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Abstract
We investigate a class of diffusion-controlled reactions that are initiated at the
time instance when a prescribed number K among N particles independently
diffusing in a solvent are simultaneously bound to a target region. In the irre-
versible target-binding setting, the particles that bind to the target stay there
forever, and the reaction time is the Kth fastest first-passage time to the target,
whose distribution is well-known. In turn, reversible binding, which is common
for most applications, renders theoretical analysis much more challenging and
drastically changes the distribution of reaction times. We develop a renewal-
based approach to derive an approximate solution for the probability density
of the reaction time. This approximation turns out to be remarkably accurate
for a broad range of parameters. We also analyze the dependence of the mean
reaction time or, equivalently, the inverse reaction rate, on the main parameters
such as K, N, and binding/unbinding constants. Some biophysical applications
and further perspectives are briefly discussed.
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1. Introduction

Diffusion-controlled processes and reactions play the central role in microbiology, physiol-
ogy and many industrial procedures [1–9]. In a common setting of bimolecular reactions, two
particles (e.g., a ligand and a receptor) need to meet each other to initiate a reaction event.
As the encounter results from the stochastic motion of one or both particles, the reaction time
is random. Since the seminal work by von Smoluchowski [10], such first-encounter or first-
passage problems have been thoroughly investigated. Among various studied aspects, one can
mention the impact of structural organization and dynamical heterogeneities of the medium
[11–19], the asymptotic behavior of the reaction rate and the mean first-passage time in the
small-target limit [20–32], distinct features of the whole distribution [33–38], and the effect
of target mobility [39–43].

However, there exist more sophisticated processes (that we will still call ‘reactions’) involv-
ing multiple particles. In microbiology, there are many activation mechanisms controlled by a
threshold crossing such as signalling in neurons, synaptic plasticity, cell apoptosis caused by
double strand DNA breaks, cell differentiation and division [44–46]. For instance, binding of
five calcium ions to a calcium-ion-sensing protein initiates a release of neurotransmitters in the
signalling process between two neurons [47–52]. Similarly, the ryanodine receptor is activated
when two calcium ions bind to the receptor binding sites [53]. In these examples, the biochem-
ical event such as signal transmission starts when a fixed number K among N diffusing particles
are simultaneously bound to the target region for the first time. If N (t) denotes the number of
bound particles at time t, the reaction time TK,N = inf{t > 0 : N (t) = K} is the first-crossing
time of a fixed threshold K by the stochastic non-Markovian processN (t). In the idealized case
of irreversible binding when any particle after its binding to the target stays bound forever, this
is the problem of finding the Kth fastest first-passage time T 0

K,N to the target [53–61]. If the
particles diffuse independently, the distribution of T 0

K,N can be easily expressed in terms of the
survival probability for a single particle (see appendix A). In most cases, however, binding is
reversible so that some particles can unbind and resume their diffusion before the binding of
the Kth fastest particle that renders the problem of such ‘impatient’ particles [62] much more
challenging. Recently, Lawley and Madrid proposed an elegant approximation, in which the
first-binding time and the rebinding time τ after each unbinding event were assumed to obey
an exponential law. The process N (t) could thus be approximated by a Markovian birth–death
process, for which the distribution of the first-crossing time is known explicitly [63] (see also
[46]). In the special case K = N, we derived the exact solution of the problem of impatient
particles and showed both advantages and limitations of the Lawley–Madrid approximation
(LMA) [64]. Despite its crucial role in providing us with analytical insight into the problem of
impatient particles and the validity of its approximate treatments, the case when all particles
have to bind the target is not so common in applications.

In this paper, we investigate the general problem of impatient particles in a practically rele-
vant setting when all particles start from independent uniformly distributed positions. First, we
revisit the LMA and discuss its validity range. In particular, we argue that the key assumption
of the LMA requires that the target is small and weakly reactive. The condition of weak reac-
tivity, which was not emphasized on in [63], limits the applicability of this approximation.
To overcome this limitation, we develop an alternative approach to the general problem. Our
approximate solution is confronted to Monte Carlo simulations and shown to be remarkably
accurate for a broad range of parameters. It allowed us to investigate the short-time and long-
time behaviors of the probability density of the reaction time TK,N , the dependence of the mean
reaction time on the unbinding rate, and the role of the numbers K and N.
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The paper is organized as follows. In section 2, we formulate the problem of impatient par-
ticles and discuss the LMA. Section 3 presents the main steps of our approach and summarizes
the approximate formulas for the probability density of the reaction time TK,N , its short-time
and long-time behaviors, and the mean reaction time. In section 4, we illustrate these results
for an emblematic model of restricted diffusion between concentric spheres. We discuss the
accuracy of our approximation and its limitations. Section 5 concludes the paper and suggests
further perspectives. As our derivations are technically elaborate, most mathematical details
are re-delegated to appendices in order to facilitate the main text for a wider audience.

2. Problem of impatient particles

We consider N particles that independently diffuse with diffusion coefficient D inside a
bounded domain Ω ⊂ R

d with a smooth boundary ∂Ω that is reflecting everywhere except
for a target region Γ with a finite reactivity κ. For instance, Ω may represent the cytoplasm of a
living cell, surrounded by a plasma membrane ∂Ω that is impermeable for diffusing particles,
and Γ be the boundary of an organelle or a sensor protein on that membrane. The reactivity κ
(in units m s−1) is related to the binding probability and characterizes how easily the particle
can bind the target upon their encounter, ranging from κ = 0 for an inert target (no binding) to
κ = ∞ for a perfectly reactive target (binding upon the first encounter). The finite reactivity
may represent the effect of an energetic or entropic barrier for binding, stochastic switching
between open and closed states of the target (e.g., an ion channel), microscopic heterogeneity
of the target, etc [65–79]. In (bio)chemistry, the reactivity is usually expressed in terms of the
forward (bimolecular) reaction rate kon via κ = kon/(|Γ|NA), where |Γ| is the surface area of
the target and NA is the Avogadro number [1]. After binding, each particle stays on the target
region for a random exponentially distributed waiting time, characterized by the unbinding
rate koff , and then resumes its diffusion from a uniformly distributed point on Γ. The particle
diffuses in Ω until the next binding, and so on (figure 1). In other words, each particle alter-
nates between free and bound states. We aim at describing the random reaction time TK,N ,
i.e., the first instance when K particles among N are simultaneously in the bound state on the
target region that is considered as a trigger of the underlying biochemical process (a reaction
event). As binding and unbinding events of all particles are independent from each other and
thus asynchronized, finding the probability density HK,N(t) of the TK,N is a challenging open
problem. Note that the above problem of impatient particles resembles some stochastic models
of multi-channel particulate transport with blockage [80–82].

The first-binding time τ 0 and the consequent rebinding times τ 1, τ 2, . . . of any particle are
random variables, which are characterized by the survival probabilities S(t|x0) = Px0{τ0 > t}
and S(t) = P{τi > t}, where x0 is the starting point of the particle, and P{. . .} denotes the
probability of a random event between braces. Lawley and Madrid proposed a remarkable
approximation, which relied on the approximation of these probabilities by an exponential
function:

S(t|x0) ≈ S(t) ≈ e−νt, (1)

with an appropriate rate ν [63]. They argued that this approximation is valid for any small
and/or weakly reactive target such that

ε =
κ |Γ| |Ω|
D|∂Ω|2 � 1, (2)
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Figure 1. (a) A planar illustration of a bounded domain Ω between two concentric
spheres of radii ρ = 1 and R = 2, whose disjoint boundary ∂Ω = ∂Ω0 ∪ Γ is com-
posed of the reflecting outer sphere ∂Ω0 and the partially reactive inner sphere Γ.
(b) A numerical simulation for three diffusing particles. Upper plot shows the radial
coordinate, |Xt|, of simulated trajectories of three particles that start from a fixed initial
position with |x0| = 1.5 and diffuse independently, with eventual bindings to the target.
Arrows indicate the first-crossing times T1,3, T2,3, and T3,3. Bottom plot illustrates the
number of bound particles at time t, N (t). At the beginning, all three particles are free,
and N (0) = 0. At T1,3, the ‘red’ particle binds, switching the counter N (t) to 1. At T2,3,
the ‘green’ particle binds, switching the counter N (t) to 2. Few moments later, the ‘red’
particle unbinds, diffuses and rebinds to the target. Finally, the last ‘blue’ particle binds
at time T3,3, switching the counter N (t) to 3.

where |Ω| is the volume of the confining domain, |∂Ω| and |Γ| are the surface areas of the whole
boundary and of the target region (a reactive subset of ∂Ω), respectively. For clarity, we focus
here on a three-dimensional setting, d = 3, but the arguments are valid in higher dimensions as
well. In appendix B, we summarize the explicit formulas of the LMA and discuss the validity
of the condition (2), which actually combines two distinct properties of the target: its relative
size and reactivity. We argue that the LMA is applicable when the target is small and weakly
reactive. For instance, when the target is a sphere of radius ρ, the following two conditions
should be fulfilled:

ρ � R =
|∂Ω|2

12π|Ω| ,
κρ

D
� 1. (3)

The first condition is purely geometrical (smallness of the target as compared to the confining
domain), while the second condition involves both the reactivity and the size of the target but
does not depend on the confining domain. These two conditions evidently imply equation (2),
but the opposite claim is not true. In particular, if the target is small but highly reactive, the
second condition may not be valid, even if equation (2) is fulfilled. This situation will be illus-
trated in section 4. As discussed in appendix B, the target size ρ is the proper geometric length
scale, to which the reaction length D/κ should be compared with (see [83] for an extension
to nonspherical targets). In particular, we call the target ‘highly’, ‘moderately’ or ‘weakly’
reactive if κ � D/ρ, κ ∼ D/ρ, or κ � D/ρ, respectively.

