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Abstract. Diffusive search for a static target is a common problem in statisti-
cal physics with numerous applications in chemistry and biology. We look at this
problem from a different perspective and investigate the statistics of encoun-
ters between the diffusing particle and the target. While an exact solution of
this problem was recently derived in the form of a spectral expansion over the
eigenbasis of the Dirichlet-to-Neumann operator, the latter is generally difficult
to access for an arbitrary target. In this paper, we present three complemen-
tary approaches to approximate the probability density of the rescaled number
of encounters with a small target in a bounded confining domain. In particular,
we derive a simple fully explicit approximation, which depends only on a few
geometric characteristics such as the surface area and the harmonic capacity of
the target, and the volume of the confining domain. We discuss the advantages
and limitations of three approaches and check their accuracy. We also deduce an
explicit approximation for the distribution of the first-crossing time, at which the
number of encounters exceeds a prescribed threshold. Its relations to common
first-passage time problems are discussed.
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1. Introduction

Various aspects of the first-passage problem for perfect and partially reactive targets
have been intensively studied over the past two decades [1–22]. A somewhat related
but poorer understood problem is the statistics of encounters of a diffusing particle
with a target. How many times does the particle meet the target? Conventionally, the
statistics of encounters and the related first-encounter times were studied for two (or
many) mobile particles that can represent, e.g. a protein and its receptor, or a prey and
its predator [23–37]. In turn, we are interested here in the number of encounters of a
diffusing particle with a static target up to time t. For a random walk on a lattice or
a graph, this is the random number of visits of a given target site (or a group of such
sites) up to time t. For continuous diffusion, this number can be related to the residence
time of Brownian motion in a given subset of a confining domain. Alternatively, one can
consider the target located on an impenetrable boundary (figure 1), and the number
of encounters is directly related to the so-called boundary local time �t on that region
up to time t [38–41]. As explained below, the random variable �t can be defined as a
rescaled residence time in a thin boundary layer near the target, or as a rescaled num-
ber of downcrossings (encounters) of that layer. The statistics of such encounters was
recently shown to be tightly related to the survival probability on a partially reactive
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Figure 1. Schematic illustration of a random trajectory (in blue) of a particle that
started from x 0 and diffused inside a confining domain Ω delimited by a reflect-
ing boundary ∂Ω0 (in gray) towards small targets (in red). (a) At short times,
the particle typically encounters either none, or one target. (b) At long times,
the particle can encounter many targets or realize several ‘long-range returns’ to
the same target.

target [42, 43]; it can therefore be viewed as a complementary insight onto the latter
problem. Moreover, the knowledge of this statistics allows one to investigate much more
general surface-reaction mechanisms, for instance, those with encounter-dependent reac-
tivity [43], which go far beyond the common setting of partially reactive targets [44–62].
A general spectral representation of the distribution of encounters and several explicit
examples have been studied within the so-called encounter-based approach [63–67]. How-
ever, to our knowledge, this problem has not been addressed in the common case of a
small target surrounded by an outer reflecting boundary of a confining domain.

In this paper, we employ three recently developed approximations to study the statis-
tics of diffusive encounters with a small target (or multiple targets). In section 2, we
formulate the problem and recall the definition of the boundary local time as a proxy of
the number of encounters. We also summarize the theoretical ground needed to describe
the statistics of encounters and its relation to diffusion-controlled reactions. Section 3
presents three complementary approaches to deal with small targets. The first approach
is the matched asymptotic analysis (MAA), which was systematically employed over the
past three decades to investigate various first-passage times [68–77] (see also a review
[78]). Recently, Bressloff extended this method to the encounter-based description of
diffusion-mediated surface phenomena and derived the asymptotic expansion of the so-
called full propagator [79]. In section 3.1, we apply his asymptotic results to get the
statistics of diffusive encounters and discuss advantages and limitations of this powerful
method. The second approach relies on an explicit approximation for the principal eigen-
value of the Laplace operator in the presence of a small partially reactive target [80]. The
smallness of the target also ensures that the principal eigenmode provides the dominant
contribution to the volume-averaged survival probability, from which the distribution
of encounters will be deduced in a fully explicit way (section 3.2). The derived approx-
imation in equation (58) is one of the main results of the paper. The third approach
is based on the self-consistent approximation (SCA), which was originally proposed
for computing reaction rates [81] and then extended for the analysis of first-passage
times [82–86]. We employ its most general form given in [86] to deduce an approximate
spectral representation for the distribution of diffusive encounters (section 3.3). This
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formal representation clarifies some general properties of the distribution. Moreover, in
some symmetric domains such as a spherical target surrounded by a larger concentric
reflecting sphere, the SCA turns out to be exact and can thus serve as a benchmark
for accessing the quality of two other approximations. We choose this geometric setting
to illustrate the accuracy of different approaches in section 4. In section 5, we obtain
an explicit approximation (90) for the probability density of the first-crossing time of
a given threshold � by �t. Section 6 summarizes the main findings of the paper, their
applications and future perspectives.

2. Boundary local time

We consider a point-like particle that undergoes reflected Brownian motion with a
constant diffusivity D inside an Euclidean domain Ω ⊂ R

d with a smooth bounded
impermeable boundary ∂Ω. The particle starts from a point x 0 ∈ Ω at time 0, and
its random position at time t is denoted as Xt. We are interested in the statistics of
encounters of the particle with a subset Γ of the boundary that we call a target. If the
subset Γ is not connected, one can speak about multiple (disconnected) targets. For
the sake of clarity, we mainly speak about a connected (single) target, even though our
results are applicable to multiple targets if they are located sufficiently far away from
each other (see below). The remaining part of the boundary, ∂Ω0 = ∂Ω \ Γ, ensures nor-
mal reflections that confine the particle inside Ω. Following Lévy’s construction [38], we
introduce the boundary local time �t spent on the target up to time t. This is a stochastic
process that can be understood as the renormalized residence time of Xt in a thin layer
of width a near the target, Γa = {x ∈ Ω : |x − Γ| < a}, up time t [39, 40]:

�t = lim
a→0

D

a

t∫
0

dt′ IΓa
(Xt′)

︸ ︷︷ ︸
residence time in Γa

, (1)

where IΓa
(x) is the indicator function of Γa: IΓa

(x) = 1 if x ∈ Γa, and 0 otherwise. This
relation highlights that the residence time in the layer Γa vanishes in the limit a→ 0 when
Γa shrinks to the target Γ. This is not surprising given that the boundary ∂Ω has a lower
dimension, d− 1, as compared to the dimension d of the domain Ω, and the residence
time on the boundary or any of its subsets is strictly zero. In turn, the rescaling of the
residence time in the layer Γa by its width a yields a well-defined limit—the boundary
local time. Importantly, equation (1) implies that the residence time in a thin layer Γa

can be approximated as a�t/D, as soon as a is small enough. The boundary local time �t
is thus the proper intrinsic characteristics of reflected Brownian motion on the target,
which is independent of the layer width used. Note that �t has units of length, while
�t/D has units of time per length.

The boundary local time �t is also related to the number N a
t of downcrossings of the

boundary layer Γa by reflected Brownian motion up to time t, multiplied by a, in the
limit a→ 0 [39, 40]:

�t = lim
a→0

aN a
t . (2)
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The number of downcrossings can thus be interpreted as the number of encounters of the
particle with the target. Expectedly, this number diverges in the limit a→ 0, because
Brownian motion is known to hit a smooth boundary an infinite number of times during
any time period after the first hit [87]. A finite thickness a of the layer is needed here
to overcome this problem and to get a proper definition for the number of encounters
(see further discussions in [42, 43]). As previously, �t/a is a good proxy for the number
of encounters when a is small enough. In the following, we focus on the boundary local
time �t, sometimes referring to it as the rescaled number of encounters.

