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Abstract
The time instant—the first-passage time (FPT)—when a diffusive particle (e.g., a ligand such as
oxygen or a signalling protein) for the first time reaches an immobile target located on the surface
of a bounded three-dimensional domain (e.g., a hemoglobin molecule or the cellular nucleus) is a
decisive characteristic time-scale in diverse biophysical and biochemical processes, as well as in
intermediate stages of various inter- and intra-cellular signal transduction pathways. Adam and
Delbrück put forth the reduction-of-dimensionality concept, according to which a ligand first
binds non-specifically to any point of the surface on which the target is placed and then diffuses
along this surface until it locates the target. In this work, we analyse the efficiency of such a
scenario and confront it with the efficiency of a direct search process, in which the target is
approached directly from the bulk and not aided by surface diffusion. We consider two situations:
(i) a single ligand is launched from a fixed or a random position and searches for the target, and
(ii) the case of ‘amplified’ signals when N ligands start either from the same point or from random
positions, and the search terminates when the fastest of them arrives to the target. For such
settings, we go beyond the conventional analyses, which compare only the mean values of the
corresponding FPTs. Instead, we calculate the full probability density function of FPTs for both
scenarios and study its integral characteristic—the ‘survival’ probability of a target up to time t.
On this basis, we examine how the efficiencies of both scenarios are controlled by a variety of
parameters and single out realistic conditions in which the reduction-of-dimensionality scenario
outperforms the direct search.

1. Introduction

More than five decades ago Adam and Delbrück put forth an idea how organisms may handle some
problems of efficiency and timing, limited by molecular diffusion, by reducing the dimensionality in which
the diffusion takes place from the three-dimensional (bulk) space to two-dimensional surface diffusion [1].
A similar claim was previously made in [2], suggesting that acetyl choline may get faster via surface
diffusion from its site of action to the site where it is destroyed, and in [3], arguing that surface diffusion
may result in higher turnover numbers for membrane-bound enzymes. However, these earlier works did
not present quantitative estimates substantiating such a claim, while Adam and Delbrück were the first to
provide theoretical arguments showing that the diffusive molecules may indeed reduce the reaction times by
subdividing the diffusion process into successive stages of lower spatial dimensionality. Subsequently, their
analysis has been generalised in a number of directions (see, e.g., [4–13]). Its applicability has also been

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac8824
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6273-9164
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0001-8467-3226
mailto:rmetzler@uni-potsdam.de


New J. Phys. 24 (2022) 083035 D S Grebenkov et al

Figure 1. Sketch of the geometrical setup in the study of the ADS: a spherical shell domain Ω is enclosed by impermeable
boundaries consisting of two concentric nested spheres with the radii R1 (the inner sphere) and R2 (the outer, fully reflective
sphere). A target region is located at the North pole of the inner sphere and has the form of a spherical cap of radius ρ (and
angular size ε = arcsin(ρ/R1)). A small red ball denotes the starting position x = (r, θ,φ) of the diffusive ligand. Within the
ADS, the ligand diffuses (with diffusion coefficient Db) within Ω until it encounters the surface of the inner sphere, which
happens at an arbitrary point s = (R1, θ′ ,φ′). Then, it non-specifically binds to the surface and diffuses along it with diffusion
coefficient Ds, until it finds the boundary of the target region. Within the direct search scenario, the surface of the inner sphere is
assumed to be perfectly reflecting such that the ligand bounces back to Ω once it hits the inner sphere and may reach the target
region only directly from the bulk Ω.

questioned [14], indicating situations in which the ‘reduction-of-dimensionality’ scenario can be
advantageous and therefore plausible, and situations in which it is not beneficial for the search process and
is therefore not likely to occur.

Concurrently, the concept of a dimensionality reduction together with the notion of ‘facilitated’
diffusion provide an explanation why experimentally observed rates for binding of proteins to special sites
on DNA molecules are much larger than predictions based on the Smoluchowski approach [5, 15–29]. The
Adam–Delbrück scenario (ADS) was also invoked to explain a fast translocation through the nuclear pore
complexes [30]. This scenario also prompted further investigations giving rise to the idea of so-called
intermittent search strategies [31, 32] in which the fine tuning of systems parameters may further reduce
the mean first-passage time (MFPT) [33–40] (see however [41]) or the ‘survival’ probability—the
probability that the target is not found up to time t [42–44] (in transient processes it is also of interest to
consider the search reliability, the probability that the target has not been found up to t →∞ [45, 46]).

To better illustrate the possible advantage of the ADS, it is instructive to dwell on a particular
geometrical setting, which was discussed by Adam and Delbrück themselves [1] and will be also used in the
present paper. Namely, we consider two nested concentric spheres [of radii R1 and R2 (R1 < R2),
respectively, as shown in figure 1] with impermeable boundaries, a small immobile circular target of radius
ρ placed at some fixed position on the inner sphere, and a ligand that starts from a fixed location and
diffuses with the diffusion coefficient Db within the spherical-shell domain Ω between two spheres (here
and in what follows we use the term ‘ligand’ to denote any diffusing entity, e.g., a signalling protein;
similarly, the term ‘target’ will generally denote a binding site, an adsorbed chemically active particle or an
entrance to a nuclear pore). In such a bounded domain, a ligand is certain to eventually find the target (see,
e.g. [47]), whichever motion scenario it undertakes—and therefore the only question is how long the search
process will last for a given scenario. We therefore are interested in the first-passage time (FPT) T , i.e., a
random time instant when a ligand reaches the target for the first time (see, e.g., [48, 49]).

