trapping length of the target.
To analyze the effect of target anisotropy, we will focus on
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FIG. 1. A confining domain � with reflecting boundary ∂�0 (in
gray). A particle diffuses (blue trajectory) from a starting point x
(black filled circle) towards an anisotropic target � (in red).

spheroidal targets, for which the trapping length can be com-
puted exactly in any space dimension d � 3. These targets are
also used for numerical validation of the proposed approxima-
tion.

The paper is organized as follows. In Sec. II, we formulate
the general first-passage problem and derive an approximation
for the principal eigenvalue λ1. Section III is devoted to the
effect of target anisotropy analyzed for spheroidal domains.
In Sec. IV, we discuss the main results and their implications,
as well as further perspectives. The Appendixes contain some
technical derivations.

II. MAIN RESULTS

We consider a particle that starts from a point x and dif-
fuses with a diffusion coefficient D inside a confining domain
� ⊂ Rd with a smooth boundary ∂� = ∂�0 ∪ � composed
of two disjoint parts: a reflecting “outer” boundary ∂�0 and a
partially reactive “inner” target � with a reactivity κ (Fig. 1).
Let τ denote the first-reaction time, i.e., the instance when the
particle reacts on the target. The survival probability of the
particle (i.e., the probability that the particle has not reacted
up to time t), Sq(t |x) = Px{τ > t}, satisfies the (backward)
diffusion equation

∂t Sq(t |x) = D�Sq(t |x) (x ∈ �), (1)

subject to the uniform initial condition Sq(0|x) = 1 and mixed
Robin-Neumann boundary conditions [3]:

(D∂n + κ )Sq(t |x) = 0 (x ∈ �),

∂nSq(t |x) = 0 (x ∈ ∂�0). (2)

Here � is the Laplace operator, ∂n is the normal derivative
oriented away from the domain, and q = κ/D. The survival
probability admits a general spectral decomposition [3,28],

Sq(t |x) =
∞∑

k=1

e−Dtλ(q)
k u(q)

k (x)
∫

�

dx′ [u(q)
k (x′)

]∗
, (3)

where the asterisk denotes the complex conjugate, and
λ

(q)
k and u(q)

k (x) are the eigenvalues and orthonormal

eigenfunctions of the (negative) Laplace operator in �, subject
to mixed Robin-Neumann boundary conditions:

�u(q)
k (x) + λ

(q)
k u(q)

k (x) = 0 (x ∈ �), (4a)

(∂n + q)u(q)
k

∣∣
�

= 0, ∂nu(q)
k

∣∣
∂�0

= 0. (4b)

In general, the survival probability that fully characterizes the
distribution of the first-reaction time exhibits a sophisticated
dependence on the shapes of the domain and of the target, on
the location of the starting point x, on the diffusive dynamics
(here, the diffusivity D), and on the reaction mechanism (here,
the reactivity κ). Various aspects of this dependence have been
investigated in the past [16,21,25–27,29,43,56–58,89–92].

In this paper, we focus on a common setting when the target
is small and located far away from the reflecting boundary
∂�0 of the confining domain �. In this section, we will
obtain the following approximation to the principal (smallest)
eigenvalue λ

(q)
1 of the Laplace operator:

λ
(q)
1 ≈ q|�|

|�|(1 + qL)
, (5)

where

L = |�|
C

, (6)

which we call the trapping length of the target. Here C is the
harmonic (or Newtonian) capacity of the target (see below),
|�| is the Lebesgue measure of � (e.g., its volume in three
dimensions), and |�| is the Lebesgue measure of the target �

(e.g., its surface area in three dimensions). In the following,
we describe the role of the trapping length L and its relation
to the shape of the target. We also check the accuracy of this
approximation and discuss immediate applications of this ap-
proximation for the decay time, the mean first-reaction time,
and the reaction rate.

A. Harmonic capacity

We start by recalling the notion of capacitance, which plays
one of the central roles in electrostatics. The capacitance C
of an isolated conductor C in R3 is the total charge on the
conductor’s surface when it is maintained at unit potential
[93,94]. In mathematical terms, the capacitance can be defined
as

C = ε0

∫
R3\C

dx |∇
|2, (7)

where ε0 ≈ 8.854 × 10−12 F/m is the vacuum permittivity,
and 
(x) is the (dimensionless) electric potential outside the
conductor satisfying

�
(x) = 0 (x ∈ R3\C),

{

|∂C = 1,

lim|x|→∞ 
(x) = 0.
(8)

For instance, the capacitance of a ball of radius b is 4πε0b,
which follows immediately from the classical radial solution

(x) = b/|x|. In the following, we adopt a similar notion of
the harmonic (or Newtonian) capacity of a compact set C in
Rd [95]:

C =
∫
Rd \C

dx |∇
|2, (9)
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which is identical to Eq. (7) but without the fundamental con-
stant ε0, and 
(x) satisfies the Laplace equation in Rd\C. In
particular, the capacity of a ball of radius b is (d − 2)σd bd−2,
where

σd = 2πd/2

�(d/2)
(10)

is the area of the d-dimensional unit ball, with �(z) being the
Euler gamma function (not to be confused with our notation
� for the target). Note that some authors rescale the capacity
as Ĉ = 1

(d−2)σd
C to make the capacity of a ball bd−2.

According to Eq. (8), 
(x) can also be interpreted as
the probability of capture on the perfect target � = ∂C of a
Brownian particle started from x. The perfect target refers
to the Dirichlet boundary condition (i.e., q = ∞) when the
particle is captured by (or adsorbed on, or reacted on, or killed
on) the target � upon their first encounter. In turn, 1 − 
(x) is
the steady-state survival (or escape) probability of that particle
[i.e., it is equal to the long-time limit of S∞(t |x) in the case
when there is no outer boundary ∂�0]. Using the Green’s
formula, one can rewrite Eq. (9) as

C =
∫

�

dx ∂n
. (11)

As a consequence, if there are many independent particles and
their concentration is maintained at n0 at infinity, then J∞ =
CDn0 is the total steady-state diffusive flux onto the perfectly
absorbing target �, while K∞ = J∞/n0 = CD is the trapping
constant of that target [66]. The analogy between electro-
statics and diffusion-controlled reactions has been thoroughly
employed in the past [3]. We emphasize that the capacity,
which is obtained by solving the Laplace equation in the space
outside the target, is the intrinsic property of that target. In
other words, there is no outer reflecting boundary here.