The boundary local time plays the central role in the encounter-based approach to
surface-mediated diffusion phenomena [42, 43, 63–67]. In particular, the joint distribu-
tion of the particle position Xt and its boundary local time �t is characterized by the
joint probability density P(x , �, t|x 0) that was called the full propagator. The integral
of P(x , �, t|x 0) over the arrival point x yields the (marginal) probability density of the
boundary local time �t:

ρ(�, t|x0) =

∫
Ω

dxP (x, �, t|x0). (3)

In turn, the Laplace transform of P(x , �, t|x 0) with respect to � was shown to determine
the conventional propagator Gq(x , t|x 0) in the presence of a partially reactive target
[43]:

Gq(x, t|x0) =

∞∫
0

d� e−q�P (x, �, t|x0). (4)

The latter satisfies the diffusion equation

∂tGq(x, t|x0) = DΔGq(x, t|x0) (x ∈ Ω), (5)

subject to the initial condition Gq(x , 0|x 0) = δ(x − x 0) with a Dirac distribution δ(x −
x 0), and mixed Robin–Neumann boundary condition:

∂nGq(x, t|x0) + qGq(x, t|x0) = 0 (x ∈ Γ), (6a)

∂nGq(x, t|x0) = 0 (x ∈ ∂Ω0), (6b)

where Δ is the Laplace operator, and ∂n is the normal derivative oriented outwards the
domain Ω. This condition claims that the diffusive flux −D∂nGq(x , t|x 0) vanishes on the
impermeable part of the boundary, ∂Ω0; in turn, on the target Γ, the diffusive flux is
equal to the reaction flux, given by κGq(x , t|x 0), with a reactivity κ = qD. In this way,
the parameter q of the Laplace transform in equation (4) naturally re-appears in the
Robin boundary condition (6a). Expectedly, q can vary between 0 for an inert target
with Neumann boundary condition (∂nG0(x , t|x 0)|Γ = 0), and +∞ for a perfectly reac-
tive target with Dirichlet boundary condition (G∞(x , t|x 0)|Γ = 0). When the confining
domain Ω is bounded, the propagator admits a general spectral decomposition

Gq(x, t|x0) =
∞∑
k=1

e−Dtλ
(q)
k [u

(q)
k (x)]∗ u

(q)
k (x 0), (7)
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where asterisk denotes complex conjugate, while λ
(q)
k and u

(q)
k (x) are the eigenvalues and

eigenfunctions of the (negative) Laplace operator in Ω with mixed Robin–Neumann
boundary condition:

Δu
(q)
k + λ

(q)
k u

(q)
k = 0 (x ∈ Ω), (8a)

(∂n + q)u
(q)
k = 0 (x ∈ Γ), (8b)

∂nu
(q)
k = 0 (x ∈ ∂Ω0). (8c)

The eigenvalues are positive and indexed in an ascending order,

0 < λ
(q)
1 � λ

(q)
2 � · · · � λ

(q)
k · · · ↗ +∞,

while the eigenfunctions form a complete orthonormal basis in the space L2(Ω) of square-
integrable functions on Ω (see a review [88] for other properties of Laplacian eigenvalues

and eigenfunctions). The superscript q highlights that both λ
(q)
k and u

(q)
k (x) depend

implicitly on the parameter q via the Robin boundary condition (8b).
As the integral of the propagator Gq(x , t|x 0) over the arrival point x yields the

survival probability of the particle in the presence of a partially reactive target,

Sq(t|x0) =

∫
Ω

dxGq(x, t|x0), (9)

the latter is directly related to the probability density ρ(�, t|x 0) of the boundary local
time �t:

Sq(t|x0) =

∞∫
0

d� e−q�ρ(�, t|x0). (10)

We recall that Sq(t|x 0) satisfies the (backward) diffusion equation

∂tSq(t|x0) = DΔSq(t|x0) (x0 ∈ Ω), (11)

subject to the initial (terminal) condition Sq(0|x 0) = 1 and mixed Robin–Neumann
boundary condition:

∂nSq(t|x0) + qSq(t|x 0) = 0 (x 0 ∈ Γ), (12a)

∂nSq(t|x 0) = 0 (x 0 ∈ ∂Ω0). (12b)

According to equation (7), the survival probability admits a general spectral decompo-
sition

Sq(t|x0) =
∞∑
k=1

e−Dtλ
(q)
k [c

(q)
k ]∗ u

(q)
k (x0), (13)

https://doi.org/10.1088/1742-5468/ac85ec 6

https://doi.org/10.1088/1742-5468/ac85ec


J.S
tat.

M
ech.

(2022)
083205

Statistics of diffusive encounters with a small target: three complementary approaches

where

c
(q)
k =

∫
Ω

dx u
(q)
k (x). (14)

The inverse Laplace transform of equation (10) with respect to q yields

ρ(�, t|x0) = L−1
q {Sq(t|x0)} = L−1

q

{ ∞∑
k=1

e−Dtλ
(q)
k [c

(q)
k ]∗ u

(q)
k (x0)

}
. (15)

In the following, we often consider the volume-averaged case when the starting point
x 0 is not fixed but uniformly distributed inside the confining domain. The corresponding
survival probability Sq(t) reads

Sq(t) =
1

|Ω|

∫
Ω

dx 0 Sq(t|x0) =

∞∑
k=1

|c(q)k |2
|Ω| e−Dtλ

(q)
k , (16)

where |Ω| denotes the volume of the confining domain Ω. The relation (10) becomes

Sq(t) =

∞∫
0

dq e−q� ρ(�, t), (17)

where

ρ(�, t) =
1

|Ω|

∫
Ω

dx 0 ρ(�, t|x0) (18)

is the probability density function of the boundary local time �t for a particle started
uniformly in the domain Ω.

In the above setting, the bulk was not reactive, and the particle could only react on
the target Γ. If restricted diffusion occurs inside a reactive medium, the particle has a
finite lifetime due to eventual disintegration, photobleaching or death during its motion
[89–91]. In a common situation, the lifetime τ of the particle is a random variable obeying
the exponential law, P{τ > t} = e−pt, with p being the decay rate or, equivalently, 1/p
being the mean lifetime. In this case, one can investigate the number of encounters
with the target during the particle’s lifetime: �τ . The probability density function of this
random variable can be easily obtained by averaging ρ(�, t|x 0) over all possible times of
particle’s death:

∞∫
0

dt p e−pt︸ ︷︷ ︸
pdf of τ

ρ(�, t|x0) = pρ̃(�, p|x0), (19)

where ρ̃(�, p|x0) is the Laplace transform of ρ(�, t|x 0) with respect to t (here and below,
tilde denotes Laplace-transformed quantities with respect to time t). As a consequence,
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equation (10) implies

S̃q(p|x0) =

∞∫
0

d� e−q�ρ̃(�, p|x0), (20)

where S̃q(p|x0) satisfies the modified Helmholtz equation

(p−DΔ)S̃(p|x 0) = 1 (x 0 ∈ Ω), (21)

subject to the mixed Robin–Neumann boundary condition:

∂nS̃q(p|x0) + qS̃q(p|x0) = 0 (x0 ∈ Γ), (22a)

∂nS̃q(p|x0) = 0 (x0 ∈ ∂Ω0). (22b)

Finally, the Laplace-transformed probability density ρ̃(�, p|x0) admits another spec-
tral expansion based on the Dirichlet-to-Neumann operator Mp that associates to a
given function f(s) on the target Γ another function g(s) on that target (see [92–98] for
details):

Mp : f(s)→ g(s) = (∂nũ(x))|x=s∈Γ, (23)

where ũ(x) satisfies

(p−DΔ)ũ(x) = 0 (x ∈ Ω), (24a)

ũ(x) = f(x) (x ∈ Γ), (24b)

∂nũ(x) = 0 (x ∈ ∂Ω0). (24c)

It is known that Mp is a pseudo-differential self-adjoint operator, whose positive

eigenvalues μ
(p)
n can be ordered as

0 � μ
(p)
0 � μ

(p)
1 � · · · � μ(p)

n � · · · ↗ +∞,

while the associated eigenfunctions v
(p)
n (s) form a complete orthonormal basis of L2(Γ).

The superscript p highlights that both μ
(p)
n and v

(p)
n (s) depend implicitly on the rate p

in equation (24a). The following expansion was derived in [43]

P̃ (x, �, p|x0) = G̃∞(x, p|x0)δ(�) +
1

D

∞∑
n=0

e−μ
(p)
n � [V (p)

n (x)]∗ V (p)
n (x 0), (25)

where

V (p)
n (x 0) =

∫
∂Ω

ds v(p)n (s) j̃∞(s, p|x0) (26)

is the projection of the Laplace-transformed probability flux density on the perfectly

reactive target, j̃∞(s, p|x0) = (−D∂nG̃∞(x, p|x0))x=s, onto the eigenfunction v
(p)
n (s).

https://doi.org/10.1088/1742-5468/ac85ec 8
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According to equation (3), one has

ρ̃(�, p|x0) = S̃∞(p|x0)δ(�) +

∞∑
n=0

[C(p)
n ]∗

μ
(p)
n

p
V (p)
n (x 0) e

−μ
(p)
n �, (27)

with

C(p)
n =

∫
Γ

ds v(p)n (s), (28)

where we used the identity from [99]:∫
Ω

dxV (p)
n (x) =

D

p
μ(p)
n

∫
Γ

ds v(p)n (s). (29)

The inverse Laplace transform of equation (27) with respect to p formally reads

ρ(�, t|x0) = S∞(t|x0)δ(�) + L−1
p

{ ∞∑
n=0

[C(p)
n ]∗

μ
(p)
n

p
V (p)
n (x 0) e

−μ
(p)
n �

}
. (30)

The first term in equation (30) accounts for the trajectories that have not encountered
the target up to time t (with probability S∞(t|x 0)) so that the associated boundary
local time remained zero. In turn, the second term represents the trajectories that have
reached the target up to time t and thus have positive �t. Again using the identity (29),
one can also treat the case when the starting point x 0 is uniformly distributed in Ω:

ρ(�, t) = S∞(t)δ(�) +
D

|Ω|L
−1
p

{ ∞∑
n=0

|C(p)
n |2 [μ

(p)
n ]2

p2
e−μ

(p)
n �

}
. (31)

In summary, the probability density ρ(�, t|x 0) of the boundary local time can be
accessed in two complementary ways: either via the inverse Laplace transform (15) with
respect to q, or via the inverse Laplace transform (30) with respect to p. These equivalent
ways reflect the duality of bulk and surface reaction mechanisms elaborated in [43]. We
will employ both ways in the analysis of small targets.