Conventional one-stage (or direct search) scenario presumes that the inner sphere is reflecting for the
ligand such that it bounces back to the bulk domain Ω once it hits the inner sphere everywhere except for
the target. The binding event thus occurs only when the target is approached by the ligand directly from the
bulk. Assuming that the starting position of the ligand is uniformly distributed within the spherical-shell
domain, Adam and Delbrück [1] (see also [7]) estimated the mean ‘diffusion’ time τdir necessary for the
ligand to arrive to the target within the one-stage scenario as τdir ∼ R3

2/(3Dbρ) (in the relevant case when
R2 � R1 � ρ). In fact, τ dir here is the mean diffusion time to a sphere of radius ρ placed at the geometric
centre of the outer sphere and thus this form does not take into account the fact that the target is situated
on a reflecting sphere of radius R1, which effectively screens it [50]. Moreover, for a relevant geometrical
setting in which the ligand starts from the outer sphere, τdir will be evidently bigger. Not least, this
reasoning clearly applies only to an idealised situation when the confining domain Ω does not contain
‘obstacles’ and the motion of the ligand is not subject to any kind of molecular crowding effects [51, 52].
However, if Ω is supposed to mimic the interior of a cell, it should represent a complex spatial environment,
filled with impermeable organelles, filaments and proteins, which impose steric constraints on the dynamics
and may screen the target. As a consequence, diffusion of a ligand often takes place effectively in a tortuous
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labyrinthine spatial domain. Recent analyses have provided evidence that the FPT to the target within the
direct search scenario is essentially increased as compared to the one in which the cytosol is treated as a
homogeneous liquid-filled region [53]. Hence, the above estimate can be rather inaccurate (in fact,
representing a lower bound on the actual diffusion time) but is still instructive for understanding the time
scales involved.

In contrast, within the ADS a ligand first finds any (random) point on the inner sphere, which takes the
typical time τb ∼ R3

2/(3DbR1). Then, it nonspecifically binds to the surface and diffuses along with the
diffusion coefficient Ds until it eventually locates the target. The mean diffusion time τ s for the latter
process was calculated [1, 7] and scales as τs ∼ 2R2

1 ln(R1/ρ)/Ds. The total mean diffusion time τAD within
the ADS is thus a sum of two contributions, τAD = τ b + τ s, and the ratio

δ =
τAD

τdir
=

ρ

R1

(
1 + 6

Db

Ds

(
R1

R2

)3

ln

(
R1

ρ

))
(1)

shows whether the reduction-of-dimensionality scenario is advantageous (for δ < 1) or not. One observes
from equation (1) that the efficiency of the ADS here is entirely controlled by the aspect ratios ρ/R1 and
R1/R2 and the ratio Ds/Db of the diffusion coefficients. Clearly, τ b can also be larger, when obstacles are
present in the bulk volume Ω but intuitively, its increase should not be as pronounced as the one for the
direct search of the target—within the ADS it suffices to find any point on the inner sphere while for the
direct search scenario a prescribed target location is to be found.

In essence, the ADS takes advantage of the very slow logarithmic divergence of τAD in the limit ρ→ 0, as
opposed to a much faster 1/ρ-divergence of τ dir for the direct search scenario. At the same time, there is a
penalty to pay: the gain due to the reduction of the singularity is counter-balanced by the reduction of the
value of the diffusion coefficient. For instance, the diffusion coefficient Db of a ligand in cellular cytoplasm
is typically of the order of a few tens of μm2 s−1, while once it gets associated to the inner sphere, it
experiences at best a 20-fold reduction of the diffusivity [13]. Most often, however, such a reduction is more
pronounced and may amount to two or sometimes even three orders of magnitude [14]. Such an extreme
reduction is, however, rarely seen in biophysical systems because most of compartment-separating surfaces
are soft and hence, the barriers against lateral diffusion are typically lower than the ones specific to diffusion
on hard solid surfaces [55]. In any case, a reduction of the diffusivity is detrimental for the ADS, in virtue of
equation (1). As an example, consider a typical mammalian cell in which a class I nuclear receptor5 searches
for an entrance into a pore (of radius ρ ∼ 3 nm) in the nuclear envelope. For eukaryotes, the karyoplasmic
ratio (KR) typically is of the order (R1/R2)3 ∼ 0.08 (see, e.g., [56]), but the scatter around this value can be
quite significant. In particular, essential departures from the value 0.08 are encountered in metastatic
tumours and are, in fact, used in both diagnosis and prognosis for several tumour types [57]. Recent
systematic analysis [58] of the reported values of the KR, which compiled data for almost 900
species—from yeast to mammals—provided evidence that the larger cells almost invariably have relatively
smaller nuclei, such that the nucleus of a larger cell may occupy as little as few percent of the cell volume
across all scales of biological organisation, yielding lower values of KR. For plant cells, which can often grow
to larger sizes than animal cells, it has been known for a long time that KR can be even smaller and amount
to just a fraction of 1 percent (see, e.g., table I in [59]). Concurrently, R1 may vary in size in different species
but is usually within the range 1 . . . 5 μm. Setting R1 = 3 μm and ρ = 3 nm and assuming that KR is equal
to its average value 0.08, i.e., R2 = 7 μm, we thus find δ = 3.4 × 10−3Db/Ds, which signifies that for these
particular values of the system parameters the ADS is advantageous when Ds/Db�10−2. For larger cells or
some plant cells, for which KR is lower, and also in situations in which the direct search for the entrance to
the nuclear pore is obstructed by the presence of other organelles, one may expect that the ADS is efficient
even for smaller values of the ratio Ds/Db.

The above well-known arguments rely on estimates of the MFPT, used as a proxy for the efficiency. In
this work we revisit the ADS from the broader perspective of the full statistics of FPTs. The point is that,
regardless of how a search process proceeds—via a single or two stages—a ligand may follow a variety of
different paths from the starting point to the target, thus resulting in a large variability of
realisation-dependent values of the FPT. The MFPT, which is only the first moment of the corresponding
probability density function (PDF) averaged over the initial position of the ligand, is instructive—yet it is
evidently insufficient to fully characterise neither the ADS nor the direct search scenario. In fact, it is
well-known that for bulk diffusion in a bounded confining domain towards a perfect sink (see, e.g.,