B. Approximation for a perfect target

We explore yet another application of the capacity as a
leading-term approximation of the smallest eigenvalue λ

(∞)
1

of the Laplace operator in the presence of a perfect target
(q = ∞) for which the Robin boundary condition in Eq. (4b)
is reduced to the Dirichlet boundary condition (u(∞)

k )|� = 0.
This role of the capacity was recognized already by Samarskii
in 1948 [96], but more elaborate asymptotic analysis of
the Dirichlet Laplace operator eigenvalues was developed in
[30,31,40]. Here the target � is enclosed by an outer reflect-
ing surface ∂�0 so that the confining domain � is bounded
(Fig. 1). We assume that the target is small as compared to the
confining domain �, and it is located far away from the outer
reflecting boundary ∂�0, i.e.,

diam{�} 
 |∂�0 − �| � diam{�}, (12)

where |∂�0 − �| is the distance between sets ∂�0 and �,
and diam{A} = supx1,x2∈A{|x1 − x2|} denotes the diameter of a
set A. Since mathematical works [31,40] were focused on the
three-dimensional setting (as well as the two-dimensional case
in [31]), we briefly describe the general arguments valid for
any d � 3 (see the discussion for planar domains in Sec. IV).

Integrating Eq. (4a) over x ∈ � and using the Green’s
formula, one gets

λ
(∞)
1 = −

∫
�

dx ∂nu(∞)
1 (x)∫

�
dx u(∞)

1 (x)
(13)

(see, e.g., the review [97] for other properties of Laplacian
eigenvalues and eigenfunctions). As � is small, the numerator
is small and thus the principal eigenvalue λ

(∞)
1 is close to 0.

The associated eigenfunction is therefore close to a constant
function, u(∞)

1 (x) ≈ u0, except for a boundary layer near the
target; in particular, the Neumann boundary condition at the
outer reflecting boundary can be replaced by the Dirichlet
condition (u(∞)

1 )|∂�0
≈ u0. In turn, the eigenfunction u(∞)

1 (x)
vanishes on the target. One can thus approximate u(∞)

1 (x)
near the target by setting u(∞)

1 (x) ≈ u0v(x), where v(x) is the
harmonic function satisfying Dirichlet boundary conditions
v|� = 0 and v|∂�0 = 1. Substituting these approximations
into Eq. (13), one gets

λ
(∞)
1 ≈ −

∫
�

dx ∂nv(x)∫
�

dx v(x)
.

In the numerator, the integral is carried over the target � so
that the function v(x) can be replaced by its limit 1 − 
(x),
which is obtained by moving the outer boundary ∂�0 to in-
finity. In other words, a distant outer boundary ∂�0 does not
have much of an influence on the solution in the vicinity of the
target. In turn, the denominator is the integral over the domain
�, in which v(x) is nearly constant, except for a vicinity of
the small target. Therefore, we replace v(x) by 1 here. Upon
these two approximations, one gets

λ
(∞)
1 ≈

∫
�

dx ∂n
(x)

|�| = C

|�| . (14)

Figure 2 illustrates the behavior of the eigenfunction u(∞)
1 (x)

and its approximation by v(x) for a shell-like domain between
two concentric spheres, for which these two functions are
known explicitly.

Moreover, Maz’ya et al. as well as Cheviakov and Ward
provided the next-order correction to this approximation in
three dimensions [31,40]. In our setting of a single target, their
result reads

λ
(∞)
1 ≈ C′

|�| , (15)

where C′ can be understood as a “corrected” capacity:

C′ = C − C2RN (x�, x� ). (16)

Here RN (x, x′) is the regular part of the Neumann Green’s
function, and x� is the location of (the center of) the target
�. The Neumann Green’s function is defined in the confining
domain without any target as

�GN (x, x′) = 1

|�| − δ(x − x′) (x ∈ �), (17a)

∂n(GN )|∂�0 = 0,

∫
�

dx GN (x, x′) = 0, (17b)
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FIG. 2. The eigenfunction u(∞)
1 (r) of the Laplace operator in a

three-dimensional shell-like domain between two concentric spheres
of radii b = 0.1 and R = 1, with the Dirichlet boundary condition
on the target, u(∞)

1 (b) = 0, and the Neumann boundary condition
on the outer sphere, (∂ru

(∞)
1 )(R) = 0. This eigenfunction is known

explicitly (see [29] for details) and depends only on the radial coordi-
nate r = |x|. For comparison, the harmonic function v(r) = (1/b −
1/r)/(1/b − 1/R) satisfying v(b) = 0 and v(R) = 1 is shown by a
dashed line.

and its regular part is

GN (x, x′) = 1

4π |x − x′| + RN (x, x′). (18)

In other words, both GN (x, x′) and RN (x, x′) depend only on
the confining domain but are independent of the target. For a
spherical domain of radius R, Cheviakov and Ward derived an
explicit expression for the Neumann Green’s function and its
regular part [40]. In particular, they found

R RN (x, x) = 1

4π (1 − |x|2/R2)
− 1

4π
ln(1 − |x|2/R2)

+ |x|2
4πR2

− 7

10π
. (19)

For instance, if the target is located at the center, one has
RN (0, 0) = −9/(20πR). We will discuss the accuracy of this
approximation in Sec. III.

C. Global mean first-reaction time

The next step consists in extending the above approxi-
mation to a partially reactive target. For this purpose, we
employ the relation between the smallest eigenvalue λ

(q)
1 and

the so-called global mean first-reaction time, Tq, which is
defined as the volume average of the mean first-reaction time
Tq(x) = 〈τ 〉:

Tq = 1

|�|
∫

�

dx Tq(x). (20)

In other words, the starting point is considered here as being
uniformly distributed inside the confining domain. In turn,

Tq(x) satisfies the boundary value problem [3]

D�Tq(x) = −1 (x ∈ �), (21a)

(∂n + q)Tq(x) = 0 (x ∈ �), (21b)

∂nTq(x) = 0 (x ∈ ∂�0). (21c)

The integral of Eq. (21a) over x ∈ � implies

−|�| =
∫

�

dx D�Tq(x) =
∫

�

dx D(∂nTq(x))

= −κ

∫
�

dx Tq(x),

i.e., ∫
�

dx Tq(x) = |�|
κ

. (22)

Curiously, this integral does not depend on the diffusion coef-
ficient D.

To proceed, we multiply Eq. (21a) by T∞(x), subtract from
it Eq. (21a) with q = ∞ multiplied by Tq(x), and integrate
over x ∈ �:

(Tq − T∞)|�| =
∫

�

dx(Tq(x) − T∞(x))

=
∫

�

dx(T∞(x) D�Tq(x) − Tq(x) D�T∞(x))

=
∫

�

dx(T∞(x)︸ ︷︷ ︸
=0

D∂nTq(x) − Tq(x) D∂nT∞(x)).