3. Three approaches

This section describes our main theoretical results on the statistics of the boundary
local time on a small target. We present three complementary approaches to address
this problem. We start in section 3.1 by the MAA, which aims to match two approximate
solutions—an inner solution in the vicinity of the target as if the target was located in
the free space (without confinement), and an outer solution as if the target was point-
like. Our derivation relies on the asymptotic expansion of the Laplace-transformed full
propagator P̃ (x, �, p|x0) that was recently obtained by Bressloff [79]. We show the advan-
tages and practical limitations of this general and powerful technique. In section 3.2,
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we use a different strategy based on an approximation for the principal eigenvalue of
the Laplace operator. In this way, we derive a very simple yet accurate approximation
for the probability density of the boundary local time. In section 3.3, we employ yet
another approach relying on the SCA. These three approaches provide complementary
views onto the statistics of encounters with a small target.

3.1. Matched asymptotic analysis (MAA)

Bressloff developed the MAA for the Laplace-transformed full propagator P̃ (x, �, p|x0)
in three dimensions [79]. He considered a configuration of N spherical targets located
at points x 1, . . . , xN ∈ Ω and having small radii r1, . . . , rN (an extension to nonspherical
targets was also discussed). The targets were supposed to be located far away from each
other:

max
j

{rj} 	 min
i 
=j

{|xi − xj |}. (32)

In other words, if Rmin is the minimal separation distance between targets (the right-hand
side), then rj/Rmin = O(ε), where ε is a small parameter.

In the leading-order term, Bressloff obtained a very simple relation,

P̃ (x, �, p|x0) = G̃∞(x, p|x0)δ(�) + ũ0(x, �, p|x0) +O(ε), (33)

where G̃∞(x, p|x0) is the Laplace transform of the propagator G∞(x , t|x 0) defined by
equations (5) and (6) with q = ∞ (i.e. a perfectly reactive target with Dirichlet boundary
condition), and

ũ0(x, �, p|x0) = 4πD
N∑
j=1

e−�/rj g̃(xj , p|x0) g̃(x, p|xj), (34)

with

g̃(x, p|x0) =
e−|x−x 0|

√
p/D

4πD|x− x 0|
(35)

being the fundamental solution of the modified Helmholtz equation in R
3:

(p−DΔ)g̃(x, p|x0) = δ(x− x 0). (36)

The next-order term in equation (33) was also determined in [79] but its expression is
more sophisticated.

A probabilistic interpretation of equation (33) is instructive. The first term repre-
sents the contribution of trajectories that have not encountered any target so that the
boundary local time �t remained zero. In turn, the second term describes the trajecto-
ries that reached one of the targets. As the targets are small and well separated, their
contributions are independent from each other and thus additive. For the jth target, the
factor g̃(xj, p|x0) describes the passage from the starting point x 0 to the target loca-
tion x j, the factor e−�/rj characterizes the acquired boundary local time, and the factor
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g̃(x, p|xj) describes the motion from x j to x (figure 1(a)). We recall that the inverse
Laplace transform of this factor,

g(xj, t|x0) =
1

(4πDt)3/2
exp

(
−|xj − x 0|2

4Dt

)
, (37)

is the propagator of Brownian motion in the three-dimensional space (without any
target). Naturally, the next-order terms account for trajectories that have visited two
or many targets (figure 1(b)).

This intuitive picture suggests that the leading-order asymptotic expansion (33) is
expected to be most accurate for large p; in fact, thinking of p as the bulk reaction
rate, one deals here with a highly reactive medium, in which diffusion between distant
points is penalized: the contribution of rare trajectories that visit two or many targets
within the particle’s lifetime (the O(ε) term in equation (33)) is negligible. Similarly,
the possibility of a long excursion started from a single target and returned to it, is
also unlikely. In other words, such ‘long-range returns’ to the target are statistically
suppressed. We can therefore anticipate that the following asymptotic results would be
accurate at short time. In contrast, the contribution O(ε) is expected to be relevant
in the opposite limit p→ 0 or, equivalently, at long times. We will come back to these
statements in section 4.

If the limitation to small p can be ignored (i.e. if equation (34) can be used for
any p), the inverse Laplace transform of equation (33) implies

P (x, �, t|x0) = G∞(x, t|x0)δ(�) + u0(x, �, t|x0) +O(ε), (38)

with

u0(x, �, t|x0) =
1

4πD

N∑
j=1

e−�/rj

|x− xj | |x 0 − xj|
h(t, |x− xj|+ |x0 − xj|), (39)

where

h(t, x) =
x e−x2/(4Dt)

√
4πDt3

(40)

is the Lévy–Smirnov probability density of the first-passage time to the origin for a one-
dimensional Brownian motion started from x. Substituting the asymptotic expansion
(38) into equation (3), we get

ρ(�, t|x0) = S∞(t|x0)δ(�) + u0(�, t|x0) +O(ε), (41)

where

u0(�, t|x0) =

∫
Ω

dx u0(x, �, t|x0). (42)

In order to evaluate this contribution, one can look again at the Laplace-transformed
quantity ũ0(x, �, p|x0). If p is not too small (say,

√
p/D diam{Ω} � 1), the integral of
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g̃(x, p|xj) over Ω can be accurately approximated by integrating over the whole space
R

3: ∫
Ω

dx g̃(x, p|xj) ≈
∫
R3

dx g̃(x, p|xj) =
1

p
. (43)

As a consequence,

ũ0(�, p|x0) ≈ 4πD

N∑
j=1

e−�/rj g̃(xj , p|x0)
1

p
, (44)

from which

u0(�, t|x0) ≈
N∑
j=1

e−�/rj

|xj − x 0|
erfc

(
|xj − x 0|√

4Dt

)
, (45)

where erfc(z) is the complementary error function. This function determines a fully
explicit approximation (41) to the probability density ρ(�, t|x 0).

Moreover, if the starting point is uniformly distributed over the confining domain Ω,
one has

ρ(�, t) = S∞(t)δ(�) + u0(�, t) +O(ε), (46)

where

u0(�, t) =
1

|Ω|

∫
Ω

dx 0 u0(�, t|x0). (47)

As u0(�, t|x 0) in equation (45) is given as a sum, one can compute u0(�, t) by integrating
separately each term. For the jth term, one can introduce local spherical coordinates
centered at x j and ignore the presence of other targets due to the well-separation condi-
tion (32). In addition, the earlier assumption of large p is equivalent to considering the
short-time limit, in which the upper limit of the integral can be replaced by infinity:

u0(�, t) ≈
1

|Ω|

N∑
j=1

∫
Ω

dx0
e−�/rj

|xj − x 0|
erfc

(
|xj − x 0|√

4Dt

)

≈ 1

|Ω|

N∑
j=1

e−�/rj 4π

∞∫
0

dr r2
1

r
erfc

(
r√
4Dt

)
=

4πDt

|Ω|

N∑
j=1

e−�/rj . (48)

For a single target or for multiple identical targets (with equal radii rj = R), the
leading term of the asymptotic expansions (38), (41), and (46) exhibits the same depen-
dence on � via the factor e−�/R. As a consequence, the leading-order expansion can be
interpreted as an exponential distribution of the boundary local time �t, to which a
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probability measure atom at � = 0 is added:

ρ(�, t|x0) ≈ S∞(t|x0)δ(�) + e−�/R

N∑
j=1

1

|xj − x 0|
erfc

(
|xj − x0|√

4Dt

)
+O(ε), (49)

where we used equation (45). Similarly, equation (48) yields for the uniformly distributed
starting point:

ρ(�, t) ≈ S∞(t) δ(�) +
4πDt

|Ω| e−�/R. (50)

As the probability densities ρ(�, t|x 0) and ρ(�, t) must be normalized to 1, the time-
dependent prefactors in front of δ(�) and e−�/R should be related as

1 =

∞∫
0

d� ρ(�, t|x0) = S∞(t|x0) +R

N∑
j=1

1

|xj − x 0|
erfc

(
|xj − x 0|√

4Dt

)
, (51a)

1 =

∞∫
0

d� ρ(�, t) = S∞(t) +R
4πDt

|Ω| . (51b)

The accuracy of these relations can serve as an indicator of the quality of the exponential-
like approximations (49) and (50). As we will discuss in section 4, these relations can be
fulfilled for some intermediate range of times but fail in both limits of short and long
times. This failure reveals practical limitations of equations (49) and (50). In turn, when
the relations (51) are valid, one can replace equations (49) and (50) by their equivalent
forms, which automatically respect the normalization:

ρ(�, t|x0) ≈ S∞(t|x0)δ(�) + (1− S∞(t|x0))
e−�/R

R
(52)

and

ρ(�, t) ≈ S∞(t) δ(�) + (1− S∞(t))
e−�/R

R
, (53)

with S∞(t) given by equation (16). We will discuss the validity of these exponential-like
distributions in section 4.