5 This example represents an intermediate step within a complicated intracellular signal transduction pathway in which a hormone
penetrating from an extracellular medium into the cells binds to a nuclear receptor at a random location within the cytoplasm and
causes it to undergo several chemical transformations. The reaction product subsequently finds the entrance to the nuclear pore and
penetrates into the nucleus, where it binds to the hormone response element on nuclear DNA [54].
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[60–63]), or a partially reactive target (see, e.g., [64–66]), or even a target with more sophisticated surface
reaction mechanism (see, e.g., [67–69]), the PDF of the FPTs can be very broad. In other words, large
sample-to-sample fluctuations with disproportionally different values of T are inherent and fluctuations
around its mean value 〈T 〉 can be comparable to it or even exceed the mean value. It is known from
standard statistical analysis that if the PDF is centred around its mean value (e.g., in the case of a Gaussian
distribution), the mean value is representative of the actual behaviour. In contradistinction, if the mean is
well away from the most probable value (as shown, e.g., in [62–66]) it is likely that it is associated with the
tail of the corresponding PDF and hence, is supported by some rare realisations of the diffusive paths. In
this case, 〈T 〉 may be orders of magnitude larger than the typical time encountered in a considerable
fraction of realisations of the search process (and thus times shorter than the mean time are typically
observed in any given experiment)6. This would also imply that one indeed needs an extensive statistical
sample in order to obtain a reliable value for 〈T 〉 for comparison with theoretical predictions. This is
precisely the case for the direct search scenario in such a geometrical setting, as evidenced recently in [50].
Concurrently, the full PDF of the FPT for the two-stage search process is not known as yet and
consequently, one does not know anything about its broadness and other characteristic time scales (e.g., the
typical FPT), that is indispensable in order to obtain a fully comprehensive, global picture of the search
dynamics in the ADS. The knowledge of the full PDF will also permit us to use as a robust characteristic the
survival probability, i.e., the probability that the target is not found up to some prescribed time t.

In this paper, we first consider the case of a single ligand starting from an arbitrary fixed position within
the spherical-shell domain Ω and a single perfect target placed on the inner sphere. The term ‘perfect’ here
means that we assume that there is no (energetic or entropic) barrier against the reaction, such that the
ligand binds to the target upon the first arrival—the classical Smoluchowski setting. In the ADS, we
calculate the PDF of the FPTs to the target exactly, which permits us to analyse the spread of the
realisation-dependent FPTs, as well as to understand the contribution of the typical FPT and of extreme
events associated with the tails of the distribution. Moreover, we compare our result against the PDF for the
direct search scenario, which was evaluated for the same geometrical setting recently [50], in an exact
spectral form as well as in approximate but remarkably accurate form based on the self-consistent
approximation (see [10, 70–72] for more details). Such a comparison between the ADS and a one-stage
search under identical conditions allows us to provide a complete picture of the actual efficiency of the ADS
which extends beyond the previous analyses. Next, we consider the situation with an ‘amplified signal’, in
which N ligands are launched either from the same location on the outer sphere, or from distinct locations
on this surface. The former case is realised in situations when some other ligand (e.g., a first messenger),
which is moving diffusively in the extracellular medium, arrives to a particular site on the outer part of the
plasma membrane and opens an ion channel spanning the membrane. In this way, the first messenger
effects N ions to release inside the cell from the same position. In turn, the latter case corresponds to a
situation when the plasma membrane hosts multiple receptors each interacting with the first messengers
moving in the extracellular medium and launching the second messengers that diffuse now within the
intracellular medium, all of them seeking a single target on the inner sphere [73, 74]. For such amplified
signals we also provide a comparative analysis of the PDFs for the one-stage and two-stages scenarios. We
finally remark that the results presented here can be generalised rather straightforwardly for the analysis of
the PDFs of the terminal FPT in intracellular signal transduction processes involving more than two nested
domains (see [75]), presenting in this way a full stochastic description of the latter important processes
within the reduction-of-dimensionality scenario.

The paper is outlined as follows: in section 2, we describe the geometrical and physical parameters of
our model, introduce basic notations, and derive the PDF of the FPTs within the ADS. Section 3 is devoted
to the analysis of our general result and of its asymptotic behaviour, and also presents a comparison of the
form of the PDF for the ADS against the results for the direct, one-stage scenario derived in [50]. In
section 4 we consider the situation of an amplified signal with N independent ligands. Finally, in section 5
we conclude with a brief recapitulation of our results and a discussion. Details of intermediate derivations,
as well as an analysis of some limiting situations are relegated to appendices. In particular, appendix A
considers the moments of the conditioned FPTs; appendix B is devoted to a discussion of different aspects
of extremal values of surface diffusion; in appendix C we discuss the form of the PDF for the
Adam–Delbrück’s scenario, while in appendix D we present the PDF for one-stage search process.

6 In fact, the most likely time is connected to ‘direct’ trajectories moving relatively straight to the target. The distance between the
point of release and the target defines the peak of the initial, Lévy–Smirnov part, of the PDF, an effect that is also referred to as
‘geometry-control’ [63]. Longer times correspond to ‘indirect’ trajectories, in which the initial distance becomes irrelevant [63, 64].
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2. The ADS in a spherical shell domain

2.1. Model and basic notations
We consider a spherical shell domain Ω (see figure 1) enclosed by impermeable boundaries of two
concentric nested spheres with radii R1 (the inner sphere) and R2 (the outer, perfectly reflecting sphere). An
immobile target with the shape of a spherical cap (dome) of radius ρ is located at the North pole of the
inner sphere. In spherical coordinates (r, θ,φ), the target is defined by r = R1 and 0 � θ � ε, where
ε = arcsin(ρ/R1) is the angular size of the target. For the above example of a nuclear receptor seeking for a
nuclear pore (as well as in many other realistic cases) ε ≈ 10−3, but the value may be smaller or larger in
other applications. We note parenthetically that values ε ≈ 10−1 can be indicative of the behaviour in
situations when there are many small targets present on the surface of the inner sphere (e.g., the nuclear
membrane may host about 102 nuclear pores). As a consequence, we here consider ε as an independent
parameter and explore the dependence of the PDFs on its value. Moreover, we also consider the ratio Db/Ds

as an independent parameter and analyse how the shape of the PDF itself along with the survival
probability vary with this ratio.