Note that T∞(x) can be obtained by integrating the Dirichlet-
Neumann Green’s function, G(x|x0), satisfying

−D�G(x|x0) = δ(x − x0) (x ∈ �), (23a)

G(x|x0) = 0 (x ∈ �), (23b)

∂nG(x|x0) = 0 (x ∈ ∂�0), (23c)

as follows:

T∞(x) =
∫

�

dx0 G(x|x0). (24)

As a consequence, −D∂nT∞(x) turns out to be proportional
to the harmonic measure density [98], ω(x|x0), averaged over
x0:

ω(x) ≡ 1

|�|
∫

�

dx0 ω(x|x0) = 1

|�|
∫

�

dx0 (−D∂nG(x|x0))

= − 1

|�| D∂nT∞(x). (25)

We conclude that

Tq = T∞ +
∫

�

dx ω(x) Tq(x). (26)

This relation that we formally obtained from the boundary
value problem (21) has a clear probabilistic interpretation.
In fact, the first-reaction time τ can be naturally split into
two contributions, τ = τ∞ + τ� , where τ∞ is the first-passage
time to the target (i.e., the instance of the first arrival onto
the target), and τ� is the first-reaction time for a particle
that was started on the target �. Accordingly, T∞ is the
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volume-averaged mean value of τ∞, whereas the second term
in Eq. (26) is the target-surface-averaged mean value of τ� .
Indeed, ω(x) describes the probability density of the first ar-
rival in the vicinity of a boundary point x ∈ �, from which the
particle continues to diffuse until the reaction on �. In other
words, the second term is the average of Tq(x) over the random
first arrival point on �. Qualitatively, the first and second terms
represent, respectively, diffusion-limited and reaction-limited
contributions. As is expected, the first term depends on the
diffusion coefficient D but is independent of the reactivity κ .
In contrast, the second term formally depends on both D and
κ . However, when the target is small, the volume-averaged
harmonic measure density ω(x) is expected to be almost uni-
form:

ω(x) ≈ 1

|�| . (27)

Substituting this approximation into Eq. (26) and using
Eq. (22), we deduce

Tq ≈ T∞ + |�|
κ|�| . (28)

In this approximation, the second term depends only on the
reactivity κ but is independent of the diffusion coefficient
D. The relation (28) represents, therefore, two consecutive
additive contributions to the global mean first-reaction time:
the diffusion-limited contribution T∞ describing the transport
of the particle towards the target, and the reaction-limited
contribution due to the partial reactivity of the target. These
two complementary contributions to the mean first-reaction
time were discussed earlier for some symmetric domains
[29,54]. However, we are not aware of earlier derivations of
this representation in the general setting. A similar separation
of diffusion-limited and reaction-limited contributions to the
steady-state diffusive flux Jq can be already identified in the
Collins-Kimball solution for a spherical target of radius b in
R3 [11] (see also [63,99]):

4πb2n0

Jq
= b

D
+ 1

κ
. (29)

In the same vein, two contributions to the impedance of a par-
tially blocking electrode have been identified and discussed
[74,75,78,81].

D. Partially reactive target

To complete our derivation, we evaluate the global mean
first-reaction time Tq according to its definition

Tq =
∫ ∞

0
dt t ( − ∂t Sq(t )) =

∫ ∞

0
dt Sq(t ), (30)

where −∂t Sq(t ) is the probability density of the first-reaction
time (averaged over the starting point), with

Sq(t ) = 1

|�|
∫

�

dx Sq(t |x) =
∞∑

k=1

c(q)
k e−Dtλ(q)

k , (31)

where

c(q)
k = 1

|�|
∣∣∣∣
∫

�

dx u(q)
k (x)

∣∣∣∣
2

, (32)

and we used the spectral expansion (3). Since Sq(0) = 1, the
positive coefficients c(q)

k can be understood as the relative
weights of the Laplacian eigenfunctions u(q)

k (x) in the survival
probability Sq(t ).

When the target is small, the ground eigenfunction u(q)
1 (x)

is almost constant in � (except for a layer near the target;
see above). As a consequence, other eigenfunctions, which
are orthogonal to u(q)

1 , have small contributions to Sq(t ), with
c(q)

k ≈ 0 for k > 1, whereas c(q)
1 ≈ 1 (see further discussion in

[100,101]). In other words,

Sq(t ) ≈ e−Dtλ(q)
1 , (33)

which implies, according to Eq. (30), the following approxi-
mation:

Tq ≈ 1

Dλ
(q)
1

. (34)

Substituting Eq. (28) into this relation, we finally arrive at

λ
(q)
1 ≈ 1

D
(
T∞ + |�|

κ|�|
) ≈ 1

1
λ

(∞)
1

+ |�|
q|�|

≈ 1
|�|
C + |�|

q|�|
,

which implies the expression (5). This relation can also be
expressed in terms of the global mean first-reaction time from
Eq. (34):

Tq ≈ |�|
|�|

(
L

D
+ 1

κ

)
, (35)

which represent the sum of diffusion-limited and reaction-
limited contributions. Accordingly, 1/Tq can be interpreted as
the overall reaction rate, while Tq is also the decay time of

the survival probability at long times, Sq(t |x) ∝ e−Dtλ(q)
1 ; see

Eq. (3). Note that this asymptotic relation was employed to
compute the principal eigenvalue numerically via estimating
the survival probability [102].

Moreover, the principal eigenvalue λ
(q)
1 can be used to

determine the steady-state diffusive flux and the trapping con-
stant of a small target. In fact, the probability density Hq(t |x)
of the first-reaction time can also be understood as the proba-
bility flux onto the target from a fixed point x. At long times,
the spectral expansion (3) implies

Hq(t |x) ≈ Dλ
(q)
1 e−Dλ

(q)
1 t u(q)

1 (x)
∫

�

dx′ u(q)
1 (x′). (36)

As in Sec. II B, one can argue that u(q)
1 (x) is nearly constant

for any x far from the target so that

Hq(t |x) ≈ Dλ
(q)
1 e−Dλ

(q)
1 t , (37)

where we used the L2(�) normalization of u(q)
1 (x). If there

are many independent particles with a concentration n0, their
total diffusive flux onto the target is Jq(t ) ≈ n0|�|Hq(t |x).
Expectedly, this flux vanishes in the long-time limit because
all particles that were initially present in a bounded domain
react on the target. However, if the target is very small, there
is an intermediate range of times for which Eq. (37) holds but
Dλ

(q)
1 t 
 1, so that

Jq ≈ n0|�|Dλ
(q)
1 ≈ n0D

q|�|
1 + qL

, (38)
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where we used our approximation (5) for λ
(q)
1 . This is an

extension of the Collins-Kimball relation (29) that was de-
rived for a spherical target. While we derived the approximate
relation (38) by considering the limit of very small targets,
one could alternatively fix the target size and move the outer
boundary ∂�0 to infinity. In other words, this relation is appli-
cable to a bounded target of any size in Rd (i.e., without ∂�0).
Dividing the total flux by n0 yields the trapping constant:

Kq ≈ D
q|�|

1 + qL
. (39)

In the limit q → ∞, we retrieve the known approximations
J∞ ≈ n0DC and K∞ ≈ CD for perfectly reactive targets that
we mentioned in Sec. II A.