3. Approximate solution

To overcome the constraint on weak reactivity, we develop an alternative approach, which does
not rely on the approximation (1). For this purpose, we extend the derivation in reference [64]
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Figure 2. Probability density of the reaction time TK,N for restricted diffusion between
concentric spheres of radii ρ and R = 10ρ, with N = 4, κρ/D = 1, a timescale δ =
ρ2/D, three values of koff (see legend), and four values of K: K = 1 (a), K = 2 (b),
K = 3 (c) and K = 4 (d). Symbols show empirical histograms from Monte Carlo sim-
ulations with 106 particles. Thick solid line presents the exact solution (A.2) for irre-
versible binding; thick dashed lines indicate our approximation (10) evaluated numer-
ically as described in appendix E. Thin lines show the LMA (B.4), with ν given by
equation (B.13); note that the thin line for the case koffδ = 0.03 in panel (d) is not visi-
ble as it appears below the figure (i.e., H̄4,4(t|◦)δ < 10−6). Thin gray solid line presents
the short-time asymptotic behavior (11).

that was specific to the case K = N and based on a renewal-type equation

Pt(N|0) =
∫ t

0
dt′ HN,N (t′)Pt−t′(N|N), (4)

where Pt(m|n) is the probability of transition from a state with n bound particles to a state
with m bound particles in time t. Expressing both Pt(N|0) and Pt−t′(N|N) in terms of known
occupation probabilities for a single particle and applying the Laplace transform led to the
probability density HN,N (t) in the Laplace domain.

A direct extension of this equation to the general case K < N fails. In fact, the probability
Pt(K|0) can still be expressed as an integral of HK,N(t′) with the probability Pt−t′(K|K) of
transition from a state with K bound particles to another state with K bound particles. However,
this probability also depends on random positions of the remaining N − K free particles at time
t′ that should be averaged out. Even for independently diffusing particles, an exact computation
of this average remains an open problem (see appendix C for further discussion). Moreover, the
resulting probability would be a function of both t − t′ and t′ so that an extension of equation (4)
would be no longer a convolution, and thus would not be simplified in the Laplace domain.

This fundamental difficulty can be partly resolved in the case when the starting positions
of N particles are uniformly distributed in the confining domain. The key point is that the
distribution of any free particle that started uniformly remains to be almost uniform at all times,
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Figure 3. Probability density of the reaction time TK,N for restricted diffusion between
concentric spheres of radii ρ and R = 10ρ, with N = 4, a timescale δ = ρ2/D, three com-
binations of koff and κ (koffδ = 0.003, 0.03, 0.3 corresponding to κρ/D = 1, 10, 100,
respectively, such that η = 1 in all cases), and four values of K: K = 1 (a), K = 2
(b), K = 3 (c) and K = 4 (d). Symbols show empirical histograms from Monte Carlo
simulations with 106 particles. Thick lines indicate our approximation (10) evaluated
numerically as described in appendix E, whereas thin lines show the LMA (B.4), with
ν given by equation (B.13); note that the thin line for the case koffδ = 0.03 in panel
(d) is not visible as it appears below the figure (i.e., H̄4,4(t|◦)δ < 10−6).

except for a boundary layer near the target region. When the target is small and not too highly
reactive, this boundary layer is narrow and can be neglected so that all free particles can be
approximately treated as uniformly distributed at any time t′. As a consequence, the average
of Pt−t′(K|K) turns out to be only a function of t − t′, thus keeping the convolution form of the
renewal equation:

Pt(K|0) =
∫ t

0
dt′ HK,N (t′)Pt−t′(K|K), (5)

where overline denotes the average over the uniform positions of N − K free particles. In other
words, this integral equation determines an approximation HK,N(t) of the probability density
HK,N (t) of the reaction time TK,N . Both transition probabilities in equation (5) can be found
using combinatorial arguments, namely,

Pt(K|0) =

(
N
K

)
[P(t|◦)]K[1 − P(t|◦)]N−K (6)

and
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Figure 4. Mean reaction time 〈TK,3〉 for restricted diffusion between concentric spheres
of radii ρ and R = 10ρ, with κρ/D = 1, a timescale δ = ρ2/D, N = 3, and three values
of K (see legend). Thick lines show our approximation (14), thin lines present the LMA
with ν given by equation (B.13), while symbols illustrate the results of Monte Carlo
simulations with 106 realizations. Thin straight solid lines present the large-η asymptotic
behavior (15).

Pt(K|K) =
K∑

j=0

(
K
j

)
[Q(t)]K− j[1 − Q(t)] j

(
N − K

j

)

× [P(t|◦)] j[1 − P(t|◦)]N−K− j, (7)

where we use the convention for binomial coefficients that
( n

k

)
= 0 for n < k. Here P(t|◦)

(resp., Q(t)) is the probability of finding a particle that was free with uniform initial distribu-
tion (resp., bound) at time 0, in the bound state at time t. For instance, the term with j = 0 in
equation (7) describes the configuration when all K initially bound particles are found to be
bound at time t (note that they can unbind and rebind in the meantime), while N − K initially
free particles are found to be free at time t (they can also bind and unbind in the meantime).
Similarly, the term with j = 1 describes the configuration when K − 1 initially bound parti-
cles are found to be bound at time t, one initially bound particle is found to be free at time t,
N − K − 1 initially free particles are found to be free at time t, while one initially free particle
is found to be bound at time t (and all these particles can undertake an arbitrary number of
binding/unbinding events in the meantime). In appendix D, we show that

P(t|◦) =
1 − Q(t)
koff〈τ〉

, (8)

whereas Q(t) can be expressed in terms of the probability density H(t) of the rebinding time
for a single particle, and 〈τ 〉 is the mean rebinding time. In [64], we derived a very simple and
general expression for this quantity:

〈τ〉 = |Ω|
κ|Γ| =

NA|Ω|
kon

(9)

(we reproduce its derivation in appendix C). Here, it is expressed in terms of the volume
|Ω| of the confining domain, the surface area |Γ| of the target region, and its reactivity κ
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or, equivalently, in terms of the forward reaction constant kon. Counter-intuitively, the mean
rebinding time does not depend on the diffusion coefficient D. This is a particular example
of the invariance property of general random walks in bounded domains that the mean trav-
eled distance (and thus the mean exit time) does not depend on the dynamics of the diffusing
particles that enter and exit the domain through the same subset of the boundary (here, the
target) [84–87]. Solving the convolution equation (5) in the Laplace domain, we obtain the
approximate probability density HK,N(t) of the reaction time TK,N :

HK,N(t) = L−1

{
L{Pt(K|0)}
L{Pt(K|K)}

}
, (10)

whereL andL−1 denote respectively the forward and inverse Laplace transforms. This approx-
imate solution of the general problem of impatient particles constitutes the main result of the
paper. For K = N, one has Pt(K|0) = [P(t|◦)]N and Pt(K|K) = [Q(t)]N and thus retrieves an
extension of the exact solution from reference [64] to the case of the uniform initial distribution
of the particles.

In addition to a direct numerical way of computing the approximate probability density
HK,N(t) (see appendix E for details), equation (10) opens a way to access the short-time and
long-time asymptotic behaviors of this density (see appendix F):

HK,N(t) ≈ K

(
N
K

)
tK−1

〈τ〉K
(t → 0), (11)

HK,N(t) ∝ exp(−t/TK,N) (t →∞), (12)

where TK,N is the decay time whose approximation reads

TK,N ≈ 1

P∞(K|K)

∫ ∞

0
dt
(
Pt(K|K) − P∞(K|K)

)
, (13)

in which P∞(K|K) is given by equation (7) with P(∞|◦) = Q(∞) = 1/(1 + koff〈τ 〉). In addi-
tion, our approximate solution allows us to evaluate the moments of the reaction time TK,N . For
instance, we derived the following approximation for the mean reaction time (see appendix G)

〈TK,N〉 ≈
1

P∞(K|0)

∫ ∞

0
dt
(
Pt(K|K) − Pt(K|0)

)
. (14)

Note that this expression is similar to equation (13) for the decay time, and they usually yield
very close results.