2.2. General expressions
Consider now a ligand that starts from a fixed position x, performs a diffusive motion with bulk diffusivity
Db inside the spherical-shell domain, until it hits the inner sphere for the first time at the random time
T bulk. Then, it diffuses along the surface for the random time T surf after which the ligand hits the perimeter
of the target for the first time. The fact that the search process consists of two consecutive independent
stages of durations T bulk and T surf permits us to write the PDF HAD(t; x) of the event that it took the ligand
exactly time T = T bulk + T surf to arrive to the target for the first time as the convolution

HAD(t;x) =

∫
∂Ω

ds

∫ t

0
dt1Hsurf(t − t1; s)j(t1; s|x), (2)

where the first integral over ds is taken over the surface ∂Ω of the inner sphere. Here j(t1; s|x) denotes the
joint PDF of the event that a ligand starting from x at time t = 0 arrived for the first time at the inner sphere
at time t1 and that this first arrival occurred at point s. In turn, Hsurf (t2|s) denotes the PDF that the
duration of the surface diffusion, starting from the point s and terminating when the ligand arrives at any
point on the perimeter of the target, is equal to t2. An analogous expression for more general n-stage
processes in one-, two- and three-dimensional unbounded domains has been recently studied in [75].

The form of expression (2) suggests that it can be conveniently studied by resorting to the Laplace
domain with respect to t. Let

H̃AD(p;x) =

∫ ∞

0
dt e−ptHAD(t;x), H̃surf(p; s) =

∫ ∞

0
dt e−ptHsurf(t; s) (3)

and

j̃(p; s|x) =

∫ ∞

0
dt e−pt j(t; s|x) (4)

denote the Laplace-transformed PDFs. Then, multiplying both sides of equation (2) by exp(−pt) and taking
the integral, we find

H̃AD(p;x) =

∫
∂Ω

ds H̃surf(p; s)̃j(p; s|x)

= R2
1

∫ π

0
dθ′ sin θ′

∫ 2π

0
dφ′̃j(p, (R1, θ′,φ′)|(r, θ,φ))H̃surf(p; θ′), (5)

where the spherical coordinates θ′ and φ′ define the position of the point s, at which the ligand first lands
on the inner sphere, while the coordinates (r, θ,φ) denote the position of the starting point x. Note that due
to the axial symmetry, H̃surf(p; θ′) is independent of the azimuthal angle φ′.

Equation (5) is the basis for our further analysis, but it requires knowledge of the corresponding FPTs of
the intermediate stages. The exact form of j̃(p;x|s) has been recently studied in [76] and obeys

j̃(p, s|x) =
1

4πR2
1

∞∑
n=0

(2n + 1)Pn

(
(s · x)

|s‖x|

)
g(p)

n (r), (6)

where

g(p)
n (r) =

k′n(αR2)in(αr) − i′n(αR2)kn(αr)

k′n(αR2)in(αR1) − i′n(αR2)kn(αR1)
(7)
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are the radial functions, α =
√

p/Db, in(z) =
√
π/(2z)In+1/2(z), and kn(z) =

√
2/(πz)Kn+1/2(z) are the

modified spherical Bessel functions of the first and second kind, respectively. The prime denotes a derivative
with respect to the argument, and Pn(z) are Legendre polynomials whose argument is the cosine of the
angle between the vectors x and s. In particular, equation (6) defines the moments of the FPT on the inner
sphere, conditioned by the arrival point s (see appendix A).

The above expression for j̃(p, s|x) is valid even in the limit R2 →∞ (e.g., when R2 becomes
macroscopically large, as is often the case in cell-to-cell communication processes) when the outer reflecting
boundary practically goes to infinity and one retrieves a common setting of a spherical target, accessed by a
particle diffusing in the unbounded space Ω. Even though the domain itself is unbounded, its boundary ∂Ω

is bounded, and the above solution is still applicable. From the asymptotic behaviour of the modified
spherical Bessel functions in(z) and kn(z), one gets immediately that the radial functions g(p)

n (r) converge to

g(p)
n (r) → kn(αr)

kn(αR1)
. (8)

In the following, we keep focussing on the setting with a finite R2.

2.3. Surface diffusion stage
Despite the fact that the first-passage statistics for a particle diffusing on the surface of a spherical domain
towards a target of an arbitrary size has been studied in the past, former works focussed mostly on the
MFPT [1, 7] (see also [77–80] and references therein). Notable exceptions are the references [77, 78], in
which the spectral expansion of the survival probability in time domain was derived. While its Laplace
transform allows one to access H̃surf(p; s) as a spectral expansion, as well, we get a more compact form for
this function that is suitable for further analysis of H̃AD(p;x) in equation (5). Relegating the details of
calculations to appendix B below we merely display the final results for H̃surf(p; s) and Hsurf (t; s). When
diffusion starts within the target, one has

H̃surf(p; θ′) = 1 (0 � θ′ � ε); (9)

in turn, for ε � θ′ � π, one gets the remarkably compact form

H̃surf(p; θ′) =
Pμ(− cos(θ′))

Pμ(− cos(ε))
, μ =

−1 +
√

1 − 4pR2
1/Ds

2
, (10)

where Pμ(z) is the Legendre function of order μ which depends on the Laplace parameter p. Note that for
p � Ds/(4R2

1) (corresponding to the long-t tail of the PDF), the parameter μ is a real number, while in the
opposite limit p � Ds/(4R2

1) (corresponding to the short-t tail of the PDF), μ is a complex number with a
real part equal to −1/2, such that Pμ(z) is related to the so-called conical (or Mehler) function. Expression
(10) can be inverted (see appendix B for more details) to produce the spectral expansion (see also [77, 78])

Hsurf(t; θ′) =
Ds sin2(ε)

R2
1

∞∑
n=0

(∫ 1

− cos(ε)
dx
[
Pνn (x)

]2)−1/2

Pνn (− cos(θ′))P′
νn

(− cos(ε))

× e−νn(νn+1)Dst/R2
1 , (11)

where the prime, as in equation (7), denotes the derivative with respect to the argument, while νn are the
solutions of