In summary, the approximate relation (5) relies on three
approximations, (14), (28), and (33), which are all based on
the assumption of the target smallness. We stress that we do
not claim the above derivation is mathematically rigorous. A
more rigorous derivation of Eq. (5) presents an interesting
perspective.

III. TARGET ANISOTROPY

In former works on partially reactive targets
[11,13,44,46,50,52–54,67,72–88], the reaction length
1/q = D/κ was generally compared to a “typical size”
of the target, without providing its definition. For a spherical
(or, more generally, “roundish”) target, there is a single
geometric lengthscale, its diameter (or radius), which is
naturally compared with 1/q. In turn, when the target has an
approximately isotropic shape but a rough boundary, other
geometric lengthscales can emerge. For instance, in the study
of steady-state diffusion of oxygen molecules towards the
acinar surface in the lungs, Sapoval et al. introduced the
relevant lengthscale LS = |�|/diam{�} as the surface area of
the target divided by its diameter [77]. As the surface area of
a compact target with a rough (e.g., fractal-like) boundary can
be extremely large, the length LS can be orders of magnitude
larger than the diameter itself.

The explicit approximation (5) allows us to identify the
relevant lengthscale of a small target in a more general setting
and beyond the steady-state regime. The trapping length L =
|�|/C generalizes the above length LS to anisotropic targets
and in higher dimensions. These two lengths are comparable
for a nearly isotropic target in three dimensions because the
capacity of such a target is comparable to its diameter. In
this section, we investigate how the target anisotropy affects
the trapping length L and therefore various properties of
diffusion-reaction processes.

A. Prolate spheroids

We model an elongated target by the surface of a d-
dimensional prolate spheroid (i.e., an ellipsoid of revolution)
with the single major semiaxis b along the dth coordinate, and
equal minor semiaxes a < b:

�a,b =
{

(x1, . . . , xd ) ∈ Rd :
x2

1

a2
+ · · · + x2

d−1

a2
+ x2

d

b2
= 1

}
.

(40)

The capacity of a prolate spheroid in three dimensions is well
known [94]:

C(3)
a,b = 8πc

ln
( 1+c/b

1−c/b

) , (41)

where c = √
b2 − a2. In the limit a → b, this relation is re-

duced to the classical capacity of a ball of radius b: C(3)
b,b =

4πb. An extension of this result to higher dimensions was
discussed in [103]. In Appendix A, we describe this extension
and obtain the following compact expression:

C(d )
a,b = (d − 2)σd b ad−3

2F1
(

1
2 , 1; d

2 ; 1 − a2

b2

) , (42)

where 2F1(a, b; c; z) is the hypergeometric function, and σd is
given by Eq. (10). For even dimensions, one gets particularly
simple expressions, e.g.,

C(4)
a,b = 2π2a(a + b), (43a)

C(6)
a,b = 3π3a3(a + b)2

2a + b
. (43b)

In the limit a → b, one retrieves the capacity of the ball:
C(d )

b,b = (d − 2)σd bd−2. In turn, in the opposite limit of highly
anisotropic targets, a → 0, one can use Euler’s identity to get
in the leading order

C(d )
a,b ≈ (d − 3)σd b ad−3 (d > 3). (44)

For d = 3, Eq. (41) yields

C(3)
a,b ≈ 4πb

ln(b/a)
, (45)

i.e., the capacity vanishes very slowly. When the target is
surrounded by a concentric spherical surface ∂�0 of radius
R, the volume of the confining domain is

|�| = πd/2

�(d/2 + 1)
(Rd − bad−1). (46)

Figure 3(a) illustrates the behavior of the principal eigen-
value λ

(∞)
1 for a perfectly reactive target (q = ∞). On this

log-log plot, one sees the expected power-law dependence
on the minor semiaxis a. Our approximation (14) is least
accurate in three dimensions (thin blue curve) and gets more
and more accurate as the space dimension d increases. Note
that the use of the “corrected” capacity C′ in Eq. (16) instead
of C significantly improves the accuracy of the approximation
in three dimensions (thick blue curve). In Fig. 3(c), filled
symbols show the relative error of the approximation (14) for
d > 3 and of Eq. (15) for d = 3. For the considered major
semiaxis b = 0.2, the relative error does not exceed 10%.

The surface area of prolate spheroids is also discussed in
Appendix A:

∣∣�(d )
a,b

∣∣ = σd ad−2 b 2F1

(
1

2
,−1

2
;

d

2
; 1 − a2

b2

)
. (47)
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FIG. 3. (a), (b) The principal eigenvalue λ
(∞)
1 of the Laplace

operator for a perfectly reactive prolate (a) and oblate (b) spheroidal
target with semiaxes a � b = 0.2 surrounded by a concentric reflect-
ing spherical surface of radius R = 1. Symbols present the numerical
computation by a finite-elements method (see Appendix D), whereas
thick lines show the approximate relation (14). In three dimensions,
a thick blue line presents the improved approximation (15) with
the “corrected” capacity C′ from Eq. (16), whereas a thin blue line
indicates the leading-order approximation (14). (c) The relative error
of the above approximations shown by filled symbols for prolate
spheroids and by empty symbols for oblate spheroids in Rd with
d = 3, 4, 5, 6 (see the legend). Note that a minor increase of the
relative error for d = 6 at small a can be a numerical artifact due
to an insufficient mesh size.

As a → 0, one gets in the lowest order

∣∣�(d )
a,b

∣∣ ≈ 2πd/2ad−2b
�(d/2)

�
(

d−1
2

)
�

(
d+1

2

) . (48)
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FIG. 4. The trapping length L from Eqs. (49) and (59) of prolate
(lines) and oblate (symbols) spheroids for several dimensions d . Note
that L/b = 1/(d − 2) at a/b = 1.

Substituting Eqs. (42) and (47) into Eq. (6), we get the trap-
ping length

L = a

d − 2
2F1

(
1

2
,−1

2
;

d

2
; 1 − a2

b2

)
2F1

(
1

2
, 1;

d

2
; 1 − a2

b2

)
.

(49)
For a spherical target (a = b), one retrieves L = b/(d − 2).
In the opposite limit a → 0 of highly anisotropic targets, we
obtain

L ≈ a
�2

(
d
2

)
(d − 3)�

(
d−1

2

)
�

(
d+1

2

) (d > 3), (50a)

L ≈ π

4
a ln(b/a) (d = 3). (50b)

In both cases, the lengthscale L vanishes, and the trapping
capacity of a very thin target becomes essentially reaction-
limited for any finite reactivity: λ

(q)
1 ≈ q|�|/|�|.

The dependence (49) of the trapping length L on the aspect
ratio a/b is shown by lines in Fig. 4. A linear scaling of L with
a is observed in all dimensions d > 3, whereas the curve for
d = 3 exhibits a linear scaling with a logarithmic correction.

Figure 5(a) shows the principal eigenvalue λ
(q)
1 as a func-

tion of q for a prolate spheroid of a fixed aspect ratio a/b =
0.5. One sees that our approximation (5) is very accurate over
a broad range of q values and all dimensions d � 3.