In summary, one sees that the MAA is a general and powerful technique to access the
asymptotic behavior of the full propagator and the related quantities. While the leading-
order term of the regular part of the Laplace-transformed full propagator, ũ0(x, �, p|x0),
admits a simple probabilistic interpretation, its form in time domain is less intuitive.
Moreover, getting explicit approximations for the related quantities such as the prob-
ability density of the boundary local time, requires further simplifying assumptions
that may limit the range of their applicability. Most importantly, the next-order terms
accounting for the contribution of trajectories visiting several targets (or performing
several ‘long-range returns’ to a single target) may become relevant at long times. Even
though the MAA offers a systematic way to access these terms, their derivation and
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dependence on the parameters become much more sophisticated. For this reason, one
may search for alternative approaches to get an approximation of the probability density
of the boundary local time on a small target.

3.2. Principal eigenvalue approximation (PEA)

When the target is small, the ground eigenfunction of the Laplace operator is nearly

constant, u
(q)
1 (x) ≈ |Ω|−1/2, except for a vicinity of the target (see [80] and references

therein). As a consequence, the coefficient c
(q)
k in equation (14), in which the eigen-

function u
(q)
k is projected onto a constant and thus onto u

(q)
1 , can be approximated as

c
(q)
k ≈ δk,1, where δk,1 is the Kronecker symbol: δk,1 = 1 for k = 1 and 0 otherwise. The
ground eigenmode provides therefore the major contribution to the volume-averaged
survival probability:

Sq(t) ≈ e−Dtλ
(q)
1 . (54)

If the small target Γ is located far away from the reflecting boundary ∂Ω0 of a bounded
domain in R

d with d � 3, the principal eigenvalue can be approximated as [80]:

λ
(q)
1 ≈ λ

(∞)
1

qL

1 + qL
, λ

(∞)
1 ≈ C

|Ω| . (55)

Here L = |Γ|/C was called the trapping length of the target, with |Γ| and C being respec-

tively the surface area and the (harmonic) capacity of the target. The eigenvalue λ
(∞)
1

corresponds to a perfectly reactive target (q = ∞) with Dirichlet boundary condition.
The validity and high accuracy of the principal eigenvalue approximation (PEA) (55)
were confirmed for anisotropic targets in R

d with several values of d � 3 [80]. Actually,
the approximation (55) was getting more and more accurate as d increases. In turn, one
may need to include the known first-order correction to the capacity C in three dimen-
sions (see [76, 80] and references therein, as well as equation (79) below). Even though
the analysis in [80] was focused on a single target, the derivation remains applicable for
multiple, well-separated small targets satisfying the condition (32). In this case, C is the
sum of harmonic capacities of all targets, while |Γ| is the sum of their surface areas.

Substituting the approximation (55) into equation (54), one can invert the Laplace
transform in equation (17) to get

ρ(�, t) ≈ ρPEA(�, t), (56)

where

ρPEA(�, t) = L−1
q

{
exp

(
−Dtλ

(∞)
1

qL

1 + qL

)}

= e−Dtλ
(∞)
1

(
δ(�) +

∞∑
n=1

(Dtλ
(∞)
1 )n

n!
L−1

q {(1 + qL)−n}
)

= e−Dtλ
(∞)
1

(
δ(�) +

Dtλ
(∞)
1

L
e−�/L

∞∑
n=0

(Dtλ
(∞)
1 �/L)n

n!(n+ 1)!

)
, (57)
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which can also be written as

ρPEA(�, t) = e−t/T δ(�) +

√
t/T

�L
e−�/L−t/T I1

(
2
√

(t/T )(�/L)
)
, (58)

with Iν(z) being the modified Bessel function of the first kind, and T = 1/(Dλ
(∞)
1 ). This

is one of the main results of the paper. As the factor in front of δ(�) is an approximation
of the survival probability S∞(t), the first term is again interpreted as the contribution
of trajectories that never reached the target up to time t (and thus �t = 0). In turn,
the second term accounts for the trajectories that arrived onto the target and thus
yield positive �t. Despite its approximate character, this probability density is correctly
normalized for any t:∫ ∞

0

d� ρPEA(�, t) = 1.

When Dtλ
(∞)
1 �/L � 1, the asymptotic behavior of I1(z) yields

ρPEA(�, t) ≈ e−t/T δ(�) +
(t/T )

1
4

2
√
π (�/L)

3
4L

exp

(
−
(√

�/L−
√

t/T
)2
)
. (59)

The moments of �t can be easily deduced from equation (58):

E{[�t]k} =

∞∫
0

d� �k ρ(�, t) ≈
√
Dtλ

(∞)
1 e−Dtλ

(∞)
1 Lk

∞∫
0

dz zk−1/2 e−z I1

(√
4Dtλ

(∞)
1 z

)

= Dtλ
(∞)
1 Lk k! e−Dtλ

(∞)
1 M

(
k + 1 ; 2 ;Dtλ

(∞)
1

)
, (60)

where M(a ; b ; z) is the Kummer’s confluent hypergeometric function. Using the
Kummer’s transformation M(a ; b ; z) = ezM(b− a ; b ;−z), one checks that for any posi-

tive integer k, the right-hand side is a polynomial of Dtλ
(∞)
1 of order k− 1. For instance,

one gets

E{�t} ≈ L(Dtλ
(∞)
1 ) ≈ Dt|Γ|/|Ω|, var{�t} ≈ 2L2(Dtλ

(∞)
1 ), (61)

in agreement with general results [42].
The accuracy of this approximation will be discussed in section 4. We stress that

the approximation (58) is fully explicit and includes just few geometric parameters: the
surface area and the capacity of the target, as well as the volume of the domain. In
the case of a spherical target of radius R, one has |Γ| = 4πR2 and C = 4πR, i.e. the
trapping length is simply L = R. However, there is no restriction neither on the shape
on the target, nor on the space dimensionality d � 3 (see the discussion of the planar
case in section 6). In other words, the approximation is valid for a general confining
domain and any small enough target (up to some mathematical restrictions, e.g. on
boundary smoothness for a rigorous formulation of the problem).
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It is instructive to compare the regular part of the approximation (58) to the
exponential-like behavior (53) for a single spherical particle with L = R. Despite the
common factor e−�/R, the dependence on � is more sophisticated in equation (58). In
fact, � appears in the argument of the modified Bessel function and is thus coupled to
time t, which thus controls the behavior of I1(z). This can also be seen in the long-time
asymptotic relation (59), which exhibits a distinct maximum of the boundary local time

�t around the mean value Dtλ
(∞)
1 L that grows with time. In contrast, the mean value

predicted by equation (53), R(1− S∞(t)), approaches a constant R as time t grows.
This behavior, which contradicts the general properties of the boundary local time in
confined domains, is in turn reminiscent to the case of a spherical target in R

3, as if
the reflecting boundary ∂Ω0 was moved to infinity [42]. Once again, this discrepancy
highlights the limitations of the matched asymptotic expansion at long times.

3.3. Self-consistent approximation (SCA)

Even though the PEA provides a simple form of the probability density ρ(�, t), it is
instructive to discuss yet another approach to this problem. In [82–86], a SCA was
developed to calculate the survival probability Sq(t|x 0), in which the mixed boundary
condition (22) was replaced by an effective inhomogeneous Neumann boundary condi-
tion, with a constant flux on the target. For a small target in a general confining domain,
the SCA reads [86]

S̃app
q (p|x0) =

1

p
− 1

p

(
1

q
+

1

Qp

)−1

Fp(x 0), (62)

where

1

Qp
=

1

|Γ|

∞∑
n=0

|C(p)
n |2

μ
(p)
n

(63)

and

Fp(x0) =

∞∑
n=0

[C
(p)
n ]∗

μ
(p)
n

V (p)
n (x 0), (64)

with V
(p)
n (x0) and C

(p)
n being given by equations (26) and (28). The inversion of the

Laplace transform in equation (10) with respect to q yields

ρ̃app(�, p|x0) =
1−QpFp(x 0)

p
δ(�) +

Q2
p Fp(x 0)

p
exp(−Qp�). (65)

As previously, the first term represents the contribution of trajectories that do not
encounter the target, whereas the second term gives the contribution of trajectories
that encountered the target and thus increased the boundary local time. One can easily
check that the approximate probability density in equation (65) is correctly normalized:
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∞∫
0

d� ρ̃app(�, p|x0) =
1

p
. (66)

Recalling that p ρ̃(�, p|x0) is the probability density of the boundary local time �τ
acquired until the particle’s death, one realizes that equation (65) provides again a
simple exponential-like distribution of �τ , whose parameters are determined by Qp and
Fp(x 0). We stress that the above description has no restriction on the connectivity of
the target Γ, i.e. it is applicable to multiple targets as well.