Pνn (− cos(ε)) = 0 (12)

organised in an ascending order. Evidently, νn are functions of ε. Eventually, we note that the moments of
Hsurf (t; θ′) can be found directly from expression (10) by differentiating it with respect to the Laplace
parameter p. In particular, differentiating equation (10) once and twice with respect to p and setting p = 0,
one finds first two moments of the FPT T surf for ε � θ′ � π,

〈T surf〉 = R2
1

Ds
ln

(
1 − cos(θ′)

1 − cos(ε)

)
, (13)

〈(T surf)2〉 = 2R4
1

D2
s

[
Li2

(
1 + cos(ε)

2

)
− Li2

(
1 + cos(θ′)

2

)
+ ln

(
1 − cos(ε)

1 − cos(θ′)

)

+ ln2

(
1 − cos(ε)

2

)
− ln

(
1 − cos(ε)

2

)
ln

(
1 − cos(θ′)

2

)]
, (14)
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Figure 2. Coefficient of variation γ =
√

var(T surf)/〈T surf〉 as function of θ′ for the FPT to the target of angular size ε by surface
diffusion, for two values of ε. Thick lines represent the exact result from equations (13) and (14), while the thin lines show the
asymptotic relation (15).

where Li2(z) = −
∫ z

0 dx ln(1 − x)/x is the dilogarithm. Note that the MFPT was known (see, e.g., [78]),
while the result for the second moment has not been reported.

These expressions allow us to determine the variance var(T surf) = 〈(T surf)2〉 − 〈T surf〉2 of the PDF, and
also to characterise its broadness (see [60, 61]) from the corresponding coefficient of variation
γ =

√
var(T surf)/〈T surf〉, which is defined as the ratio of the standard deviation around the mean value and

the mean value itself. Inspecting the behaviour of 〈T surf〉 and 〈(T surf)2〉, we realise that for fixed
(sufficiently small) ε and θ′ sufficiently close to ε, 〈T surf〉  2R2

1(θ′ − ε)/(εDs) and
√

var(T surf) 
2R2

1

√
(2 ln 2 − 1 − 2 ln ε)(θ′ − ε)/(

√
εDs). Combining these expressions, we find that for θ′ close to

(small) ε the coefficient of variation obeys

γ ∼
√

(2 ln 2 − 1 − 2 ln ε)ε

θ′ − ε
, (15)

and hence, it diverges when θ′ → ε. Overall, γ is a monotonously decreasing function of θ′ that attains its
minimal value (for small enough ε)

γmin ≈
√
π2/3 − 1 + (1 − 2 ln(2/ε))2

2 ln(2/ε)
(16)

for θ′ = π, i.e., when the starting point s of the particle is located on the South pole (figure 2). In the limit
ε→ 0, this minimal value approaches unity from below, i.e., γmin � 1. As a consequence, for any ε > 0,
there exists a value θ∗ε , at which γ = 1. For θ′ < θ∗ε , the standard deviation of the FPT is larger than the
mean value 〈T surf〉 such that the latter cannot be used to characterise the search process exhaustively well.

2.4. Asymptotic behaviour of equation (10)
Before we turn to the discussion of the ADS it is instructive to discuss the asymptotic behaviour of its
constituents: j̃(p, s|x) in equation (6) and H̃surf(p; θ′) in equation (10). We will show that both exhibit some
non-trivial and universal behaviour, which will permit us to reach several conclusive statements about the
asymptotic behaviour of the full PDF HAD(t; x).

We start with H̃surf(p; θ′) and consider first the limit p →∞, which corresponds to the short-t tail of the
associated PDF. In appendix B we show that in this limit H̃surf(p; θ′) obeys

H̃surf(p; θ′) 

√
sin(ε)

sin(θ′)
e−R1(θ′−ε)

√
p/Ds (p →∞), (17)

where the symbol  denotes that we consider the leading order of this limiting behaviour. Inverting the
Laplace transform in the latter expression, we find that the short-t asymptotic behaviour of the PDF
Hsurf (t; θ′) follows

Hsurf(t; θ′) 

√
sin(ε)

sin(θ′)

(θ′ − ε)R1√
4πDst3

e−(θ′−ε)2R2
1/(4Dst). (18)
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Remarkably, this result coincides (up to the factor
√

sin(ε)/ sin(θ′)) with the celebrated Lévy–Smirnov
distribution [48, 49], defining the exact FPT PDF from a point x0 = (θ′ − ε)R1 > 0 to a perfect target
located at the origin of a one-dimensional semi-infinite line. Noticing that R1(θ′ − ε) is, in fact, the geodesic
distance between the point s and the boundary of the target region, i.e., the shortest path along the surface
of the inner sphere from the starting point s to the target, its physical significance becomes apparent: the
short-t tails of the PDF are dominated by such trajectories which move diffusively along the shortest
distance to the target. We note that such a Lévy–Smirnov-like form, which is specific to one-dimensional
situations, has been previously evidenced for rather different two- and three-dimensional geometrical
settings (see, e.g., [62–66, 81]) and therefore seems to be quite generic. In particular, this result is analogous
to the ‘geometry control’ unveiled previously in the case of pure bulk diffusion in Ω [62, 64].

In turn, the leading long-t behaviour of the PDF Hsurf (t; θ′) can be readily deduced from the series
representation in equation (11). Recalling that the solutions νn form an increasing sequence, we realise that
at long times the dominant contribution corresponds to the smallest root ν0 of equation (12) and,
therefore, the long-t behaviour reads

Hsurf(t; θ′)  sin2(ε)Ds

R2
1

(∫ 1

− cos(ε)
dx
[
Pν0 (x)

]2)−1/2

Pν0 (− cos(θ′))P′
ν0

(− cos(ε))

× e−ν0(ν0+1)Dst/R2
1 . (19)

We note that ν0 depends on ε but is independent of θ′; in particular when ε is small, one has
ν0 ≈ 1/(2 ln(2/ε)) [80]. As a consequence the longest relaxation time

τ surf =
R2

1

ν0(ν0 + 1)Ds
≈ 2R2

1 ln(2/ε)

Ds
(ε � 1) (20)

is independent of the starting point, i.e., corresponds to such long times at which a particle arrives to the
target region after extensive target-avoiding excursions and thus loses information about its initial location.
The latter is kept only through the amplitude in equation (19).