The dimensionless parameter η = koff〈τ 〉 ∝ koff/kon determines whether the reversible
binding kinetics is relevant (η�1) or not (η � 1). As discussed in appendix G, equation (14)
fails as η → 0 but gets more and more accurate as η increases. For η � 1, the integral in
equation (14) can be approximately evaluated as

〈TK,N〉 ≈ 〈τ〉 (koff〈τ〉)K−1

K
(N

K

) (η � 1). (15)

For K = 1, the approximate mean reaction time 〈T1,N〉 ≈ 〈τ〉/N does not depend on koff, as
the first-binding event is independent of the unbinding kinetics. This mean value decreases
inversely proportional to N, as discussed earlier in references [59, 60] in the context of the
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fastest first-passage time problem. In the case K � N, the above expression reads

〈TK,N〉 ≈ koff(K − 1)!

(
κ|Γ|N
koff|Ω|

)K

, (16)

which resembles the asymptotic behavior of the mean first-passage time of a rare event that K
among N independent random walkers accumulate at a given site of a lattice [88].

4. Discussion

To illustrate our general results, we consider restricted diffusion inside a confining reflecting
sphere of radius R towards a small concentric partially reactive spherical target of radius ρ
(figure 1(a)). This domain can be considered as an idealized model for the intracellular transport
towards the nucleus or a model of the presynaptic bouton [52]. Figure 2 illustrates the behavior
of the probability density HK,N(t) for N = 4 and several values of K in the case of a small
(ρ/R = 0.1), moderately reactive (κρ/D = 1) target. As the unbinding kinetics can only be
initiated after the first binding, the reaction time T1,N is equal to the first-binding time of the
fastest particle and thus does not depend on the unbinding rate koff (see also appendix A).
Expectedly, three curves with different koff coincide on the panel figure 2(a). Moreover, the
short-time behavior does not depend on koff for any K. In turn, the long-time decay is strongly
affected by koff when K > 1: the decay time TK,N increases with koff and thus the distribution is
getting broader for faster unbinding kinetics. In all cases, the approximate solution (10) is in a
remarkable agreement with Monte Carlo simulations over a broad range of times. We also stress
that our solution is exact for K = N. The LMA (see appendix B) captures correctly the overall
behavior but overestimates the decay time. The agreement is better for smaller koff and smaller
K. In turn, the disagreement for larger koff or K is caused by moderate reactivity of the target,
for which the second condition in equation (3) is not satisfied. Note that the parameter ε from
equation (2) is equal to 0.03, wrongly suggesting the validity of the LMA. This example clearly
illustrates that the single condition (2) is not sufficient and should be replaced by two separate
conditions in (3). Figure H1 from appendix H illustrates that the disagreement is getting even
bigger for a small target with higher reactive κρ/D = 10. In contrast, the LMA is very accurate
for weakly reactive targets (see, e.g., figure 4 in reference [63], which was plotted for the case
κρ/D = 0.01 and koffρ

2/D = 0.001). Finally, we emphasize that the short-time asymptotic
relation (11) is not accurate in the considered range of times, requiring many correction terms
for amendment (see appendix F for details). Similar behavior was observed for N = 2 and
N = 3 (see figures H2 and H3 from appendix H).

The impact of unbinding kinetics and the consequent rebinding events can be character-
ized by the dimensionless parameter η = koff〈τ 〉, which is proportional to the ratio koff/kon

(or koff/κ), see equation (9). In particular, this parameter fully determines the steady-state prob-
ability P(∞|◦) = 1/(1 + η) for a particle to be in the bound state. Intuitively, one might expect
that η mainly controls the statistics of the reaction times TK,N . To emphasize on the respective
roles of binding and unbinding effects, we fix η = 1 and compare the probability densities for
three combinations of κ and koff. Figure 3 shows that two curves with larger unbinding rates
koff(ρ2/D) = 0.03 and koff(ρ2/D) = 0.3 (and, accordingly, larger reactivities) almost coincide.
This effect can be attributed to a sort of statistical averaging due to multiple rebinding events.
In contrast, the curve with the lowest koff and κ differs from the others, due to a limited num-
ber of rebinding events. We conclude that the parameter η plays an important role but does
not fully determine the statistics of the reaction time. Expectedly, the LMA gets less and less
accurate as the reactivity increases.

9
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We complete this section by looking at the mean reaction time 〈TK,N〉. Figure 4 shows
the dependence of 〈TK,N〉 on the unbinding rate koff (rescaled by 〈τ 〉) for a fixed reactivity
κρ/D = 1. When η = koff〈τ 〉 is small, the mean reaction time is almost constant and close
to 〈T 0

K,N〉 for irreversible binding (koff = 0), as expected. In turn, for η � 1, the mean reaction
time starts to rapidly increase with η.

5. Conclusion

In this paper, we investigated diffusion-controlled reactions or events that are triggered on a
target region after a prescribed number K among N independently diffusing particles are simul-
taneously bound to the target. The reversible target-binding kinetics, which is so common
for most applications, presented the major mathematical difficulty. We developed a power-
ful theoretical approach to derive a new approximation HK,N(t) for the probability density of
the reaction time TK,N in the case when the particles were initially released uniformly. Under
the assumption that the random positions of free particles at time TK,N remain to be uniform,
we derived a renewal equation that determines HK,N(t). This convolution-type equation was
then solved in the Laplace domain to relate the probability density via equation (10) to two
occupancy probabilities, which were in turn expressed in terms of the survival probability for
a single particle. In this way, we managed to describe the collective effect of multiple dif-
fusing particles in terms of the diffusive dynamics of a single particle and thus to extend the
well-known extreme statistics for the Kth fastest first-passage time to a more general and much
more challenging setting with reversible binding. In other words, the knowledge of the survival
probability S(t|◦) (or, equivalently, S(t)) of a single particle was sufficient for approximating
the probability density of the reaction time TK,N .

The assumption of uniform positions was the crucial step and the only source of eventual
deviations between the exact probability density and our approximation (10). Strictly speaking,
this assumption is fulfilled exactly only for an inert non-reactive target (κ = 0). When the target
is reactive, binding events lead to a formation of a depletion boundary layer near the target,
in which the probability density of finding a diffusing particle is lower, and thus not uniform.
In contrast, unbinding events tend to homogenize the probability density and thus render our
assumption more accurate. As a consequence, our approximation is applicable whenever the
binding/unbinding kinetics ensure a nearly uniform distribution of free particles. A systematic
study of quantitative conditions for the validity of our approximation presents an important
perspective of this work in the future. Meanwhile, Monte Carlo simulations that we realized in
this paper indicate that the approximation is remarkably accurate when η = koff〈τ 〉 is not too
small. As the limit η = 0 corresponds to irreversible binding (with either koff = 0, or κ = ∞),
our approximation complements this well-studied setting and thus provides the overall insight
onto diffusion-controlled reactions with multiple particles.

We also emphasize on the conceptual difference between our approach and the LMA. The
latter relied on the exponential approximation for the survival probability of a single parti-
cle, which is valid only for small and weakly reactive targets. This restriction concerns only
binding events and does not involve unbinding kinetics. In turn, our approximation deals with
the exact form of the survival probability, while the underlying assumption depends on bind-
ing/unbinding kinetics. As a consequence, it yields accurate results even for highly reactive
targets, if the unbinding rate is not too small. In summary, the validity range of our approx-
imation is different from that of the LMA (see details in appendix I), and it allows one to
deal with highly reactive targets. At the same time, we outline that the LMA is much more
explicit and easier to implement and to analyze, even in sophisticated geometric settings. More-
over, the LMA provides bounds to the first-crossing times for impatient particles. These two
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approximations present therefore valuable and complementary theoretical tools for studying
diffusion-controlled reactions with reversible target-binding kinetics.