B. Oblate spheroids

A flattened target is modeled by the surface of a d-
dimensional oblate spheroid with the single minor semiaxis
a along the dth coordinate, and equal major semiaxes b > a:

�̃a,b =
{

(x1, . . . , xd ) ∈ Rd :
x2

1

b2
+ · · · + x2

d−1

b2
+ x2

d

a2
= 1

}
.

(51)
The capacity of an oblate spheroid in three dimensions is well
known [94]:

C̃(3)
a,b = 4πc

cos−1(a/b)
. (52)
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FIG. 5. The principal eigenvalue λ
(q)
1 as a function q for pro-

late (a) and oblate (b) spheroidal targets with semiaxes a = 0.1
and b = 0.2 surrounded by a reflecting concentric spherical surface
of radius R = 1. Symbols present the numerical computation by a
finite-elements method (see Appendix D), whereas thick lines show
the approximate relation (5). In three dimensions, a thick blue line
presents Eq. (5) with the “corrected” capacity C′ from Eq. (16),
whereas a thin blue line corresponds to the capacity C. The trapping
length L given by Eqs. (49) and (59) is 0.1300, 0.0596, 0.0379, and
0.0276 for prolate spheroids, and 0.1669, 0.0864, 0.0588, and 0.0447
for oblate spheroids, with d = 3, 4, 5, 6, respectively.

In the limit a → b, one retrieves the capacity of the ball of
radius b; in the opposite limit a → 0, this relation yields the
well-known result for the capacity of the disk of radius b:
C̃(3)

0,b = 8πb.
In Appendix B, we recall the derivation of the capacity in

higher dimensions and derive the following compact expres-
sion:

C̃(d )
a,b = (d − 2)σd bd−2

2F1
(

1
2 , d−2

2 ; d
2 ; 1 − a2/b2

) . (53)

For even dimensions, one gets particularly simple relations,
e.g.,

C̃(4)
a,b = 2π2b(a + b), (54a)

C̃(6)
a,b = 3π3b3(a + b)2

2b + a
. (54b)

As a → 0, the capacity reaches a finite limit:

C̃(d )
0,b = (d − 2)σd bd−2�

(
d−1

2

)
�

(
d
2

)√
π

. (55)

In contrast to the case of infinitely thin elongated targets [cf.
Eq. (44)], flattened targets remain accessible to Brownian mo-
tion. When the target is surrounded by a concentric spherical
surface ∂�0 of radius R, the volume of the confining domain
is

|�̃| = πd/2

�(d/2 + 1)
(Rd − abd−1). (56)

The accuracy of the approximation (5) for perfectly reactive
oblate targets is illustrated in Fig. 3(b). As for elongated
targets, the approximation is least accurate for d = 3 and gets
more and more accurate as d increases. Its relative error is
shown in Fig. 3(c) by empty symbols.

The surface area of oblate spheroids is discussed in Ap-
pendix B:

∣∣�̃(d )
a,b

∣∣ = σd bd−1
2F1

(
d − 1

2
,−1

2
;

d

2
; 1 − a2

b2

)
. (57)

In the limit a → 0, one gets

∣∣�̃(d )
0,b

∣∣ = bd−1 2π (d−1)/2

�
(

d+1
2

) . (58)

For instance, one retrieves the surface area of a two-sided disk
for d = 3: |�̃(3)

0,b| = 2πb2 (it is twice as big as the area of the
disk because there are two faces).

Substituting Eqs. (53) and (57) into Eq. (6), we get the
trapping length:

L = b

d − 2
2F1

(
d − 1

2
,−1

2
;

d

2
; 1 − a2

b2

)

× 2F1

(
1

2
,

d − 2

2
;

d

2
; 1 − a2

b2

)
. (59)

In contrast to the case of prolate spheroids, the trapping length
here remains of the order of b for any a, ranging from

L = b

d − 2

�2
(

d
2

)
�

(
d−1

2

)
�

(
d+1

2

) (a = 0) (60)

to L = b/(d − 2) at a = b. This behavior is shown in Fig. 4
by symbols. Curiously, the dependence is not monotonous,
but variations of L with a/b are insignificant, particularly at
larger d . We conclude that flattening the target does not almost
change its trapping capacity. The accuracy of the approxima-
tion (5) for a partially reactive oblate target is illustrated in
Fig. 5(b).

IV. DISCUSSION AND CONCLUSION

In this paper, we investigated restricted diffusion inside
a bounded domain towards a partially reactive target. Our
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first result is a simple explicit approximation (5) for the
principal eigenvalue of the Laplace operator with mixed
Robin-Neumann boundary conditions. This approximation in-
volves very basic geometric characteristics such as the volume
of the confining domain |�|, the surface area of the target |�|,
and its harmonic capacity C. The dependence on the physical
transport parameters — the diffusion coefficient D and the
reactivity κ — is fully explicit. Even though the derivation of
Eq. (5) involved three approximations, all of them were based
on the smallness of the target and its distant location from the
reflecting boundary. A comparison with a numerical solution
by a finite-elements method showed that the approximation
is getting more and more accurate as the space dimension
increases. In three dimensions, the use of the “corrected”
capacity C′ allows one to get accurate results as well. As
the principal eigenvalue λ

(q)
1 determines several characteristics

of diffusion-controlled reactions, the proposed approximation
opens access to them in a simple way.

The second result is the identification of the relevant ge-
ometric lengthscale of the target that we called the trapping
length: L = |�|/C. This length naturally emerges from our
approximation as the geometric scale, to which the physical
reaction length 1/q = D/κ has to be compared. This trap-
ping length generalizes a former length LS = |�|/diam{�},
introduced by Sapoval et al. [77], to anisotropic targets and
higher dimensions. The simple form of the trapping length is
quite intuitive. In fact, the surface area |�| naturally appears
in the reaction-limited regime (q → 0) when the transport
step is fast as compared to the reaction step, and thus the
reaction event occurs on any target point with almost equal
probabilities (i.e., the so-called spread harmonic measure is
almost uniform; see [88,104]). For instance, the principal
eigenvalue exhibits the well-known behavior λ

(q)
1 ≈ q|�|/|�|.

In the opposite diffusion-limited regime (q → ∞), the trap-
ping capacity of the target is determined by its capacity C,
yielding λ

(q)
1 ≈ C/|�|. The role of the capacity as the prin-

cipal geometric characteristic of the target can be recognized
in the seminal paper by Smoluchowski [105], in which the
steady-state flux was shown to be proportional to the radius of
a spherical target, i.e., to its capacity. While the reaction length
1/q = D/κ is the ratio of two transport coefficients, the trap-
ping length L = |�|/C is the ratio of the associated geometric
characteristics of the target. In this light, our approxima-
tion (5) can also be viewed as an interpolation between two
limiting regimes. However, its derivation and high accuracy
suggest that Eq. (5) correctly represents the dependence of the
principal eigenvalue on the main parameters of the problem,
at least for small targets.