2.5. Asymptotic behaviour of equation (6)

Let us now turn to the joint probability density j(t, s|x). A theoretical analysis of the large-p asymptotic
behaviour of expression (6) appears to be a difficult task; we realise that, in fact, in order to determine the
corresponding asymptotic form one has to perform the sum in this equation exactly, which requires a
cumbersome analysis. We thus resort instead to a numerical analysis of expression (6) aiming to verify the
following conjecture: we assume that, in line with the ‘geometrical optics’ arguments presented earlier in
[82] (see section II) and similarly to the above considered case of a search process on the surface of a sphere,
the short-t tail of the associated PDF corresponds to the diffusive motion along the shortest path (with
length ) from x = (r, θ,φ) to s = (R1, θ′,φ′). This path, however, has a different form depending on
whether the point s is directly ‘visible’ from x, i.e., is located within a spherical cap region delimited by the
horizon, or whether it is located outside of this area being situated on the ‘dark’ side of the inner sphere and
therefore invisible from x. In case when s is visible from x we thus expect that

j̃(p, s|x)  a(θ, θ′)e−vis

√
p/Db (p →∞), (21)

where a(θ, θ′) is some unknown amplitude (recall that the result in equation (18) differs from the standard
Lévy–Smirnov density by some function) and vis is the Euclidean distance from x to s. In turn, for the case
when s is located on the ‘dark’ side, the shortest path invis consists of two parts (see also [82]): the particle
diffuses along a straight line of length h =

√
r2 − R2

1 connecting x and the point on the horizon, which is
closest to s, and then travels diffusively in the immediate vicinity of the inner sphere along the arc
connecting this point on the horizon and s. Consequently, in this case we expect that j̃(p, s|x) behaves in the
limit p →∞ as

j̃(p, s|x)  b(θ, θ′)e−invis

√
p/Db (p →∞), (22)

where b(θ, θ′) is an unknown amplitude. Note that vis and invis can be simply expressed through the
Cartesian coordinates of both points.

In figure 3 we compare our conjectured equations (21) and (22) (thin grey lines) and the exact
expression (thick coloured curves) obtained from series truncation in equation (6) for two situations in
which the target is visible from the starting point, and two situations in which it is located on the dark side.
We observe that in all four cases the slopes of thin grey lines and of the thick coloured curves are almost
identical—which thus confirms our conjecture of the large-p behaviour of j̃(p; s|x). Inverting the

8
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Figure 3. Large-p asymptotic behaviour of j̃(p, s|x) in equation (6) for φ = φ′ . (a) Shortest distances to the arrival point s
located on the North pole (filled squares) from different starting points x (filled circles). Blue (θ = 0) and green (θ = π/4)
circles correspond to the case when s is directly visible from x, such that the shortest distance vis (see the corresponding dotted
lines) is given by the straight segment connecting the initial point and the arrival point s. Red (θ = π/2) and magenta (θ = π)
circles correspond to the situation in which the target appears on the ‘dark’ side of the inner sphere with respect to the initial
point. In this case the shortest distance invis consists of two parts: a straight segment of length h =

√
r2 − R2

1 from the initial
point to the point closest to the target on the horizon, and an arc from this point to the target. (b) Numerical analysis of j̃(p, s|x)
in equation (6) as function of R1

√
p/Db. Coloured thick curves present j̃(p, s|x) obtained by summing the series in equation (6)

truncated at nmax = 100. As we are interested in the large-p behaviour, we set R2 = ∞ here to ease the numerical computation of
the radial functions g(p)

n (r). Thin grey lines show the asymptotic forms in equations (21) and (22) with the shortest distances
calculated for the corresponding geometrical setup (note that the unknown functions a(θ, θ′) and b(θ, θ′), controlling a vertical
offset of these lines, were set to 1).

expressions in equations (21) and (22), we thus find that the short-t behaviour of the corresponding PDF
j(t; s|x) has the Lévy–Smirnov form  exp(−2/(4Dbt))/

√
4πDbt3, up to a yet unknown amplitude factor

a(θ, θ′) or b(θ, θ′), respectively.
Lastly, we discuss the long-t behaviour of the PDF j(t, s|x). As diffusion occurs in a bounded domain,

j(t, s|x) clearly exhibits an exponential decay which is controlled by the pole pbulk
0 of j̃(p, s|x) with the

smallest absolute value. This is actually the pole of the radial function g(p)
0 (r), which can be written as

pbulk
0 = − 1

τbulk
< 0, with τbulk =

(R2 − R1)2

Dbα2
0

, (23)

where α0 is the smallest root of the transcendental equation (see, e.g., [64])

tan(α0)

α0
=

R2

R2 − R1
. (24)

When R1 � R2, this solution behaves as α2
0 ≈ R1/(3(R2 − R1)) and thus

τbulk ≈ R3
2

3DbR1
. (25)

Therefore, in the long-t limit the PDF j(t, s|x) decays as

j(t, s|x) ∝ e−t/τbulk
, (26)

where τbulk is the longest time characterising the FPT PDF to the inner sphere conditioned by the constraint
that this event took place at point s. Note that τ bulk is independent of both the initial position x and the
precise location of the arrival point s. Some other properties of the probability flux density j(t, s|x) were
discussed in a recent paper [83].