While the probability density (65) has a simple form in the Laplace domain, its
parameters Qp and Fp(x 0) depend on the confining domain and the target in a sophis-
ticated way (via the spectral properties of the Dirichlet-to-Neumann operator). In
addition, the inverse Laplace transform with respect to p is still needed to access the
probability density function ρ(�, t|x 0) of the boundary local time �t. As a consequence,
this approach may look too sophisticated and less informative as compared to the for-
mer ones discussed in sections 3.1 and 3.2. At the same time, it brings complementary
insights onto the statistics of diffusive encounters, as described below. In addition, the
SCA becomes exact in some symmetric domains and can thus be used as a benchmark
for validating the accuracy of other approximations (see section 4). Finally, the SCA
does not rely on a sufficient separation between the target and the outer boundary (that
was required for the principal value approximation in section 3.2), nor on a sufficient
separation between targets (that was required for the MAA in section 3.1). In other
words, the underlying assumptions are weaker than in two other cases.

When the starting point x 0 is uniformly distributed inside the confining domain Ω,
the volume average reads:

ρ̃app(�, p) =
1

|Ω|

∫
Ω

dx0 ρ̃
app(�, p|x0) =

1−QpFp

p
δ(�) +

Q2
pFp

p
e−Qp�, (67)

with

Fp =
1

|Ω|

∫
Ω

dx 0 Fp(x0) =
1

|Ω|

∞∑
n=0

[C
(p)
n ]∗

μ
(p)
n

∫
Ω

dx 0 V
(p)
n (x 0) =

D

p|Ω|

∞∑
n=0

|C(p)
n |2 = D|Γ|

p|Ω| ,

where we used the identity (29) and employed the completeness of the eigenbasis

{v(p)n (s)}. In appendix A, we provide some complementary insights and probabilistic
interpretation of the parameters Qp and Fp(x 0), and discuss the short-time and long-time
asymptotic behaviors of the approximate probability density ρapp(�, t).

In summary, all three approximations are applicable to multiple arbitrarily-shaped
small targets, which are well separated from each other and from the outer boundary.
The MMA offers a systematic way to access higher-order corrections and thus to control
the accuracy; the PEA yields a fully explicit yet accurate expression (58), which is valid
even in higher dimensions; finally, the SCA remains rather formal due to its need to
access spectral properties of the Dirichlet-to-Neumann operator but yields an exact
solution in some simple domains; it is also less restrictive on the arrangement of the
targets. While the PEA is probably the most useful for applications, it is based on the

https://doi.org/10.1088/1742-5468/ac85ec 17

https://doi.org/10.1088/1742-5468/ac85ec


J.S
tat.

M
ech.

(2022)
083205

Statistics of diffusive encounters with a small target: three complementary approaches

average over a uniformly distributed starting point and therefore does not capture the
impact of a fixed starting point, which is accessed in both MMA and SCA. Overall,
these three approximations provide complementary tools for studying the distribution
of the boundary local time on small targets.

4. Comparison for a spherical target

In order to access the accuracy of the approximations that we derived in section 3, we
consider restricted diffusion toward a spherical target of radius R1 surrounded by an
outer concentric reflecting sphere of radius R2: Ω = {x ∈ R

3 :R1 < |x| < R2}. For this
rotation-invariant domain, the eigenmodes of the Laplace operator and of the Dirichlet-
to-Neumann operator are well known [63], in particular,

μ(p)
n = −

(
∂rg

(p)
n

)
|r=R1

, (68)

with

g(p)n (r) =
k′
n(αR2)in(αr)− i′n(αR2)kn(αr)

k′
n(αR2)in(αR1)− i′n(αR2)kn(αR1)

. (69)

Here α =
√

p/D, in(z) =
√

π/(2z) In+1/2(z) and kn(z) =
√

2/(πz)Kn+1/2(z) are the
modified spherical Bessel functions of the first and second kind, and the prime denotes

the derivative with respect to the argument. The radial functions g
(p)
n (r) satisfy the

second-order differential equation(
∂2
r +

2

r
∂r −

n(n+ 1)

r2
− α2

)
g(p)n (r) = 0, (70)

with g
(p)
n (R1) = 1 and

(
∂rg

(p)
n

)
r=R2

= 0.

As the target region covers the whole inner sphere, the survival probability Sq(t|x 0)
and the probability density ρ(�, t|x 0) of the boundary local time do not depend on the
angular spherical coordinates (θ0,φ0) of the starting point x 0 = (r0, θ0,φ0). In addition,

the ground eigenfunction v
(p)
0 (s) = 1/

√
4πR2

1 is constant, and the projection of other
eigenfunctions on 1 in equation (28) yields thus

C(p)
n =

√
4πR1 δn,0. (71)

Substituting this expression into equation (27), one has

ρ̃(�, p|x0) = S̃∞(p|x0)δ(�) +
√
4πR1

μ
(p)
0

p
e−μ

(p)
0 �V

(p)
0 (x0), (72)

with

S̃∞(p|x 0) =
1− H̃∞(p|x0)

p
=

1− g
(p)
0 (r0)

p
(73)
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and

V
(p)
0 (x 0) =

1√
4πR1

∫
Γ

ds j̃∞(s, p|x0) =
H̃∞(p|x0)√

4πR1

=
g
(p)
0 (r0)√
4πR1

, (74)

where H̃∞(p|x 0) is the Laplace-transformed probability density of the first-passage time
to a perfectly reactive target. We get thus

ρ̃(�, p|x0) =
1− g

(p)
0 (r0)

p
δ(�) +

g
(p)
0 (r0)

p
μ
(p)
0 e−μ

(p)
0 �. (75)

When the starting point x 0 is uniformly distributed in Ω, one can use equation (70) to
show that

R2∫
R1

dr r2 g
(p)
0 (r) = −R2

1(∂rg
(p)
0 )r=R1

p/D
=

DR2
1μ

(p)
0

p
, (76)

from which

ρ̃(�, p) =

(
1

p
− 4πDR2

1μ
(p)
0

p2|Ω|

)
δ(�) +

4πDR2
1[μ

(p)
0 ]2

p2|Ω| e−μ
(p)
0 �. (77)

Equations (75) and (77) provide the exact form of the probability density in the Laplace
domain. In the following, we focus on equation (77) and perform its inverse Laplace
transform with respect to p numerically to get the probability density ρ(�, t). Despite
this numerical step, this solution will be referred to as an exact solution, to which other
approximations will be compared.

The substitution of equation (71) into equations (63) and (64) yields

Qp = μ
(p)
0 , Fp(x0) =

g
(p)
0 (r0)

μ
(p)
0

, (78)

so that the approximate probability density ρ̃app(�, p|x0) from equation (65) turns out
to be identical with the exact one given by equation (75). In other words, the SCA is
exact for the considered case. We emphasize that this is a consequence of the rotation
symmetry; in general, the SCA does not coincide with the exact solution.