The third and last result concerns the target anisotropy,
which was mainly ignored in former studies. We obtained
the exact relations for the trapping length of both prolate and
oblate spheroids in Rd with d � 3 (an extension to more gen-
eral biaxial ellipsoids is discussed in Appendix C). We showed
that the trapping length L vanishes as an elongated target gets
thinner. As such a target is hardly accessible to Brownian
motion, one might expect to deal with the diffusion-limited
regime. However, the vanishing of L implies that diffusion-
controlled reactions on needlelike targets are always in the
reaction-limited regime. In other words, even though it is hard

to find such a target for the first time, it is even more difficult
to retrieve the target after each failed attempt to react. In
contrast, the trapping capacity of flattened (disklike) targets
is not significantly different from that of round ones.

Our approximation is valid for any space dimension d � 3,
and its accuracy gets higher as d grows. It is therefore nat-
ural to ask what happens in the planar case (d = 2), which
stands apart for several reasons. In fact, the recurrent nature
of Brownian motion in the plane drastically changes many dif-
fusive properties as compared to higher-dimensional settings,
for which Brownian motion is transient. First, a steady-state
solution of Eq. (8) that defined the harmonic capacity does
not exist for unbounded planar domains. This can be easily
seen by considering a disk-shaped capacitor C, for which
the problem (8) does not depend on the angular coordinate.
A general radial solution of the Laplace equation in polar
coordinates, �u = 1

r ∂rr∂ru = 0, has a form c1 + c2 ln r, and
there is no way to choose arbitrary constants c1 and c2 to
get u(r) → 0 as r → ∞, except for the trivial solution with
c1 = c2 = 0. In particular, the probability of capture 
(x) is
always equal to 1 for planar domains. This particular issue
can be resolved by replacing the harmonic capacity by the
logarithmic capacity [98]. The related asymptotic analysis
was realized in earlier works (see [30–34] and references
therein); in particular, an expansion of the principal eigen-
value in powers of ν = 1/ ln(ε) was derived, where ε is the
relative size of the target. The major difference from higher-
dimensional settings is a very weak logarithmic dependence
of the expansion parameter ν on the relative target size ε so
that the leading order of the expansion is usually inaccurate,
except for extremely small targets. In other words, one needs
to deal with an expansion that contains many terms that are not
easily accessible and depends on various geometric properties
of the confining domain and the target. More generally, the
logarithmic form of the fundamental solution of the Laplace
equation in the plane, − ln(|x − x′|)/(2π ), is responsible for
“long-range interactions” between distant points of space such
as, for instance, the strong impact of an outer boundary onto
the behavior near the target. This fundamental difference
makes our approach less useful in the plane.

The present work has several perspectives and possible
extensions. First, it would be interesting to rederive the
approximation (5) in a more rigorous way and/or by a di-
rect analysis of the eigenvalue problem, e.g., by matched
asymptotic methods. In fact, our derivation involved three
approximations, and it was difficult to control the accuracy
and relevance of each step. Second, one can deal with multiple
small targets. If the sizes of the targets are much smaller
than the distances between them and from the outer reflecting
boundary, the approximation (5) is expected to hold. Note that
the capacity of the union of small targets is equal, in leading
order, to the sum of their capacities; the surface area is also ad-
ditive. Moreover, Cheviakov and Ward derived the next-order
correction term to the principal eigenvalue for a configuration
of perfect targets [40]. This correction term can be used to
define the “corrected” capacity C′, as we did in Eq. (16) for
a single target. A numerical validation of this approximation
in configurations with multiple targets presents an important
perspective. When the targets are spherical, one can apply
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efficient semianalytical methods based on addition theorems
(see [106,107] and references therein). Another validation
step concerns irregularly shaped targets, whose surface area
and thus the trapping length can be (arbitrarily) large, despite
their smallness. Such a situation is not possible for spheroids,
for which L � b/(d − 2) (see Fig. 4), i.e., the smallness of the
target diameter 2b implied the smallness of L. The accuracy
of our approximation for L/b � 1 remains to be analyzed.
Finally, one can investigate other surface reaction mechanisms
(beyond the conventional Robin boundary condition) by using
an encounter-based approach [27,89,90,92]. Here, the explicit
dependence of the reactivity parameter q may allow us to
access various properties of diffusion-mediated surface phe-
nomena.
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APPENDIX A: PROLATE SPHEROIDS

The harmonic capacity and the surface area of general
ellipsoids in Rd with d > 3 have been studied in [103]. Here
we describe the main derivation steps and further simplifica-
tions that we managed to get for prolate spheroids defined
by Eq. (40), with d − 1 minor semiaxes a and one major
semiaxis b such as a < b. Combining the standard prolate
spheroidal coordinates in R3 with multidimensional spherical
coordinates, one can introduce the following d-dimensional
spheroidal coordinates:

xd = c cosh(α) cos(θ1),

xd−1 = c sinh(α) sin(θ1) cos(θ2),

xd−2 = c sinh(α) sin(θ1) sin(θ2) cos(θ3),

...

x2 = c sinh(α) sin(θ1) · · · sin(θd−2) cos(φ),

x1 = c sinh(α) sin(θ1) · · · sin(θd−2) sin(φ),

where c = √
b2 − a2 is the focal half-distance, 0 < α < ∞

is analogous to the radial coordinate, whereas 0 � θi � π

and 0 � φ < 2π are angular coordinates. Substituting these
coordinates in the quadratic equation in Eq. (40), one sets
cosh(α0) = b/c [and thus sinh(α0) = a/c] to determine the
“radial” coordinate α0 of the spheroidal boundary �a,b. The
following construction is fairly standard in differential ge-
ometry [108,109]. In fact, one first determines the basis
vectors associated with new coordinates, e.g., the vector �eα =
(dx1/dα, . . . , dxd/dα)† is associated with α, etc. The norms
of these vectors determine the scale factors:

hα = hθ1 = c
√

sinh2 α + sin2 θ1,

hθk = c sinh α sin θ1 · · · sin θk−1 (k = 2, 3, . . . , d − 2),

hφ = c sinh α sin θ1 · · · sin θd−2,

from which follow the metric, volume and surface elements,
and the form of the Laplace operator. Skipping these technical

details, we write the Laplace operator as

� = 1

c2(sinh2 α + sin2 θ1)

(
∂2
α + (d − 2) coth α∂α

)

+ 1

c2(sinh2 α + sin2 θ1)

(
∂2
θ1

+ (d − 2) cot θ1∂θ1

)

+ 1

c2 sinh2 α sin2 θ1

(
∂2
θ2

+ (d − 3) cot θ2∂θ2

)

+ 1

c2 sinh2 α sin2 θ1 sin2 θ2

(
∂2
θ3

+ (d − 4) cot θ3∂θ3

)
+ · · ·

+ 1

c2 sinh2 α sin2 θ1 · · · sin2 θd−3

(
∂2
θd−2

+ cot θd−2∂θd−2

)

+ 1

c2 sinh2 α sin2 θ1 · · · sin2 θd−2
∂2
φ. (A1)

To compute the capacity, one needs to solve the Dirichlet
boundary value problem:

�
(x) = 0 (x ∈ Rd\C),

{

|∂C = 1,

lim|x|→∞ 
(x) = 0,
(A2)

where C is the interior of the prolate spheroid surrounded by
�a,b. Since the Dirichlet boundary condition involves a con-
stant, the solution of this problem is invariant under rotations
around the coordinate axis xd . In spheroidal coordinates, the
function 
(x) thus depends only on the “radial” coordinate α

so that only the first term in the above Laplace operator re-
mains,

1

c2(sinh2 α + sin2 θ1)

(
∂2
α + (d − 2) coth α ∂α

)

(α) = 0.