3. Probability density function of the first-passage times within the Adam–Delbrück
scenario

In this section we focus on the statistics of the FPTs in the ADS. We start from our main relation (5), in
which the integral over the first arrival point s on the inner sphere can be further simplified (see details in
appendix C) to get the exact and fully explicit solution in the Laplace domain

9
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H̃AD(p;x) =
∞∑

n=0

g(p)
n (r)Pn(cos θ)

{
Pn−1(cos ε) − Pn+1(cos ε)

2

− (1 − cos2 ε)
n + 1/2

pR2

Ds
+ n(n + 1)

(
P′

n(cos ε) + Pn(cos ε)
P′
μ(a)

Pμ(a)

)}
. (27)

We first discuss the short-t and long-t asymptotic behaviour of the PDF HAD(t; x). Next, numerically
inverting the Laplace transform in equation (27) by help of the Talbot algorithm we discuss the behaviour
of the PDF in the time domain for different values of the system parameters and compare it against the
recently obtained PDF for the direct search scenario in precisely the same geometrical settings [50]. This
will give us a general idea of the shapes of two PDFs. Moreover, we turn to the integrated
characteristic—the survival probability

SAD(t;x) =

∫ ∞

t
dt′HAD(t′;x), (28)

i.e., the probability that the target is not found up to time t. The analysis of the survival probability for both
search scenarios provides a full understanding of the actual efficiency of each scenario and, hence, gives an
idea which scenario is more successful. In the Laplace domain, the survival probability in equation (28)
reads S̃AD(p;x) = (1 − H̃AD(p;x))/p, allowing us to determine its asymptotic properties from those for the
Laplace-transformed PDF. The analysis of the survival probability will permit us to make several conclusive
statements. Lastly, we consider the particular, experimentally relevant case when the starting point is
uniformly distributed on a spherical surface of radius r such that 0 < R1 � r � R2. Moreover, in appendix
C we present additional figures illustrating the behaviour of HAD(t′; x) for several fixed starting points of
the ligand.

3.1. Asymptotic behaviour
To access the short-t behaviour of HAD(t; x) we focus on expression (5) together with equations (17), (21),
and (22). Combining these expressions, we get the Laplace-transformed PDF H̃AD(p;x) in the limit p →∞
in the form

H̃AD(p;x) ≈
√

sin(ε)

∫
∂Ωvis

ds
a(θ, θ′)√

sin(θ′)
exp

(
−
(
vis(r, θ, θ′)√

Db
+

(θ′ − ε)R1√
Ds

)√
p

)

+
√

sin(ε)

∫
∂Ωinvis

ds
b(θ, θ′)√

sin(θ′)
exp

(
−
(
invis(r, θ, θ′)√

Db
+

(θ′ − ε)R1√
Ds

)
√

p

)
, (29)

where ∂Ωvis and ∂Ωinvis denote the two parts of the inner sphere, those that are ‘visible’ and ‘invisible’ as
seen from the starting point x. In the limit p →∞ the integrands in equation (29) vanish exponentially fast
with p. This signifies that the dominant contribution to the integrals comes from such values of the position
s of the landing point onto the inner sphere for which the coefficients in front of

√
p are minimal, i.e.,

H̃AD(p;x) ∼ exp
(
−min

√
p/Db

)
, (30)

where
min = min

θ′

{
(r, θ, θ′) + R1(θ′ − ε)

√
Db/Ds

}
, (31)

where (r, θ, θ′) is either vis or invis, depending on the mutual arrangement of x and s. As a consequence,
we expect that the short-t tail of HAD(t; x) has a universal Lévy–Smirnov form, yet with a position-specific
prefactor.

As diffusion occurs in a bounded domain, the PDF HAD(t; x) decays exponentially fast at long times,
and the decay rate is determined by the pole p0 < 0 of H̃AD(p;x) with the smallest absolute value. Since
H̃AD(p;x) is obtained in equation (5) by integrating the product of j̃(p, s|x) and H̃surf(p; s) over s, p0 is the
pole of one of these two functions. Skipping technical details presented in appendix C.2 we conclude that

HAD(t;x)  Cε(x) exp

(
− t

max{τbulk, τ surf}

)
, (32)

where the amplitude Cε(x) is explicitly computed in equations (C.15) and (C.19). Here max
{
τbulk, τ surf

}
signifies that the onset and the decay of the long-t asymptotic form is entirely controlled by the longest of
the two characteristic times τ bulk and τ surf , but not by their sum, which, in contrast, is assumed in the
conventional criterion of the applicability of the ADS. We finally note that the decay rate in equation (32) is
independent of the starting point x for any relation between τbulk and τ surf .

10
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3.2. Random starting point
In many situations of practical interest the launch of the ligand does not take place from a fixed prescribed
position. Instead there are many points on the outer sphere from which the ligand can start its search for
the target. In this regard it is instructive to consider the case when x can be any (uniformly-distributed)
point on the spherical surface of radius r (not necessarily the outer boundary, r = R2). The behaviour of the
FPT PDF corresponding to the case when the ligand starts from a prescribed position turns out to be quite
similar, as discussed in appendix C.4.

The Laplace-transformed PDF for a random starting point, which we denote as H̃AD(p; r), is obtained by
integration of equation (27) over the angular coordinates of x, yielding

H̃AD(p; r) =
1

4πr2

∫
|x|=r

dxH̃AD(p;x)

=
1 − cos(ε)

2
g(p)

0 (r)

(
1 − Ds(1 + cos(ε))

pR2
1

P′
μ(− cos(ε))

Pμ(− cos(ε))

)
, (33)

where g(p)
0 (r) and μ were defined in equations (7) and (10), respectively. We stress that this surface-averaged

quantity differs from the volume average over a uniformly distributed starting point inside the confining
domain Ω.