A comparison with the PEA (58) is straightforward. In fact, the capacity C of a
spherical target is equal to 4πR1. As discussed in [80], a more accurate approximation
involves the ‘corrected’ capacity, which for a spherical target reads as

C ′ = C(1− CR(x Γ, x Γ)), (79)

where R(xT, xT) is the regular part of the Neumann’s Green function, evaluated at the
location xT of the target inside the confining spherical domain of radius R2 [76]:

(4πR2)R(x, x) =
1

1− |x|2
R2

2

− ln

(
1− |x|2

R2
2

)
+

|x|2
R2

2

− 14

5
. (80)
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In our case, the target is located at the origin, xT = 0, so that

C ′ = 4πR1

(
1 +

9R1

5R2

)
, (81)

and thus

λ
(∞)
1 ≈ C ′

|Ω| ≈
3R1(1 + (9R1)/(5R2))

R3
2

, (82)

L =
|Γ|
C ′ =

R1

1 + (9R1)/(5R2)
, (83)

where we neglected the small term R3
1 as compared to R3

2 in the volume |Ω|.
Figure 2 compares several approximations of the probability density ρ(�, t) to the

exact solution obtained via a numerical inverse Laplace transform of the exact rela-
tion (75). As the singular term S∞(t)δ(�) is the same for all considered approximations,
we present only the regular part of ρ(�, t), which allows one to appreciate the quality
of these approximations. Setting R2 = 1 and D = 1 fixes the units of length and time.
In the considered example, we choose a relatively small target with R1/R2 = 0.1, for

which the volume-averaged mean first-passage time is T � 1/(Dλ
(∞)
1 ) ≈ R3

2/(3R1D) ≈ 3.
At short times t (as compared to T), the survival probability S∞(t) is close to 1, i.e.
most trajectories have not yet encountered the target, and �t = 0. In this regime, the
singular term S∞(t)δ(�) provides the dominant contribution to ρ(�, t). In turn, the
regular part accounts for contributions from rare trajectories that started from the
vicinity of the target and have encountered it. The panels (a) and (b) of figure 2
illustrate the dependence of the regular part on � in this regime. One sees that three
approximations (50), (53) and (58) are in good agreement with the exact solution, espe-
cially in the case t = 1. Some deviations on the panel (a) for t = 0.1 will be discussed
below.

In the opposite long-time regime t � T, S∞(t) is close to 0, and the dominant con-
tribution comes from the regular part of ρ(�, t) that is shown on panels (c) and (d)
of figure 2. While the PEA (58) remains to be in excellent agreement with the exact
solution, exponential-like approximations (50) and (53) based on the MAA, fail at long
times. As discussed in section 3.1, the leading-order term does not account for mul-
tiple ‘long-range returns’ of the particle to the target, which substantially modify the
statistics of the boundary local time. Even though the MAA allows one to obtain next-
order terms, their derivation and resulting expressions rapidly become too cumbersome
for a practical implementation. In contrast, the PEA (58), which is remarkably simple
and general, fully describes the distribution of �t. Its excellent quality is rationalized
in appendix A, in which equation (58) was re-derived from the long-time asymptotic
behavior of the SCA. We recall that the SCA (65) itself is identical to the exact solu-
tion for this geometric setting and thus is not discussed here. Figure 3 illustrates
the long-time asymptotic relation (59), which follows from the PEA. Expectedly, it
is accurate at long times t = 10 and t = 100 but exhibits deviations at shorter time
t = 1.

It is instructive to return to the panel (a) and inspect eventual deviations at short
times. Such deviations for the PEA are briefly discussed at the end of appendix A. Let
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Figure 2. The regular part of the probability density ρ(�, t) of the boundary local
time �t on a spherical target of radius R1 = 0.1 surrounded by a concentric reflecting
sphere of radius R2 = 1, with D = 1, the uniform starting point, and several values
of time: t = 0.1 (a), t = 1 (b), t = 10 (c), and t = 100 (d). Solid line presents the
benchmark solution obtained via a numerical inverse Laplace transform of the exact
relation (77) by the Talbot algorithm; dashed line shows the PEA in equation (58);
dash-dotted line shows an exponential approximation (53), in which S∞(t) was
computed via its spectral expansion; dotted line indicates the short-time behavior
(50) predicted by the MAA.

us thus focus on deviations of the exponential-like distribution (50) predicted by the
MAA. As this relation was obtained by using the short-time approximation, one might
expect that equation (50) would be more and more accurate as t goes to 0. This is not
the case. In fact, the normalization of the probability density ρ(�, t) yields the condition
(51b), which reads as

1− S∞(t)

R
≈ 4πDt

|Ω| . (84)

This relation can be considered as a necessary condition for the consistence of the
approximation (50). Clearly, this relation fails at long times, at which S∞(t) vanishes.
Is it correct at short times? The answer is negative. In fact, the short-time asymptotic
behavior of the survival probability follows from the heat content asymptotics [100–103]
and reads [104]

S∞(t) ≈ 1− 2|Γ|√
π|Ω|

√
Dt+O(t). (85)
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Figure 3. The regular part of the probability density ρ(�, t) of the boundary local
time �t on an inner sphere of radius R1 = 0.1 surrounded by an outer reflecting
sphere of radius R2 = 1, with D = 1 and several values of t. Lines present a numeri-
cally inverted Laplace transform of the exact relation (77) by the Talbot algorithm,
whereas symbols show the large-� approximation (59).

In other words, since the left-hand side of equation (84) scales as t1/2, while the right-
hand side does as t, this relation cannot hold at short times. Fortunately, there is an
intermediate range of time scales at which equation (84) holds. In fact, if the target is
small enough, the survival probability can be approximated via equation (54), which at
moderately short times admits the Taylor expansion:

S∞(t) ≈ 1−Dtλ
(∞)
1 +O(t2). (86)

and thus equation (51b) is equivalent to λ
(∞)
1 ≈ 4πR1/|Ω|. As the numerator of the

right-hand side is precisely the capacity of a spherical target of radius R1, we retrieve
the approximation given in equation (55). In other words, even though the condition
(84) fails in both limits t→ 0 and t→∞, it is fulfilled at intermediate times if the
target is small enough. We conclude that the exponential-like distribution (50) is valid
whenever the PEA (58) is. The latter is therefore much more general.

To complete this discussion, we provide some qualitative arguments why the predic-
tions of the MAA fail at very short times. In this regime, the only nontrivial contribution
comes from a very thin layer near the target. At the same time, the main idea of the MAA
consists in matching inner and outer solutions of the problem. For the other solution,
the target is treated as point-like (for instance, equation (34) involves the fundamental
solution g̃(x, p|x0) of the modified Helmholtz equation, which deals with a point-like
source), so that its geometric structure is not accessible at short times. In other words,
the MAA focuses on the limit, in which the target size is the smallest parameter of the
problem; in particular, R1 should be much smaller than a diffusion length

√
Dt. This con-

dition yields a natural restriction of considering not too short times, namely, t � R2
1/D.

This qualitative argument explains why the agreement on panel (a) for t = 0.1 is still
acceptable, despite some minor deviations. In turn, deviations are more significant for
even small t (not shown).
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5. Distribution of first-crossing times

As the PEA turns out to be the most convenient, one can apply it to investigate other
properties of the boundary local time and related quantities. Integrating the series
expansion (57) of ρPEA(�, t) term by term, we also get an approximation

P{�t > �} =

∞∫
�

d�′ ρ(�′, t) ≈
∞∫
�

d�′ ρPEA(�
′, t)

= e−Dtλ
(∞)
1 −�/L

∞∑
n=0

(Dtλ
(∞)
1 )n+1

(n+ 1)!

n∑
k=0

(�/L)k

k!
(87)

that determines the cumulative distribution function of �t. Alternatively, one can inte-
grate directly the final expression (58), which yields after changing the integration
variable

P{�t > �} ≈
√

4Dtλ
(∞)
1 e−Dtλ

(∞)
1

∞∫
√

�/L

dz e−z2 I1

(
z

√
4Dtλ

(∞)
1

)
. (88)

The function P{�t > �} determines also the distribution of the first-crossing time T� =
inf{t > 0 : �t > �} of a given threshold � by the boundary local time �t, which plays an
important role in diffusion-controlled reactions [43]. In fact, since �t is a non-decreasing
process, one has P{�t > �} = P{T� < t}, from which the probability density of T� follows
as

U(�, t) = ∂tP{T� < t} = ∂tP{�t > �}. (89)

Evaluating the time derivative of equation (87) term by term, we get the following
approximation:

UPEA(�, t) =
1

T
e−�/L−t/T I0

(
2
√
(t/T )(�/L)

)
. (90)

This is one of the main results of the paper. Despite its approximate character, this
probability density is correctly normalized. For large � or t, the asymptotic behavior of
I0(z) yields

UPEA(�, t) ≈
exp

(
−
(√

�/L−
√

t/T
)2
)

2
√
π(T )

3
4 t

1
4 (�/L)

1
4

. (91)

The moments of T� can be easily accessed:
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Figure 4. The probability density U(�, t) of the first-crossing time T� of the bound-
ary local time �t on an inner sphere of radius R1 = 0.1 surrounded by an outer
reflecting sphere of radius R2 = 1, with D = 1 and several values of the threshold
�. Lines present a numerically inverted Laplace transform of the exact relation (94)
by the Talbot algorithm, whereas symbols show the PEA (90).