(A3)
Setting ξ = cosh α, this equation is reduced to

(ξ 2 − 1)∂2
ξ 
 + (d − 1)ξ∂ξ
 = 0, (A4)

subject to the Dirichlet boundary condition 
(ξ0) = 1 with
ξ0 = cosh(α0) = b/c and the regularity condition 
(ξ ) → 0
as ξ → ∞. Setting u(ξ ) = ∂ξ
(ξ ), one integrates Eq. (A4)
to get u(ξ ) = c1(ξ 2 − 1)(1−d )/2, with an arbitrary constant c1.
The integral of this function yields


(ξ ) = c1

∫ ∞

ξ

dz (z2 − 1)−η, η = d − 1

2
, (A5)

the form of which ensures the regularity condition. Setting
y = 1/z2 and using the Taylor expansion of (1 − y)−η, one
can express this integral in terms of the hypergeometric
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function,


(ξ ) = c1

2

∫ 1/ξ 2

0
dy yη−3/2(1 − y)−η

= c1
ξ 1−2η

2η − 1
2F1(η, η − 1/2; η + 1/2; 1/ξ 2)

= c1
(ξ 2 − 1)1−η

ξ (2η − 1)
2F1(1/2, 1; η + 1/2; 1/ξ 2).

Substituting η = (d − 1)/2 and ξ0 = cosh α0 = b/c, we de-
termine the constant c1 from the Dirichlet boundary condition:

c1 = (d − 2)b

a3−d cd−2
2F1(1/2, 1; d/2; c2/b2)

. (A6)

Finally, we need to evaluate the integral of the normal
derivative of the solution in Eq. (A5),

(∂n
)|�a,b = −
(

1

hα

∂α


)
α=α0

, (A7)

over the surface �a,b:

C(d )
a,b =

∫
�a,b

dx (∂n
)

= cd−2[sinh α0]d−2
∫ π

0
dθ1 sind−2 θ1

∫ π

0
dθ2 sind−3 θ2

· · ·
∫ π

0
dθd−2 sin θd−2

∫ 2π

0
dφ (−∂α
)α=α0 , (A8)

where the surface element was expressed in terms of the scale
factors, and we used that the equal scale factors hα and hθ1

compensated each other. The integrals over angular coordi-
nates yield the surface area σd of the unit sphere in Rd so that

C(d )
a,b = σd cd−2[sinh α0]d−2(−∂α
)α=α0 = σd cd−2 c1

= (d − 2)σd ad−3 b

2F1(1/2, 1; d/2; c2/b2)
, (A9)

i.e., we arrive at Eq. (42). To our knowledge, such a compact
expression for the capacity of the prolate spheroid in Rd has
not been reported.

The surface area of ellipsoids was derived in [103]. In our
particular case, the general expression can be written as

∣∣�(d )
a,b

∣∣ = 4π (d−1)/2ad−3b2

�
(

d−1
2

)
∫ 1

0
dx

(1 − x2)(d−3)/2

(1 + δx2)(d+1)/2
, (A10)

where δ = b2/a2 − 1. This integral can be expressed in terms
of the hypergeometric function:

∣∣�(d )
a,b

∣∣ = 2πd/2ad−3b2

�(d/2)
2F1

(
1

2
,

d + 1

2
;

d

2
; 1 − b2

a2

)
. (A11)

Using the Pfaff transformation, one can rewrite it as Eq. (47).
In three dimensions, one retrieves the classical expression

∣∣�(3)
a,b

∣∣ = 2πa2

(
1 + b

ae
sin−1(e)

)
, e =

√
1 − a2/b2,

(A12)

so that the trapping length reads

L = a2
(
1 + b

ae sin−1(e)
)

ln
(

1+e
1−e

)
4eb

. (A13)

Note that L ≈ a π
4 ln(2b/a) as a → 0.

APPENDIX B: OBLATE SPHEROIDS

The derivation for oblate spheroids is very similar. One
introduces an extension of the oblate spheroidal coordinates
as

xd = c sinh(α) sin(θ1),

xd−1 = c cosh(α) cos(θ1) sin(θ2),

xd−2 = c cosh(α) cos(θ1) cos(θ2) sin(θ3),

...

x2 = c cosh(α) cos(θ1) · · · cos(θd−2) sin(φ),

x1 = c cosh(α) cos(θ1) · · · cos(θd−2) cos(φ),

with c = √
b2 − a2, 0 < α < ∞, −π/2 � θi � π/2, and 0 �

φ < 2π . These coordinates determine the scale factors

hα = hθ1 = c
√

sinh2 α + sin2 θ1,

hθk = c cosh α cos θ1 · · · cos θk−1 (k = 2, 3, . . . , d − 2),

hφ = c cosh α cos θ1 · · · cos θd−2,

from which the metric and the Laplace operator follow. In
particular, the solution of the boundary value problem (A2)
depends only on the “radial coordinate” α:

1

c2(sinh2 α + sin2 θ1)

(
∂2
α + (d − 2) tanh α ∂α

)

(α) = 0.