The present work can be extended in several directions. First, one can further analyze
and possibly relax the assumption of uniform positions, beyond the discussion presented in
appendix C. This analysis can potentially lead to an exact solution of the general problem of
impatient particles, which remains open for 1 < K < N. Second, one can consider more sophis-
ticated diffusive dynamics such as diffusing-diffusivity and switching models that allow one to
incorporate dynamic heterogeneities of the medium or reversible binding to buffer molecules
[52, 89–91]. Similarly, more elaborate target-binding mechanisms beyond that described by a
constant reactivity κ can be investigated [92–95]. For instance, one can consider encounter-
dependent reactivity that may describe saturation effects after a number of reaction attempts
that are relevant to some chemical or biological reactions. Moreover, one can incorporate sur-
face diffusion in the bound state that was shown to enhance the overall reaction rate for a
single particle [96–102]. Finally, while the present paper focused on theoretical aspects of
the problem of impatient particles, its application to relevant examples of diffusion-controlled
events with multiple particles is a promising perspective. For this purpose, one needs further
progress on the numerical implementation of our approximation to deal with a large number
N of diffusing particles (e.g., several hundred of calcium ions). A large-N asymptotic analysis
of the approximate solution would also be beneficial.
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Appendix A. Irreversible binding

For irreversible binding (koff = 0), the first-crossing time TK,N is identical to the Kth fastest
first-passage time T 0

K,N whose distribution is well known:

P{T 0
K,N > t} =

K−1∑
j=0

(
N
j

)
[S(t|◦)]N− j[1 − S(t|◦)] j (A.1)

and

H0
K,N(t) = −dP{T 0

K,N > t}
dt

= K

(
N
K

)
[S(t|◦)]N−K[1 − S(t|◦)]K−1H(t|◦), (A.2)
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where S(t|◦) is the survival probability for a single particle started uniformly, and
H(t|◦) = − d

dt S(t|◦) is the probability density of the associated first-binding time (see appen-
dices C and E for details).

In the short-time limit, one can use the asymptotic relation (D.11) for H(t|◦) to get

H0
K,N(t) ≈ K

(N
K

)
〈τ〉K

tK−1 (t → 0). (A.3)

In the case K = 1, the first-crossing time T1,N for any koff is equal to the first-passage time of
the fastest particle, T 0

1,N , because unbinding kinetics does not matter here. As a consequence,
one has the exact form:

H1,N(t) = −∂t[S(t|◦)]N = N[S(t|◦)]N−1 H(t|◦). (A.4)

Appendix B. Lawley–Madrid approximation

Lawley and Madrid developed an elegant approximate solution to the general problem of impa-
tient particles [63]. In the limit of small and/or weakly reactive target such that equation (2)
is fulfilled, the probability density of the first-binding time for any starting point x0 was
approximated by an exponential density,

H(t|x0) ≈ νe−νt, (B.1)

with the rate ν determined by the smallest eigenvalue of the Laplace operator. In other words,
the first-binding time τ 0 and the consequent rebinding times τ k were assumed to be independent
exponential random variables. Under this approximation, the number of bound particles N (t)
can be modeled by a Markovian birth–death process N̄ (t) between N + 1 states of 0, 1, 2, . . . , N
bound particles:

(B.2)

(bar denotes the quantities corresponding to the LMA). Let W be an (N + 1) × (N + 1)-
dimensional matrix with zero elements except for

Wi,i+1 = ikoff, Wi+1,i = (N + 1 − i)ν (i = 1, 2, . . . , N),

and Wi,i are chosen so that W has zero column sums. The distribution of the first-crossing time
T̄ K,N = inf{t > 0 : N̄ (t) = K} can be written as [63]

P{T̄ K,N > t} =
K∑

j=1

[
exp(W (K)t)

]
j,1

, (B.3)

where W (K) is the K × K matrix obtained by retaining the first K columns and K rows from W
and discarding everything else, and the initial state was assumed to be 0 (no bound particle).
The probability density is

H̄K,N(t) = ν(N − K + 1)
[
exp(W (K)t)

]
K,1, (B.4)
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while the mean time is fully explicit:

〈T̄ K,N〉 =
1
ν

K∑
m=1

⎛
⎝ 1

bm
+

K∑
j=m+1

(koff/ν) j−m

b j

j−1∏
i=m

di

bi

⎞
⎠, (B.5)

with bm = N − K + m and dm = K − m.
In [64], we showed that in the case K = N, the LMA captures qualitatively the behavior

of the probability density HN,N (t). However, it overestimates the mean reaction time and the
decay time, and totally fails at short times. This is expected because the LMA ignores the
starting positions of the particles.

When the starting points of all particles are uniformly distributed, the LMA turns out to be
more accurate even at short times. In fact, the Taylor expansion of the exponential matrix in
equation (B.4) yields the correct power-law short-time behavior:

H̄K,N(t) ≈ ν(N − K + 1)
[
(W (K))K−1

]
K,1

tK−1 + O(tK)

=
N!

(N − K)!
νK tK−1 + O(tK), (B.6)

in which the lower-order terms were canceled due the tridiagonal structure of the matrix W(K).
If ν was set to be 1/〈τ〉, the prefactor of this power law would differ from the exact asymptotic
relation (11) only by a factor 1

(K−1)! . Moreover, the long-time behavior remains qualitatively
correct, even though the decay time is still overestimated (see figures 2 and 3).

B.1. Validity of the LMA

Lawley and Madrid required the smallness of the parameter ε from equation (2) for approximat-
ing the smallest eigenvalue λ1 of the Laplace operator in the confining domain Ω with mixed
Robin–Neumann boundary condition on the boundary ∂Ω for the associated eigenfunction
u1(x), {

D∂nu1(x) + κ u1(x) = 0 (x ∈ Γ),

D∂nu1(x) = 0 (x ∈ ∂Ω\Γ),

where ∂n is the normal derivative oriented outwards the domain Ω. Their approximation

λ1 ≈ κ|Γ|
D|Ω| . (B.7)

can be easily obtained by integrating the eigenvalue equation −Δu1(x) = λ1u1(x) over x ∈ Ω
and using the above boundary condition:

λ1 = −
∫
Γdx (∂nu1(x))∫

Ωdx u1(x)
=

κ
∫
Γdx u1(x)

D
∫
Ωdx u1(x)

. (B.8)

The approximation (B.7) follows immediately if u1(x) is replaced by a constant. This relation
implies

ν = Dλ1 ≈ κ|Γ|
|Ω| =

1
〈τ〉 , (B.9)
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in agreement with the fact that if the rebinding time τ is assumed to obey an exponential law,
its rate should be equal to the inverse of the mean rebinding time.

However, the condition (2) is not sufficient for getting the approximation (B.7). For instance,
in the case of diffusion between concentric spheres with ρ = 1, R = 10, D = 1, and κ = 1,
one has ε ≈ 0.033 and 1/〈τ〉 ≈ 0.0030, whereas the numerical solution of equation (E.5), that
determines the exact eigenvalue, yields Dλ1 ≈ 0.0016. In other words, if one employs the
approximate relation (B.9) in this example, the twofold error in the rate ν will be drastically
amplified in the computation of the mean reaction time 〈TK,N〉 or the decay time TK,N. For this
reason, Lawley and Madrid used the numerically computed smallest eigenvalue for plotting
their figures.

To further clarify this issue, it is instructive to analyze the smallest eigenvalue λ1. For diffu-
sion between concentric spheres, the solution is summarized in appendix E. In particular, λ1 is
determined by the smallest strictly positive solution of equation (E.5), whose asymptotic behav-
ior was given by equation (28) of reference [37]. When ρ � R, a first-order approximation
reads

λ1 ≈ κ|Γ|
D|Ω|(1 + κρ/D)

. (B.10)

In the case κρ/D � 1, we retrieve the approximate relation (B.7). However, the smallness of
the parameter ε = 1

3 (κρ/D)(ρ/R)/(1+ (ρ/R)2) from equation (2) does not necessarily imply
that κρ/D is small. Actually, in the above example, we had κρ/D = 1 that yielded the twofold
smaller value of ν = Dλ1, as compared to 1/〈τ〉.