E{[T�]
k} =

∞∫
0

dt tk U(�, t) ≈ e−�/L

(Dλ
(∞)
1 )k

∞∫
0

dz zk e−z I0

(
2
√

z�/L
)

= Tkk! e−�/LM(k + 1 ; 1 ; �/L). (92)

For instance, one gets

E{T�} ≈ (1 + �/L) T , var{T�} ≈ (1 + 2�/L) T 2. (93)

Note that the probability density U(�, t) can formally be accessed from the general
exact representation (31), which yields for the spherical case:

U(�, t) = L−1
p

{
4πDR2

1μ
(p)
0

p|Ω| e−μ
(p)
0 �

}
. (94)

A numerical inversion of this Laplace transform can be used as a benchmark for val-
idating our approximation. Figure 4 illustrates an excellent accuracy of the approx-
imation (90) for several values of the threshold � when t is not too small. In turn,
the approximation fails in the small-time limit. In fact, equation (90) suggests that

U(�, t)→Dλ
(∞)
1 e−�/L as t→ 0, whereas the exact solution (94) implies a rapid decay

of U(�, t). This can be seen from the large-p asymptotic analysis of equation (68) that

yields μ
(p)
0 ≈

√
p/D + 1/R1 for the considered spherical case, from which the inverse

Laplace transform in equation (94) implies

U(�, t) ≈ |Γ|D
|Ω| e−�/R1

(
e−�2/(4Dt)

√
πDt

+
1

R1
erfc

(
�√
4Dt

))
(t→ 0). (95)

https://doi.org/10.1088/1742-5468/ac85ec 24

https://doi.org/10.1088/1742-5468/ac85ec


J.S
tat.

M
ech.

(2022)
083205

Statistics of diffusive encounters with a small target: three complementary approaches

The short-time deviation of the approximation (90) is clearly seen in figure 4 for the case
� = 1. Despite this limitation at short times, the simple explicit form of equation (90)
captures the behavior of the probability density U(�, t) remarkably well.

6. Conclusion

We studied the distribution of the boundary local time �t, i.e. a rescaled number of
encounters between a diffusing particle and a target. This distribution can formally be
obtained either by the inverse Laplace transform of the survival probability with respect
to the reactivity parameter q, or as an expansion over the eigenbasis of the Dirichlet-to-
Neumann operator. In both cases, the underlying quantities depend on the shapes of the
confining domain and of the target in a sophisticated, generally unknown way. To access
this distribution in the case of a small target, we employed three approximations: the
MAA, the PEA, and the SCA. The leading order of the MAA yielded an exponential-like
distribution (53), with an atom at � = 0 corresponding to the trajectories that never
encountered the target. This approximation was shown to be accurate only at inter-
mediate times but failing in both short- and long-time limits. Such an approximation
can be potentially improved by considering higher-order corrections in the MAA which,
however, are much more cumbersome. In turn, the PEA provided a simple, fully explicit
and remarkably accurate approximation (58). This approximation involves only few geo-
metric characteristics such as the surface area and the harmonic capacity of the target,
as well as the volume of the confining domain. In particular, it reveals how the bound-
ary local time � is coupled to physical time t. This is a rare example of an explicitly
known distribution of the boundary local time (for two other basic examples, the half-
line and the exterior of a sphere, see [65]). The third approach was based on the SCA,
which yielded a compact form of the probability density of the boundary local time in
the Laplace domain. The need for the Laplace inversion to come back in time domain
makes this approximation less appealing in comparison to the PAE. Nevertheless, the
SCA-based relations (65) and (67) allowed us to study the asymptotic behaviors; in
particular, we managed to retrieve the PEA (58) as the long-time asymptotic limit of
the SCA. The accuracy of different approximations was checked in a typical geometric
setting of a spherical target surrounded by a reflecting sphere.

It is worth noting that the inversion of the Laplace transform is actually not needed
for some applications. For instance, when a particle diffuses in a reactive medium or has
an internal destructive mechanism (aging, radioactive decay, photobleaching, nuclear
spin relaxation, etc), its lifetime τ is random and usually described by an exponential law
with the decay rate p [89–91]. In this case, the above approximations give a direct access
to the probability density p ρ̃(�, p|x0) of the boundary local time �τ , which is stopped
at a random time τ . Here, �τ characterizes the number of encounters with the target
until the particle’s death. For instance, equation (65) shows that p ρ̃(�, p|x0) admits a
simple exponential-like form, with an atom at 0. Moreover, the small-p expansion of
the Laplace-transformed probability density ρ̃(�, p|x0) determines the moments of the
boundary local time �t. Other quantities such as splitting probabilities and conditional
first-passage time moments can also be accessed [79].
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This paper was mainly focused on three-dimensional confining domains. In partic-
ular, this choice allowed us to compare three approximations given that the MAA was
done by Bressloff only in three dimensions [79]. Its extension to other space dimensions
is in principle feasible but requires additional work. In turn, the SCA was formulated in
terms of the eigenbasis of the Dirichlet-to-Neumann operator and is thus valid for any
dimension. Finally, the PEA (55) is applicable for any d � 3; moreover, it is getting more
accurate as d increases [80]. We therefore expect that our approximation (58) for the
probability density ρ(�, t) would also be accurate in higher dimensions. In turn, the two-
dimensional case was excluded from the analysis in [80]. In fact, the harmonic capacity
does not exist in two dimensions, whereas solutions of the Laplace equation are much
more sensitive to a distant outer boundary. At the same time, one can still consider
equation (55) as an interpolation between two limits of perfectly reactive (q→∞) and

weakly reactive (q→ 0) targets. Setting C = λ
(∞)
1 |Ω| and thus L = |Γ|/(λ(∞)

1 |Ω|), one
sees that equation (55) interpolates between the limit λ

(∞)
1 as q→∞ and the expected

behavior λ
(q)
1 ≈ q|Γ|/|Ω| as q→ 0. Admitting this interpolation, one can keep the deriva-

tion in section 3.2 and thus retrieve again the approximation (58) in two dimensions.

Moreover, the eigenvalue λ
(∞)
1 can also be related to the geometric properties of a small

target [68–70]. Numerical validation of this conjectural extension to the two-dimensional
case presents an interesting perspective.

While we were mainly interested in the distribution of the boundary local time
�t, the approximation (58) allowed us to access the tightly related probability density
U(�, t) of the first-crossing time T� of a given threshold � by �t. Our approximation
(90) is a rare example when this probability density admits a fully explicit form. As
discussed in [43], this distribution is directly related to the distribution of first-reaction
times on a partially reactive target. Moreover, one can go beyond the conventional
constant reactivity framework (described by the Robin boundary condition) and deal
with other surface reaction mechanisms such as encounter-dependent reactivity. A simple
explicit form of the probability density U(�, t) allows one to investigate a broad class of
first-passage times related to various surface reaction mechanisms. The explicit form of
U(�, t) can also be employed to study in more detail the resource depletion problem by
a population of diffusing particles [105].

Appendix A. Analysis of the self-consistent approximation

In this appendix, we discuss the probabilistic interpretation of the parameters Qp and
Fp(x 0) that determine the SCA, as well as its short-time and long-time asymptotic
behaviors.

A.1. Complementary insights

Let us gain complementary insights onto the parameters Qp and Fp(x 0). Since the kernel

of the Dirichlet-to-Neumann operator Mp is DG̃0(s, p|s0) (see [43]), the expression (63)
can also be written as
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1

Qp
=

1

|Γ|

∫
Γ

ds0

∫
Γ

dsDG̃0(s, p|s0). (A.1)

In order to interpret this expression, we recall that the mean residence time in a subset
A ⊂ Ω is

RA(t|x 0) = Ex 0

⎧⎨
⎩

t∫
0

dt′IA(Xt′)

⎫⎬
⎭ =

t∫
0

dt′
∫
A

dxEx 0
{δ(x−Xt′)}

=

t∫
0

dt′
∫
A

dxG0(x, t
′|x0).

If A is a thin layer near the target, A = Γa, then we get the mean boundary local time
on Γ:

Ex 0
{�t} = lim

a→0

D

a
RΓa

(t|x 0) =

t∫
0

dt′
∫
Γ

dxDG0(x, t
′|x0), (A.2)

where we used that G0(x , t
′|x 0) behaves smoothly in a vicinity of a smooth boundary. If

the particle has a finite lifetime, one has to average over t with an exponential probability
density:

Ex 0
{�τ} =

∞∫
0

dt p e−pt︸ ︷︷ ︸
pdf of τ

Ex 0
{�t} =

∫
Γ

dxDG̃0(x, p|x0). (A.3)

Note that the inverse Laplace transform of Ex 0
{�τ}/p yields the mean Ex 0

{�t}. We
conclude that 1/Qp in equation (A.1) is the mean boundary local time �τ on Γ, averaged
over the starting point x 0 uniformly distributed on Γ.

For a fixed starting point, one can use equation (65) to approximate the moments
of the boundary local time �τ , in particular, the mean is

Ex 0
{�τ} ≈

∞∫
0

d� � p ρ̃app(�, p|x0) = Fp(x 0). (A.4)

Its average over x 0 ∈ Γ reads

1

|Γ|

∫
Γ

dx 0 Fp(x0) =
1

Qp

, (A.5)

so that

1

|Γ|

∫
Γ

dx 0 p ρ̃
app(�, p|x0) = Qp exp(−Qp�). (A.6)
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In summary, if the starting point is uniformly distributed over the target Γ, the distri-
bution of the boundary local time �τ is close to be exponential, with the mean value
1/Qp.