(B1)
Setting ξ = sinh α, this equation is reduced to

(ξ 2 + 1)∂2
ξ 
 + (d − 1)ξ∂ξ
 = 0, (B2)

subject to the Dirichlet boundary condition 
(ξ0) = 1 with
ξ0 = sinh(α0) = a/c and the regularity condition 
(ξ ) → 0
as ξ → ∞. Setting u(ξ ) = ∂ξ
(ξ ), one gets u(ξ ) = c1(ξ 2 +
1)(1−d )/2, with an arbitrary constant c1. The integral of this
function yields


(ξ ) = c1

∫ ∞

ξ

dz (z2 + 1)−η, η = d − 1

2
. (B3)

As was done previously, one can express this solution as


(ξ ) = c1

2

∫ 1/ξ 2

0
dy yη−3/2(1 + y)−η

= c1
ξ 1−2η

2η − 1
2F1(η, η − 1/2; η + 1/2; −1/ξ 2)

= c1
(ξ 2 + 1)1−η

ξ (2η − 1)
2F1(1/2, 1; η + 1/2; −1/ξ 2). (B4)

Substituting η = (d − 1)/2 and ξ0 = sinh(α0) = a/c, we get

c1 = (d − 2)a

b3−d cd−2
2F1(1/2, 1; d/2; −c2/a2)

. (B5)
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To complete the computation, we need to evaluate the
integral of the normal derivative of this solution,

(∂n
)|�̃a,b
= −

(
1

hα

∂α


)
α=α0

, (B6)

over the surface �̃a,b:

C̃(d )
a,b =

∫
�̃a,b

dx (∂n
)

= cd−2[cosh α0]d−2
∫ π/2

−π/2
dθ1 cosd−2 θ1

∫ π/2

−π/2
dθ2 cosd−3 θ2

· · ·
∫ π/2

−π/2
dθd−2 cos θd−2

∫ 2π

0
dφ (−∂α
)α=α0 . (B7)

Evaluating the integrals over angular coordinates, we get

C̃(d )
a,b = σd cd−2[cosh α0]d−2(−∂α
)α=α0 = σd cd−2 c1

= (d − 2)σd a bd−3

2F1(1/2, 1; d/2; −c2/a2)
. (B8)

Using the Pfaff transformation, one can rewrite this expression
as Eq. (53). To our knowledge, such a compact expression
for the capacity of the oblate spheroid in Rd has not been
reported.

The surface area of oblate spheroids is given by the formula
(A11), in which a and b are exchanged:

∣∣�̃(d )
a,b

∣∣ = σd bd−3a2
2F1

(
1

2
,

d + 1

2
;

d

2
; 1 − a2

b2

)
. (B9)

Using the Euler transformation, one gets a more convenient
representation (57).

In three dimensions, one retrieves the classical formula

∣∣�̃(3)
a,b

∣∣ = 2πb2 + π
a2

e
ln

1 + e

1 − e
. (B10)

The trapping length is

L = 2πb2 + π a2

e ln 1+e
1−e

4πc
cos−1(a/b). (B11)

APPENDIX C: BIAXIAL ELLIPSOIDS

The prolate and oblate spheroids discussed in
Appendixes A and B are particular cases of a biaxial ellipsoid,
which has p minor semiaxes a and q major semiaxes b (such
that a < b). For the sake of completeness, we provide here
the exact expressions for the capacity and the surface area of
these domains. We recast former results by Tee in [103] in a
simpler form in terms of hypergeometric functions.

Tee obtained the following formula for the capacity of a bi-
axial ellipsoid with p minor semiaxes a and q major semiaxes
b > a:

1

C
= 1

bp+q−2σp+q

∫ 1

0
dx

xp+q−3

(1 − (1 − a2/b2)x2)p/2
, (C1)

where σd is given by Eq. (10). Expanding the denominator
into a Taylor series of powers of x, we get

C = (p + q − 2)σp+qbp+q−2

2F1
( p

2 ,
p+q−2

2 ; p+q
2 ; 1 − a2/b2

) . (C2)

The Euler transformation allows one to get another represen-
tation:

C = (p + q − 2)σp+qap−2bq

2F1
( q

2 , 1; p+q
2 ; 1 − a2/b2

) . (C3)

For instance, inserting p = d − 1 and q = 1 into the last
formula, we retrieve Eq. (A9) for a prolate spheroid in Rd .
Similarly, inserting p = 1 and q = d − 1 into Eq. (C2) yields
Eq. (53) for an oblate spheroid.

Tee expressed the surface area of biaxial ellipsoids in terms
of the integrals

Iα,β (δ) =
∫ 1

0
dh

(1 − h2)α

(1 − δh2)β
. (C4)

Setting μ = δ/(δ − 1) and using the Taylor expansion of (1 −
μx)−β , we have

Iα,β (δ) = 1

2(1 − δ)β

∫ 1

0

dx√
1 − x

xα

(1 − μx)β

=
√

π �(α + 1)

2(1 − δ)β�
(
α + 3

2

) 2F1

(
β, α + 1; α + 3

2
;

δ

δ − 1

)
,

(C5)

where we used∫ 1

0
dx

xα

√
1 − x

=
√

π �(α + 1)

�(α + 3/2)
.

Depending on the parity of p and q, Tee treated separately
three cases and expressed the surface area of the correspond-
ing biaxial ellipsoids in terms of Iα,β (δ), with α and β being
related to p and q. Using Eq. (C5), we managed to show that
all three cases yield the same result. Skipping the technical
details of this analysis, we provide the following exact expres-
sion for the surface area:

|�| = σp+qap−1bq

p + q − 1

{
(q − 1)a2

b2 2F1

(
1

2
,

q

2
;

p + q

2
; 1 − a2

b2

)

+ p 2F1

(
1

2
,

q

2
− 1;

p + q

2
; 1 − a2

b2

)}
. (C6)

For a prolate spheroid with q = 1 and p = d − 1, we retrieve
Eq. (47). For an oblate spheroid with q = d − 1 and p = 1,
one can use contiguous relations between hypergeometric
functions to retrieve Eq. (57).

Substituting Eqs. (C2) or (C3) for C and Eq. (C6) for |�|
into Eq. (6), one determines the trapping length of a general
biaxial ellipsoid.

APPENDIX D: NUMERICAL SOLUTION BY THE
FINITE-ELEMENTS METHOD

To check the accuracy of our approximation, we solved the
underlying boundary value problem using a finite-elements
method. The axial symmetry of spheroids allowed us to reduce
the original d-dimensional problem to a planar one. In fact,
one can write the Laplace operator in the cylindrical coordi-
nates as

� = ∂2
z + 1

rd−2
∂r rd−2 ∂r + 1

r2
�ang, (D1)
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where z denotes the coordinate along the symmetry axis (i.e.,

z = xd ), r =
√

x2
1 + · · · + x2

d−1, and �ang is the angular part

of the Laplace operator in the hyperplane Rd−1, which is
orthogonal to the axis xd . As the original eigenvalue problem
in Eq. (4a) is invariant under rotations along the xd axis, its
solution does not depend on the angular part. It can thus be
written as

−∇c∇u = λrd−2u, (D2)

where ∇ is the gradient operator in the (r, z) plane, and c is the
diagonal 2 × 2 matrix with entries rd−2. This reduced eigen-
value problem has to be solved in the planar cross section of
the domain (see Fig. 6). The problem was solved numerically
by PDETool in MATLAB. We compared numerical solutions
with different choices for the maximal mesh size to ensure
that the results do not depend on this choice.

FIG. 6. (a) A prolate spheroidal target (in red) is enclosed by an
outer reflecting sphere (in gray). (b) An equivalent planar domain
with an elliptic target (in red) and an outer circular reflecting bound-
ary (in gray).
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