An extension of equation (B.10) to a general setting in three dimensions was recently
proposed in [83]:

λ1 ≈ κ|Γ|
D|Ω|(1 + Lκ/D)

, L =
|Γ|
C

, (B.11)

where C is the harmonic capacity (or capacitance) of the target (e.g., C = 4πρ for a sphere
of radius ρ). This approximation is valid when the target is small and located far away from
the outer reflecting boundary. Qualitatively, equation (B.11) can be interpreted as an interpo-
lation between two well-known limits: λ1 ≈ C/|Ω| for a perfectly reactive target with κ = ∞
[103–105] and equation (B.7) for an almost inert target (κ→ 0). Importantly, reference [83]
revealed the proper geometric length scale L, to which the reaction length D/κ should be com-
pared with. For instance, in the case of diffusion inside a confining reflecting sphere of radius
R towards a small concentric spherical target of radius ρ, one has L = (4πρ2)/(4πρ) = ρ. In
particular, our qualifications of the reactivity as ‘high’, ‘moderate’ or ‘weak’ are based on the
conditions κ � D/L, κ ∼ D/L and κ � D/L, respectively. This is a considerable improve-
ment as compared to former works, in which such a geometric length scale was chosen in an
arbitrary (conventional) way. For instance, a ‘natural’ choice in the above example could be
the radius R of the confining outer sphere. In fact, R appears in the dimensionless parameter
κR/D, which introduces the reactivity into equation (E.5) that determines the principal eigen-
value of the Laplace operator. For this reason, the length scale R was employed for quantifying
the reactivity smallness in [63]. However, it is the condition

Lκ/D � 1 (B.12)

that ensures equation (B.9) and makes thus the exponential approximation of the survival
probability self-consistent.
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We stress that the original derivation of the LMA in [63] employed equations (B.1) and
(B.7) as distinct assumptions. However, our relation (9) implies that these assumptions are
actually tightly related. In fact, if the rebinding time is assumed to be exponentially distributed
according to equation (B.1), the rate ν = Dλ1 must be equal to the inverse of the mean rebind-
ing time 〈τ 〉, which in turn is equal to |Ω|/(κ|Γ|) according to equation (9). As a consequence,
equation (B.9) can be considered as a necessary condition for the applicability of the LMA,
which thus requires that the target should be simultaneously small and weakly reactive.

In order to ensure a proper comparison between our results and the LMA, we always set

ν = Dλ1 = Dα2
1/R2, (B.13)

whereα1 is the smallest strictly positive solution of equation (E.5), which was obtained numeri-
cally. In this way, we tested directly the validity of a Markov birth–death process representation
of the system of impatient particles, which was the cornerstone of the LMA. Note that setting
ν = 1/〈τ〉 yielded worse results, which were not shown in our figures.

Appendix C. Distribution of a free particle

In this appendix, we compute the probability density P(x, t|x0) of finding a free particle that
started from a point x0 at time 0, in the vicinity of a point x at time t. For this purpose, we extend
the computation from references [52, 64] that consists in adding up contributions according to
the number of binding events:

P(x, t|x0) = G(x, t|x0) +
∫ t

0
dt1

∫ t

t1

dt′1 H(t1|x0)ψ(t′1 − t1) g(x, t − t′1)

+

∫ t

0
dt1

∫ t

t1

dt′1

∫ t

t′1

dt2

∫ t

t2

dt′2 H(t1|x0)ψ(t′1 − t1)H(t2 − t′1)

× ψ(t′2 − t2) g(x, t − t′2) + · · · ,

where ψ(t) = koffe−kofft is the probability density of the waiting time on the target, and H(t|x0)
is the probability density of the first-binding time for a particle started from x0. The first term
represents the contribution without binding, with G(x, t|x0) being the propagator for a single
particle in the presence of a partially reactive target. The second term includes the contribution
with a single binding at time t1, staying on the target up to time t′1, at which the particle unbinds
and resumes its diffusion to x, where

g(x, t) =
1
|Γ|

∫
Γ

dx0 G(x, t|x0) (C.1)

is the propagator for a particle that started from a uniformly distributed point on the target Γ.
The third term counts two bindings events: binding at t1, unbinding at t′1, binding at t2,
unbinding at t′2, and arrival in x at t, where

H(t) =
1
|Γ|

∫
Γ

dx0 H(t|x0) (C.2)

is the probability density of the rebinding time (given that the unbound particle is released
from a uniformly distributed point on the target). The fourth, fifth and next terms correspond to
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3, 4, . . . binding events. In the Laplace domain, one gets

P̃(x, p|x0) = G̃(x, p|x0) + H̃(p|x0)
koff

p+ koff
g̃(x, p)

+ H̃(p|x0)
koff

p+ koff
H̃(p)

koff

p+ koff
g̃(x, p) + · · ·

= G̃(x, p|x0) + H̃(p|x0)
koff

p+ koff(1 − H̃(p))
g̃(x, p),

where all terms were summed up as a geometric series, and tilde denotes Laplace transformed
quantities, e.g.,

f̃ (p) = L{ f (t)}(p) =
∫ ∞

0
dt e−pt f (t).

Since the probability density H(t|x0) can be understood as the integral of the probability flux
density over the target region, one gets

H(t|x0) =
∫
Γ

dx (−D∂nG(x, t|x0)) =
∫
Γ

dx (κG(x, t|x0)) = κ|Γ| g(x0, t),

i.e.,

g̃(x, p) =
〈τ〉
|Ω| H̃(p|x), (C.3)

where we used equation (9) for the mean rebinding time 〈τ 〉, and the Robin boundary condition
on the target region. We conclude that

P̃(x, p|x0) = G̃(x, p|x0) +
H̃(p|x0) koff〈τ〉 H̃(p|x)

|Ω|(p+ koff(1 − H̃(p)))
. (C.4)

Similarly, if P0(x, t) denotes the probability density for a particle that was initially bound to
the target, to be in the vicinity of a point x at time t, one gets in the Laplace domain:

P̃0(x, p) = ψ̃(p) g̃(x, p) + ψ̃(p) H̃(p) ψ̃(p) g̃(x, p) + · · · = ψ̃(p)g̃(x, p)

1 − H̃(p) ψ̃(p)
,

that yields

P0(x, t) =
koff〈τ〉
|Ω| P(t|x), (C.5)

where P(t|x) is the occupancy probability of the target (see also appendix D).

C.1. Normalization

It is instructive to check that the probability density P(x, t|x0) is correctly normalized. For this
purpose, we recall that the Green’s function G̃(x, p|x0) satisfies the boundary value problem⎧⎨

⎩
(p− DΔx)G̃(x, p|x0) = δ(x− x0) (x ∈ Ω),

(D∂n + κ1Γ(x))G̃(x, p|x0) = 0 (x ∈ ∂Ω),
(C.6)
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where Δx is the Laplace operator acting on x, δ(x− x0) is the Dirac distribution, and 1Γ(x)
is the indicator function of Γ: 1Γ(x) = 1 for x ∈ Γ, and 0 otherwise. The second relation is
the mixed Robin–Neumann boundary condition representing reflections on the inert boundary
∂Ω\Γ, and partial reactivity on the target region Γ. The integral of the first relation over x ∈ Ω
yields ∫

Ω

dx G̃(x, p|x0) = S̃(p|x0) =
1 − H̃(p|x0)

p
, (C.7)

where S̃(p|x0) is the Laplace-transformed survival probability. Similarly, as H̃(p|x0) satisfies

{
(p− DΔx0 )H̃(p|x0) = 0 (x0 ∈ Ω),

(D∂n + κ1Γ(x0))H̃(p|x0) = κ1Γ(x0) (x0 ∈ ∂Ω),
(C.8)

the integral of the first relation over x0 ∈ Ω yields

∫
Ω

dx0 H̃(p|x0) = κ|Γ|1 − H̃(p)
p

, (C.9)

where we used the Green’s formula and the above boundary condition for H̃(p|x0), while H̃(p)
is the Laplace transform of H(t) defined by equation (C.2). In the limit p→ 0, the left-hand side
approaches |Ω| due the normalization of H(t|x0), whereas the right-hand side goes to κ|Γ|〈τ 〉,
from which equation (9) for the mean rebinding time 〈τ 〉 follows. We get thus

H̃(p|◦) ≡ 1
|Ω|

∫
Ω

dx0 H̃(p|x0) =
1 − H̃(p)

p〈τ〉 =
S̃(p)
〈τ〉 , (C.10)

where ◦ denotes the average over uniformly distributed starting point. This relation implies
that

H(t|◦) =
S(t)
〈τ〉 (C.11)

is a monotonously decreasing function of time. Note also that the Taylor expansion of
equation (C.10) allows one to express the moments of the first-binding time τ ◦, e.g.,

〈τ◦〉 =
∫ ∞

0
dt t H(t|◦) =

〈τ 2〉
2〈τ〉 . (C.12)

We outline that τ ◦ is the first-binding time for a particle that started uniformly in the bulk Ω,
whereas τ is the rebinding time (i.e., the first-binding time for a particle that started uniformly
on the target). Combining equations (C.7) and (C.10), the integral of equation (C.4) over x ∈ Ω
reads ∫

Ω

dx P̃(x, p|x0) =
1
p
− H̃(p|x0)

p+ koff(1 − H̃(p))
, (C.13)

where the last term is the Laplace transform of the occupancy probability P(t|x0) of the target
for a particle that started from x0, see also equation (D.2). Moving the last term to the left-hand
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side, one sees that the normalization is indeed satisfied:

P(t|x0) +
∫
Ω

dx P(x, t|x0) = 1. (C.14)

Similarly, the integral of equation (C.5) reads in the Laplace domain:∫
Ω

dx P̃0(x, p) = koff〈τ〉 P̃(p|◦) = koffQ̃(p)S̃(p)

= Q̃(p)
(

koffS̃(p) + 1
)
− Q̃(p) =

1
p
− Q̃(p),

where Q̃(p) is the Laplace transform of the occupancy probability Q(t) of the target for a particle
that was initially bound, see also equation (D.1). The above relation implies the normalization
of P0(x, t):

Q(t) +
∫
Ω

dx P0(x, t) = 1. (C.15)

C.2. Long-time behavior

In the long-time limit, G(x, t|x0) vanishes exponentially fast and does not contribute. In turn,
the second term in equation (C.4) yields as p→ 0:

H̃(p|x0) koff〈τ〉 H̃(p|x)

|Ω|(p+ koff(1 − H̃(p)))
≈ koff〈τ〉

|Ω|p(1 + koff〈τ〉)
, (C.16)

so that

lim
t→∞

P(x, t|x0) =
1 − P∞
|Ω| , (C.17)

where

P∞ =
1

1 + koff〈τ〉
. (C.18)

In other words, unbinding events ensure that the position of a free particle in the long-time
limit is distributed uniformly inside the domain, as expected.