A.2. Long-time behavior

It is instructive to look at the long-time behavior of the approximate probability density
ρapp(�, t) that follows from the small-p asymptotic analysis of equation (67).

In the limit p→ 0, one can apply a standard perturbation theory discussed in [42].
Adapting this approach to our setting with a target Γ surrounded by a reflecting
boundary ∂Ω0, we get

μ
(p)
0 ≈ |Ω|

D|Γ|p+
bp2

2
+O(p3), (A.7)

where the parameter b can be represented as

b ≡ lim
p→0

d2μ
(p)
0

dp2
= − 2|Ω|2

D|Γ|3
∫
Γ

ds1

∫
Γ

ds2 G(s1, s2),

with

G(s1, s2) = lim
p→0

(
G̃0(s, p|s0)−

1

p|Ω|

)
(A.8)

being the Neumann pseudo-Green’s function. In turn, the corresponding eigenfunction

behaves as v
(p)
0 (s) ≈ |Γ|−1/2 + pv10(s) +O(p2) as p→ 0. As a consequence, C

(p)
n ≈ O(p)

for n > 0 due to the orthogonality of eigenfunctions v
(p)
n to v

(p)
0 (and thus to a constant),

in the leading order in p. In turn, the normalization of the eigenfunction v
(p)
0 implies

1 = ‖v(p)0 ‖2L2(Γ)
= ‖v(0)0 ‖2L2(Γ)︸ ︷︷ ︸

=1

+ 2p
(
v
(0)
0 · v10

)
L2(Γ)

+O(p2),

and thus (v
(0)
0 · v10)L2(Γ) = 0, i.e. the integral of the first-order correction v10(s) vanishes.

As a consequence, C
(p)
0 ≈ |Γ|1/2 +O(p2) (i.e. there is no O(p) term). Substituting these

relations into equation (63), we get

Q−1
p ≈ D|Γ|

p|Ω| + L+O(p), with L = −b

2
(D|Γ|/|Ω|)2, (A.9)

which can also be written as

Qp ≈
|Ω|
D|Γ|

p

1 + pδ
, with δ = L

|Ω|
D|Γ| , (A.10)

where we neglected the next-order terms. Substituting this expression into equation (67),
we get
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ρ̃app(�, p) ≈ δ

1 + pδ
δ(�) +

δ/L

(1 + pδ)2
e−(�/L)pδ/(1+pδ). (A.11)

The inverse Laplace transform with respect to p reads

ρapp(�, t) ≈ e−t/δδ(�) +
δ

L
e−�/LL−1

p

{
e(�/L)/(1+pδ)

(1 + pδ)2

}

= e−t/δδ(�) +
δ

L
e−�/L

∞∑
n=0

(�/L)n

n!
L−1

p

{
1

(1 + pδ)n+2

}

= e−t/δδ(�) + e−�/L e−t/δ

√
t/δ√
�L

∞∑
n=0

((�/L)t/δ)n+
1
2

n!(n+ 1)!

= e−t/δδ(�) + e−�/L e−t/δ

√
t/δ√
�L

I1

(
2
√

(�/L)t/δ
)
. (A.12)

Remarkably, the long-time asymptotic relation (A.12) coincides with the PEA (58)
from section 3.2, with a different notation L = |Γ|/C, where C is the capacity of the tar-
get. Using this relation, we obtain an interesting representation for the second derivative

of μ
(p)
0 :

b ≈ − 2|Ω|2
C|Γ|D2

. (A.13)

Moreover, substituting this expression into the definition of δ, we get δ = |Ω|/(DC) =

1/(Dλ
(∞)
1 ), i.e. we retrieve an approximation λ

(∞)
1 = C/|Ω| for the principal eigenvalue

for the perfect target. In this way, two approaches result in the same long-time behavior.

A.3. Short-time behavior

The short-time behavior corresponds to the large-p limit. As the boundary region Γ
is smooth, the propagator G0(x , t|x 0) is close to that in the half-space with reflecting
hyperplane:

Ghalf
0 (x, t|x0) =

e−|s−s0|2/(4Dt)

(4πDt)(d−1)/2

e−(y−y0)
2/(4Dt) + e−(y+y0)

2/(4Dt)

√
4πDt

,

where x = (s, y) and x 0 = (s0, y0). Its Laplace transform reads

G̃half
0 (x, p|x0) =

(D/p)ν/2

(2π)d/2D

(
Aν

1Kν

(
A1

√
p/D

)
+Aν

2Kν

(
A2

√
p/D

))
,

where ν = 1− d/2, A2
1 = |s− s0|2 + (y − y0)

2, A2
2 = |s− s0|2 + (y + y0)

2, and Kν(z) is
the modified Bessel function of the second kind. Setting y = y0 = 0, one gets

https://doi.org/10.1088/1742-5468/ac85ec 29

https://doi.org/10.1088/1742-5468/ac85ec


J.S
tat.

M
ech.

(2022)
083205

Statistics of diffusive encounters with a small target: three complementary approaches

G̃half
0 (s, p|s0) =

2(D/p)ν/2

(2π)d/2D
|s− s0|νKν

(
|s− s0|

√
p/D

)
. (A.14)

At large p, equation (63) implies thus

1

Qp
≈ 1

|Γ|

∫
Γ

ds0

∫
Γ

dsDG̃half
0 (s, p|s0)

≈ 2(D/p)ν/2

(2π)d/2|Γ|

∫
Γ

ds0

∫
Γ

ds |s− s0|νKν

(
|s− s0|

√
p/D

)
.

As Kν(z) decays exponentially at large z, the main contribution comes from the points
s ≈ s0. One integral yields thus |Γ|. In turn, the second integral can be evaluated by
replacing the target surface by a hyperplane and using the spherical coordinates:

1

Qp
≈ 2(D/p)ν/2

(2π)d/2
σd−1

∞∫
0

dr rd−2 rνKν

(
r
√

p/D
)
,

where σd−1 = 2π(d−1)/2/Γ((d− 1)/2) is the surface area of the unit ball in R
d−1, and we

extended the upper limit of integration to infinity. The last integral can be found exactly
via the identity:

∞∫
0

dz zα Kν(z) = 2α−1Γ

(
α+ ν + 1

2

)
Γ

(
α − ν + 1

2

)
.

After simplifications, we get simply

Qp ≈
√

p/D (p→∞). (A.15)

Substituting this expression into equation (67), we can invert the Laplace transform to
get the short-time approximation:

ρapp(�, t) ≈
(
1− 2

√
Dt |Γ|√
π|Ω|

)
δ(�) +

|Γ|
|Ω|erfc

(
�√
4Dt

)
(t→ 0). (A.16)

Despite its approximation character, this expression is correctly normalized.
We emphasize that equation (A.15) and the consequent relation (A.16) ignore the

curvature of the target, which is known to yield non-universal corrections [105]. For

instance, if the target is a sphere of radius R1, equation (68) implies μ
(p)
0 ≈

√
p/D +

1/R1, and its substitution into equation (77) and the evaluation of the inverse Laplace
transform yield the following short-time asymptotic behavior:
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ρ(�, t) ≈
{
1− |Γ|

|Ω|

(
2
√
Dt√
π

+
Dt

R1

)}
δ(�)

+
|Γ|
|Ω|e

−�/R1

{(
1− 2�

R1
+

�2 + 2Dt

2R2
1

)
erfc

(
�√
4Dt

)
+

(4− �/R1)
√
Dt

R1

√
π

e−�2/(4Dt)

}
.

(A.17)

Its comparison with equation (A.16) reveals that the regular part of this expression
contains in an additional factor e−�/R1 due to the curvature, as well as higher-order cor-
rections. The above expression is valid for

√
Dt 	 R1. One can distinguish two regimes

depending on whether � is smaller or larger than
√
Dt. When

√
Dt 	 �, one gets in the

leading-order:

ρ(�, t) ≈
(
1− 2

√
Dt |Γ|√
π|Ω|

)
δ(�) +

2
√
Dt |Γ|√
π |Ω| � e

−�2/(4Dt)e−�/R1. (A.18)

In the opposite regime � 	
√
Dt, the probability density approaches

ρ(�, t) ≈
(
1− 2

√
Dt |Γ|√
π|Ω|

)
δ(�) +

|Γ|
|Ω|

(
1 +

4
√
Dt√

πR1
+

Dt

R2
1

)
. (A.19)

This relation shows the limitation of the PEA (58), which predicts a different limit at
short times and small �. This difference is seen figure 2(a). A better understanding of
the origins of this deviation presents an interesting open problem.
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