C.3. Uniformly distributed starting points

When all particles start initially from uniformly distributed points, one defines

P̃(x, p|◦) ≡ 1
|Ω|

∫
Ω

dx0 P̃(x, p|x0) =
1

p|Ω| −
H̃(p|x)

|Ω|(p+ koff(1 − H̃(p)))
,

where we used equation (C.13) and the symmetry P(x, t|x0) = P(x0, t|x). In the time domain,
we get thus

P(x, t|◦) =
1 − P(t|x)

|Ω| . (C.19)
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Why P(x, t|◦) is not uniform? At short times, the main contribution to the probability density
of arriving at x comes from the trajectories started close to that point. If x is far from the target,
the probability of binding the target P(t|x) is very small, and thus P(x, t|◦) is almost constant. In
turn, if x is close to the target, the particles started from its neighborhood have higher chances to
bind to the target and thus be in the bound state at time t. As a consequence, P(x, t|◦) is smaller
near the target; this is similar to the formation of a depletion zone near a reactive target. The
difference is that, as time goes on, all particles, irrespective of their starting points, start to
experience the same effect of reversible binding, and P(x, t|◦) is getting uniform (in contrast
to the case of a reactive target with irreversible binding when the depletion zone would grow
and finally exhaust all particles).

Appendix D. Occupancy probabilities

In reference [64], the focus was on the case when the particles start from a fixed point x0 and
search for a partially reactive target Γ with reactivity κ, from which they can unbind at rate koff .
The statistics of the first-crossing time TN,N was determined by two occupancy probabilities:
the probability Q(t) of finding the particle in the bound state at time t given that it was bound
at time 0, and the probability P(t|x0) of finding the particle in the bound state at time t given
that it was initially released from a point x0. Both probabilities were found explicitly in the
Laplace domain in the same way as presented in appendix C:

Q̃(p) =
1

p+ koff(1 − H̃(p))
(D.1)

and

P̃(p|x0) = H̃(p|x0) Q̃(p), (D.2)

where H̃(p) is the Laplace transform of the probability density of the rebinding time τ , see
equation (C.2).

If the starting point x0 is uniformly distributed, P(t|x0) should be replaced by

P(t|◦) ≡ 1
|Ω|

∫
Ω

dx0 P(t|x0), (D.3)

where ◦ indicates the uniform starting point. According to equations (C.5) and (C.15), one gets
equation (8). One sees that Q̃(p) and thus P̃(p|◦) are expressed in terms of H̃(p). Note also that
equations (C.10), (D.2) and (D.3) yield

P̃(p|◦) = Q̃(p)H̃(p|◦), (D.4)

which in the time domain reads

P(t|◦) =
∫ t

0
dt′Q(t′)H(t − t′|◦). (D.5)

Alternatively, if {pn} are the poles of P̃(p|x0), the residue theorem allows one to invert the
Laplace transform to get (if all poles are simple):

P(t|x0) = P∞ +

∞∑
n=1

vn(x0) epnt, (D.6)
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where vn(x0) is the residue of P̃(p|x0) at the pole pn, and P∞ is the residue at pole p0 = 0 (that
we treat separately, see [64] for details). As a consequence,

P(t|◦) = P∞ +
∞∑

n=1

v̂n epnt, (D.7)

where

v̂n =
1
|Ω|

∫
Ω

dxvn(x), (D.8)

from which

Q(t) = P∞ − η

∞∑
n=1

v̂n epnt, (D.9)

with η = koff〈τ 〉.

D.1. Short-time asymptotic behavior

In the short-time limit, the target region can be considered as locally flat so that H̃(p|x0) can be

approximated by H̃hl(p|δ) = e−δ
√

p/D/(1 +
√

pD/κ) for the half-line, where δ is the distance
to the boundary. As a consequence, H̃(p) ≈ 1/(1 +

√
pD/κ) and thus

H̃(p|◦) ≈ 1
p〈τ〉(1 + κ/

√
pD)

≈ 1 − κ/
√

pD
p〈τ〉 + O(p−2), (D.10)

from which

H(t|◦) ≈ 1
〈τ〉

(
1 − 2κ

√
Dt√

πD
+ O(t)

)
(t → 0), (D.11)

and thus

1 − S(t|◦) ≈ t
〈τ〉

(
1 − 4κ

√
Dt

3
√
πD

+ O(t)

)
(D.12)

and

P(t|◦) ≈ t
〈τ〉 + O(t3/2) (t → 0). (D.13)

Note also that equation (8) implies a monotonous decrease of P(t|◦) with time: dP(t|◦)/dt � 0.
In addition, equations (C.11) and (D.11) imply that

S(t) ≈ 1 − 2κ
√

Dt√
πD

+ O(t) (t → 0), (D.14)

H(t) ≈ κ√
π
√

Dt
+ O(1) (t → 0). (D.15)
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Appendix E. Numerical computation

E.1. Probability density

Following [64], we integrate by parts the convolution (10) to transform it into an integral
equation

Pt(K|K) − Pt(K|0) = SK,N(t) −
∫ t

0
dt SK,N(t − t′)

(
−∂t′Pt′(K|K)

)
, (E.1)

where SK,N(t) = P{TK,N > t} is the approximate survival probability, and we used that
SK,N(0) = P0(K|K) = 1. Here Pt(K|0) and Pt(K|K) are expressed via equations (6) and (7)
in terms of P(t|◦) and Q(t), which in turn are given by equations (D.7) and (D.9). For diffu-
sion between concentric spheres, the poles {pn} and the related residues were determined in
references [52, 64]. Note that the integral of the function vn(x) in equation (D.8) can be found
explicitly. After discretization of the integral in equation (E.1) over a linear grid, we evalu-
ate SK,N(t) and then HK,N(t) by applying the fast Fourier transform to resolve the convolution
problem (see details in reference [64]).

E.2. Monte Carlo simulations

For Monte Carlo simulations, we use a standard event-driven scheme described in detail in
reference [64]. The only difference concerns the generation of the first-binding times that are
governed by the probability density H(t|◦) instead of H(t|x0). This probability density and the
related survival probability S(t|◦) can be found from their spectral expansions:

S(t|◦) =
∞∑

n=1

an e−Dtλn , (E.2)

H(t|◦) = D
∞∑

n=1

λn an e−Dtλn , (E.3)

where λn are the eigenvalues of the Laplace operator in Ω, and

an =
1
|Ω|

∣∣∣∣∣∣
∫
Ω

dx un(x)

∣∣∣∣∣∣
2

(E.4)

are the coefficients obtained from the L2-normalized eigenfunctions un(x). As their compu-
tation is detailed in reference [64], we only recall that the eigenvalues are determined as
λn = α2

n/R2, where {αn} are strictly positive solutions of the trigonometric equation [63]:

− α2 + 1
1 − α ctan((1 − ρ/R)α)

− R
ρ
+ 1 =

κR
D

, (E.5)

which is equivalent to equation (B9) from reference [64]. In turn, the coefficients an are

an = 6ρ4μ
(R − ρ)αn cos(αnβ) − (ρ+ Rα2

n) sin(αnβ)
α3

n(R3 − ρ3)

×
((
μρ2 − R(R − ρ)α2

n

)
cos(αnβ) −

(
R(R − ρ)μ+ (R2 + ρ2)

)
αn sin(αnβ)

)−1
,
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where μ = κρ/D and β = R/ρ− 1.
A generated array of independent random realizations of the reaction times TK,N is used

to compute the mean value, 〈TK,N〉, and the empirical probability density of TK,N . As the
probability density HK,N(t) typically spans several orders of magnitude in time, we produce a
renormalized histogram h(z) of ζ = ln TK,N and then draw h(z)/ez versus t = ez, see figures 2
and 3.

Appendix F. Asymptotic behavior

F.1. Short-time limit
In the short-time limit, unbinding kinetics does not matter so that HK,N (t) ≈ H0

K,N (t), where
H0

K,N(t) is given by equation (A.2) and its short-time asymptotic behavior (A.3) implies
equation (11). However, figure 2 shows a considerable deviation from this behavior because it
is achieved only at very short times, at which the probability density is too small and thus not
relevant.

In order to clarify this point, we focus on diffusion between concentric spheres and compute
next-order terms of the probability density H(t|◦) as t → 0. For this purpose, we analyze the
large-p behavior of its Laplace transform,

H̃(p|◦) =
3ρD

p(R3−ρ3)

(
(R − ρ)α+ (ρRα2 − 1) tanh ξ

)
Rα− tanh ξ + D

κρ (ξ + (ρRα2 − 1) tanh ξ)
, (F.1)

where α =
√

p/D and ξ = α(R − ρ). In the limit p→∞, tanh(ξ) can be replaced by 1, with
exponentially small corrections:

H̃(p|◦) ≈ 1
p〈τ〉 −

κρ
α2 D2〈τ〉 (Rα− 1)

α(R − ρ) + ρRα2 − 1 + κρ
D (Rα− 1)

.

This expression can be decomposed into partial fractions as

H̃(p|◦) ≈ 1
p〈τ〉 −

κρ

D2〈τ〉

(
1

(1 + μ)α2
− ρ

(1 + μ)2α
+

ρ2

(1 + μ)2(αρ+ 1 + μ)

)
,

where μ = κρ/D. The inverse Laplace transform yields

H(t|◦) ≈ 1
〈τ〉(1 + κρ/D)

+
κρ2

√
πD〈τ〉(1 + μ)2

1 −
√
π E 1

2 , 1
2

(
−(1 + μ)

√
Dt/ρ

)
√

Dt
,

where Eα,β(z) is the Mittag–Leffler function:

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
(F.2)

(here the Euler function Γ(z) should not be confused with our notation Γ for the target region).
Using the identity Eα,β(z) = zEα,α+β(z) + 1/Γ(β), we get

H(t|◦) ≈ 1
〈τ〉(1 + κρ/D)

(
1 +

κρ

D
E 1

2 ,1

(
−(1/ρ+ κ/D)

√
Dt

))
. (F.3)
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The short-time expansion reads then

H(t|◦) ≈ 1
〈τ〉

(
1 +

μ

1 + μ

∞∑
n=1

(−(1 + μ)
√

Dt/ρ)n

Γ
(

1
2 n + 1

)
)
. (F.4)

This expansion can be truncated to few terms when (1 + μ)
√

Dt/ρ � 1. However, when this
condition is not satisfied, one needs many terms to get an accurate result. This is precisely what
happens in figure 2, in which the short-time behavior is established for t/δ = Dt/ρ2 ∼ 10,
at which the above condition is not fulfilled. In this case, it is more convenient to keep the
Mittag–Leffler function (note also that E 1

2 ,1(−z) = erfcx(z) = ez2
erfc(z) is the scaled comple-

mentary error function). However, equation (F.3) is specific to the case of concentric spheres
and is not applicable for general domains.

From equation (F.3), we can also obtain the short-time behavior of the survival probability:

1 − S(t|◦) =
∫ t

0
dt′ H(t′|◦) ≈ 1

〈τ〉(1 + μ)

(
t + μtE 1

2 ,2

(
−(1 + μ)

√
Dt/ρ

))
,

where we used the identity:∫ z

0
dz′ Eα,1(zα) = z Eα,2(zα). (F.5)

Using the identity,

E 1
2 ,2(−c

√
t) = 1 − 4c

√
t

3
√
π

+ c2tE 1
2 ,1(−c

√
t), (F.6)

one also gets

1 − S(t|◦) ≈ t
〈τ〉

(
1 − 4μ

√
Dt

3
√
πρ

+
μ(1 + μ)Dt

ρ2
E 1

2 ,1

(
−(1 + μ)

√
Dt/ρ

))
.

F.2. Long-time limit

At long times, the probability density HK,N(t) decays exponentially according to equation (12),
with the decay time TK,N determined by the largest (negative) pole pc of H̃K,N (p), which is given
by the largest (negative) zero of L{Pt(K|K)}(p). Following the approach from [64], we get

pc ≈ P∞(K|K)

(∫ ∞

0
dt
(
Pt(K|K) − P∞(K|K)

))−1

, (F.7)

from which the decay time TK,N can be approximated by equation (13).

Appendix G. Mean reaction time

G.1. Derivation

In this appendix, we derive and analyze an approximation for the mean reaction time:
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〈TK,N〉 = − lim
p→0

∂H̃K,N(p|◦)
∂p

≈ − lim
p→0

∂H̃K,N (p|◦)
∂p

= lim
p→0

(
L{tPt(K|0)}
L{Pt(K|K)}

− L{Pt(K|0)}L{tPt(K|K)}
(L{Pt(K|K)})2

)
,

where we used our approximation (10). Setting

ak =

∫ ∞

0
dt tk

(
Pt(K|0) − P∞(K|0)

)
, (G.1)

bk =

∫ ∞

0
dt tk

(
Pt(K|K) − P∞(K|K)

)
, (G.2)

one can employ Taylor expansions of the above Laplace transforms to get

〈TK,N〉 ≈
P∞(K|0)b0

[P∞(K|K)]2
− a0

P∞(K|K)
. (G.3)

Using the identity

K∑
j=0

(
K
j

)(
N − K

j

)
=

(
N
K

)
, (G.4)

one can check that

P∞(K|0) = P∞(K|K) =

(
N
K

)
PK
∞(1 − P∞)N−K , (G.5)

so that

〈TK,N〉 ≈
b0 − a0

P∞(K|0)
, (G.6)

which can be rewritten in a more explicit form as equation (14). The same technique can be used
to get higher-order moments. We emphasize that this relation is not applicable for irreversible
binding because koff = 0 implies P∞ = 1 and thus P∞(K|0) = 0 for any K < N. In turn, for
K = N, equation (14) remains valid even for koff = 0 and coincides with the exact relation
derived in reference [64].

G.2. Validity

We stress that the above derivation is based on the approximate relation (10) so that
equation (14) is an approximation of the mean reaction time. We recall that our approxima-
tion relied on the assumption that the N − K free particles are uniformly distributed at the time
when the threshold crossing event happens. According to equation (8), this assumption is better
fulfilled when

P(t|◦) � P∞ =
1

1 + η
� 1, (G.7)

i.e., when η = koff〈τ 〉 is large. In contrast, when koff → 0, unbinding events are rare and thus do
not allow to spread away the depletion zone near the target. As a consequence, our assumption
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Figure G1. The ratio between the approximation (14) of the mean reaction time 〈T1,N〉
and the exact form (G.8) of the mean reaction time 〈T 0

1,N〉 for irreversible binding, as
a function of η = koff〈τ〉, for restricted diffusion between concentric spheres of radii ρ
and R = 10ρ, with κρ/D = 1, and three values of N (see legend).

is not applicable, and the derived approximate formulas may fail. Note that in the limit koff = 0,
the mean reaction time is given by

〈T 0
K,N〉 =

∫ ∞

0
dt tH0

K,N (t), (G.8)

with H0
K,N (t) being determined by the exact relation (A.2).

The failure of our approximation can be illustrated by taking the limit koff → 0, for which
the numerator of equation (14) should vanish, yielding an identity

∫ ∞

0
dt[S(t|◦)]N−K

(
1 −

(
N
K

)
[1 − S(t|◦)]K

)
= 0 (G.9)

for any K < N. This identity is satisfied for S(t|◦) = e−νt, i.e., if the first-binding time obeys
an exponential distribution with a rate ν. We note that this is also related to the assumption of
the LMA, see further discussion in appendix I. We emphasize that the identity (G.9) does not
hold in general, thus invalidating equation (14) in the limit koff → 0.

Figure G1 illustrates the validity range of the approximate relation (14). Here we plot the
ratio between the approximate value of 〈T1,N〉 from equation (14), and the exact value 〈T 0

1,N〉
from equation (G.8). As binding of the first particle does not depend on the unbinding kinetics,
this ratio should be equal to 1 for any koff . In turn, deviations from 1 highlight limitations of
the approximate relation (14). For N = 2, the ratio remains close to 1 for the considered range
of η = koff〈τ 〉. As N increases, one observes deviations from 1 for η � 1. A more systematic
study is needed for establishing quantitative criteria of the validity range of the developed
approximation.
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Figure H1. Probability density of the reaction time TK,N for restricted diffusion between
concentric spheres of radii ρ and R = 10ρ, with N = 4, κρ/D = 10, a timescale δ =
ρ2/D, three values of koff (see legend), and four values of K: K = 1 (a), K = 2 (b), K = 3
(c) and K = 4 (d). Symbols show empirical histograms from Monte Carlo simulations
with 106 particles. Thick lines indicate our approximation (10) evaluated numerically
as described in appendix E, whereas thin lines show the LMA (B.4), with ν given by
equation (B.13). Thin gray solid line presents the short-time asymptotic behavior (11).
Minor deviations between three thick curves on panel (a) at long times and on panels
(c) and (d) at short times can be related to insufficient discretization of integrals, see
appendix E.

G.3. Asymptotic behavior

When η is large enough, the inequality (G.7) implies P∞(K|0) ≈
(N

K

)
PK
∞ and Pt(K|K) ≈

[Q(t)]K , from which

〈TK,N〉 ≈
1(N

K

)
PK
∞

∫ ∞

0
dt
(
[Q(t)]K − PK

∞
)
. (G.10)

In this regime, the mean reaction time 〈TK,N〉 is close to the mean reaction time 〈TK,K〉 divided
by the combinatorial factor

(N
K

)
. The latter was investigated in reference [64], and it was shown

to behave as (1 + η)K/(koffK) for large K. Neglecting 1 in comparison to η � 1, one deduces
equation (15). Strictly speaking, this relation is valid for N � K � 1 but figure 4 suggests that
this asymptotic relation can be used for any K > 1 if η is large enough.

Note that in the case K = 1, one can compute the integral exactly by using the small-p
asymptotic behavior of Q̃(p):

〈T1,1〉 ≈
1

P∞

∫ ∞

0
dt(Q(t) − P∞) =

koff〈τ 2〉
2(1 + koff〈τ〉)

. (G.11)
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Figure H2. Probability density of the reaction time TK,N for restricted diffusion between
concentric spheres of radii ρ and R = 10ρ, with N = 2, κρ/D = 1, a timescale δ =
ρ2/D, three values of koff (see legend), and two values of K: K = 1 (a) and K = 2
(b). Symbols show empirical histograms from Monte Carlo simulations with 106 parti-
cles. Thick lines indicate our approximation (10) evaluated numerically as described in
appendix E, whereas thin lines show the LMA (B.4), with ν given by equation (B.13).
Thin gray solid line presents the short-time asymptotic behavior (11).

As koff → 0, this expression vanishes, indicating again the failure of our approximation. In
turn, as koff →∞, one gets the limit 〈τ 2〉/(2〈τ〉) = 〈τ ◦〉 according to equation (C.12). In other
words, we retrieve the exact value of the mean first-passage time 〈T1,1〉 = 〈T 0

1,1〉 = 〈τ◦〉 for
N = 1.

Appendix H. Other illustrations

Figure H1 illustrates the behavior of the probability density HK,N(t) for N = 4 and several
values of K when the target is highly reactive (κρ/D = 10). One sees that our approximation
remains to be very accurate whereas the LMA fails in this case.

Figures H2 and H3 show the probability density HK,N(t) for N = 2 and N = 3, respectively.
Its behavior is similar to that discussed in the main text for figure 2 with N = 4.

Appendix I. Further discussion on the validity of two approximations

The LMA relied on the assumption that both the first-binding time and the rebinding time obey
an exponential law with some rate ν, i.e., S(t|◦) ≈ S(t) ≈ e−νt. In appendix G, we emphasized
that the validity of our approximation at small koff requires that S(t|◦) ≈ e−νt. In this appendix,
we further discuss these points.

The spectral expansion (E.2) indicates that its coefficients an � 0, defined by equation (E.4),
can be understood as the relative weights of different Laplacian eigenmodes, given that 1 =
S(0|◦) =

∑∞
n=1 an. When the target is small and/or weakly reactive, the ground eigenfunction

u1(x) is almost constant so that a1 ≈ 1, whereas the other eigenfunctions are orthogonal to it,
implying an ≈ 0 for n > 1 (see [59, 63]). In other words, one has S(t|◦) ≈ e−νt, with ν = Dλ1.
For instance, when the target is a sphere of radius ρ = 1 surrounded by a larger reflecting sphere
of radius R = 10, we got numerically a1 ≈ 0.9989 for κρ/D = 1 and a1 ≈ 0.9946 for κρ/D =
100, i.e., even for a highly reactive target, the exponential law approximation is applicable
for S(t|◦). Even for a large highly reactive target with ρ/R = 0.5 and κρ/D = 100, one has
a1 ≈ 0.92, i.e., the ground eigenmode still yields the dominant contribution. This observation
justifies the high accuracy of our approximation even for highly reactive targets.
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Figure H3. Probability density of the reaction time TK,N for restricted diffusion between
concentric spheres of radii ρ and R = 10ρ, with N = 3, κρ/D = 1, a timescale δ =
ρ2/D, three values of koff (see legend), and three values of K: K = 1 (a), K = 2 (b) and
K = 3 (c). Symbols show empirical histograms from Monte Carlo simulations with 106

particles. Thick lines indicate our approximation (10) evaluated numerically as described
in appendix E, whereas thin lines show the LMA (B.4), with ν given by equation (B.13).
Thin gray solid line presents the short-time asymptotic behavior (11).

It is also instructive to look at the parameter ε given by equation (2), whose smallness
was required in [63] for the applicability of the LMA. In our geometric setting, one gets
ε = κρ2

3DR(1+(ρ/R)2)2 , so that ε � 1 for ρ/R = 0.1 and κρ/D = 1, indicating the validity of this
approximation. In contrast, ε is not small for other examples given above thus violating the
LMA.

While the first-binding time can indeed be considered as exponentially distributed, the sit-
uation is more subtle for the rebinding time τ that is governed by the survival probability

S(t) = 〈τ〉H(t|◦) =
∞∑

n=1

anDλn〈τ〉 e−Dtλn , (I.1)

where we used equation (C.11). The new coefficients a′
n = anDλn〈τ〉 are as well the relative

weights of the eigenmodes. Since the coefficient a1 ≈ 1 is multiplied by a small eigenvalue λ1,
the resulting coefficient a′

1 is not necessarily dominant. For the above example with ρ/R = 0.1,
we get a′

1 ≈ 0.5474 for a moderately reactive target (κρ/D = 1), i.e., the contribution of the
ground mode is still dominant (55%) but not exclusive. In turn, for a highly reactive target
(κρ/D = 100), one has a′

1 ≈ 0.0119, i.e., the contribution of the ground mode is only 1%. In
both cases, the approximation of the rebinding time distribution by an exponential distribution
is not valid, and one needs much smaller or less reactive targets to apply this approximation.
In summary, modeling the rebinding time distribution by an exponential law imposes strong
restrictions onto the target size and reactivity. As our approximation employs the exact form of
the probability density H(t) of the rebinding time, it does not suffer from these limitations and
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yields more accurate results than the LMA. In turn, the latter has a great advantage of being
much simpler and more explicit.

The validity of the LMA was discussed in appendix B and can be resumed by two inequal-
ities (3) requiring that the target should be small and weakly reactive. In turn, quantitative
conditions for the validity of our approximation remain unknown. In appendix G, we discussed
a plausible condition η = koff〈τ 〉�1, which can also be written by using equation (9) as

κ � koff|Ω|
|Γ| . (I.2)

For instance, for a small spherical target of radius ρ, it reads

κ � D
ρ

(koffT), (I.3)

where T = |Ω|/(4πDρ) is the leading-order term of the mean first-passage time to the perfect
target from a starting point uniformly distributed in Ω (alternatively, 1/(DT ) is the smallest
eigenvalue of the governing Laplace operator, see [103–105]). This is a time scale of diffusive
search for a perfect target. In turn, the second condition in (3) for the applicability of the LMA
imposes

κ � D/ρ. (I.4)

The comparison of these conditions illuminates the difference in the validity ranges of two
approximations. In fact, when koff is not too small (i.e., when koffT � 1), the condition (I.3) is
less restrictive than (I.4), and our approximation allows one to deal with highly reactive targets.
In contrast, it fails in the limit koff → 0, as illustrated in appendix G, whereas the LMA, whose
applicability is independent of koff , can still be valid if (I.4) is satisfied.

We stress, however, that the conjectural condition η � 1 and its equivalent forms (I.2) and
(I.3) are not so restrictive in practice. For instance, figure 3 shows a perfect agreement between
our approximation and Monte Carlo simulations in the case η = 1. We therefore expect that
the range of applicability of our approximation is much broader. Its systematic study presents
an important perspective of this work.
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