The asymptotic behaviour of H̃AD(p; r) is derived in appendix C and reads

HAD(t; r)  R1

r

(r − R1)√
4πDbt3

exp

(
− (r − R1)2

4Dbt

)

×
(

1 − cos(ε)

2
+

sin(ε)
√

DsDbt2

R1(r − R1)
+

cos(ε)DbDst2

R2
1(r − R1)2

)
. (34)

The prefactor in the first line is the PDF of the FPT to a perfectly reactive sphere of radius R1 by bulk
diffusion in a three-dimensional unbounded domain. At very short times, the first term is dominant, and
one gets, up to a geometric prefactor (1 − cos(ε))R1/(2r), the Lévy–Smirnov function of t,

HAD(t; r)  (1 − cos(ε))R1

2r

(r − R1)√
4πDbt3

exp

(
− (r − R1)2

4Dbt

)
. (35)

Interestingly, this short-t tail of the PDF is independent of the surface diffusion coefficient Ds. Apparently,
this is associated with the fact that when we average over the starting point, the major contribution to the
PDF, which entirely defines its asymptotic behaviour, comes from those initial locations that are placed
directly over the target site. The contributions from other starting points, for which the search process will
include a tour of surface diffusion, is only sub-dominant in this limit. However, this leading-order
contribution is attenuated by the prefactor 1 − cos(ε) ≈ ε2/2, which can be very small for small targets. In
turn, the second and third terms in equation (34), although being subleading in powers of time, are
weighted by sin(ε) ≈ ε and by cos(ε) ≈ 1, respectively. This means that when ε is sufficiently small, there
exists an intermediate range of times, for which the third term is actually the dominant one,

HAD(t; r)  Ds
√

Dbt√
4πrR1(r − R1)

exp

(
− (r − R1)2

4Dbt

)
. (36)

Curiously, this expression is independent of the target size (as soon as ε is small). This is due to the fact that
a decrease of ε reduces the relative contribution of trajectories that arrive to the target directly from the
bulk and thus avoid surface diffusion. Hence, for small ε the search process will necessitate surface
diffusion.

In the opposite long-time limit, there is no difference between the fixed and random starting point so
that our former asymptotic relation (32) is valid for HAD(t; r).

Figure 4 illustrates the asymptotic behaviour of the surface-averaged PDF HAD(t; r) within the ADS.
One sees that the asymptotic relation (34) accurately describes the short-time behaviour. As the target is
rather small, the dominant contribution comes from the third term in equation (34); in particular, the three
asymptotic curves only differ by the multiplicative factor Ds. We stress that the first term in equation (34) in
this setting is totally irrelevant here (if one only kept the first term, the asymptotic curves would be below
10−6 and thus invisible in this figure; for this reason, they are not shown). In other words, the leading-order
Lévy–Smirnov-type relation (35) fails, and one has to rely on our asymptotic relation (34), in which the
third, sub-leading term is dominant. The long-time asymptotic relation (32) is also very accurate. Note that
the amplitude Cε(r) is given by equation (C.19) for the curve with Ds/Db = 1, for which τ bulk > τ surf ; in

11
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Figure 4. FPT PDF HAD(t; r) to a target of the small angular size ε = 0.01 within the ADS, with R2/R1 = 5, for which the
starting point is uniformly distributed over the outer sphere (r/R1 = 5). The three thick coloured curves show the PDF obtained
from the exact solution (33) via numerical inversion of the Laplace transform. Dotted lines represent the short-time asymptotic
relation (34), whereas circles show the long-time asymptotic relation (32). The leading-order Lévy–Smirnov-type relation (35) is
not shown because it lies below the bottom limit 10−6 of the plot; in fact, its maximal amplitude is 2.89 × 10−7, i.e., this
approximation fails by 4–5 orders of magnitude. The length and time units are fixed by setting R1 = 1 and Db = 1.

turn, it is given by equation (C.15) for the two other curves with Ds/Db = 0.1 and Ds/Db = 0.01. We
conclude that both short- and long-time asymptotic relations are accurate.

The derivative of H̃AD(p; r) in equation (33) with respect to p determines the surface-averaged MFPT.
Skipping the details of this computation (see appendix C), the final result reads

TAD =
(r − R1)(2R3

2 − rR1(r + R1))

6rR1Db
+

R2
1

2Ds

(
2 ln

(
2

1 − cos ε

)
− (1 + cos ε)

)
. (37)

Here, the first term is the MFPT to the inner sphere, which is evidently independent of the target size. In
turn, the second term is the contribution from the surface diffusion towards the target, averaged over the
distribution of the first arrival point onto the surface (the so-called harmonic measure density). This
contribution is independent of the radius R2 of the outer sphere, as well as of the radial coordinate r of the
starting point. Expectedly, the second term vanishes as ε→ π (the target covers the whole inner sphere) and
diverges logarithmically as the target shrinks, ε→ 0. Note that if r � R1, the diffusing ligand has sufficient
time before hitting the inner sphere to loose the memory on its starting point, so that TAD(x) ≈ TAD. In
other words, the explicit relation (37) can be used to estimate the MFPT from a fixed starting point x when
it is located far from the inner sphere. Setting r = R2, R1 � R2 and ε � 1, one can easily check that TAD

coincides, to the leading order, with τAD, which was discussed in section 1.

3.3. Comparison of the two search scenarios
We now compare the efficiency of the two search processes: ADS versus the direct search scenario. We focus
on the case when the starting point is uniformly distributed over the outer sphere, for three reasons. (i) As
discussed earlier, we keep in mind applications to microbiology, in which a particle enters the cytosol from
the plasma membrane and searches for a nuclear pore; here, the spatial (angular) locations of the entrance
channel and the nuclear pore are generally not known and can thus be modelled as random. (ii) When the
inner sphere is small in comparison to the outer sphere (i.e, R1 � R2 = r), the particle has enough time to
diffuse before hitting the inner sphere, and the information on the precise location of a fixed starting point
is generally lost (except for very short trajectories determining the left, short-t tail of the PDF)—in other
words, in this setting, there is no notable difference between fixed and random starting points. (iii) The
average over angular coordinates of the starting point eliminates all terms in the series representations (27)
of the PDF, except for n = 0, that facilitates its numerical computation and reduces eventual truncation
errors (when an infinite series is replaced by a finite sum)—this is particularly relevant in case of a small
target when one would have to keep a large number of terms to get accurate results, whereas the
computation of the radial functions g(p)

n (r) may be problematic for large n. In appendix C, we briefly discuss
the case of a fixed starting point—which is conceptually important—and compare it to our main
conclusions here for a random starting point.

The precise form of the Laplace transform H̃AD(p; r) is given in equation (33). While the exact solution

H̃dir(p; r) for the direct search scenario was derived in [50], we use the approximate relations (D.2) and
(D.4) for our discussion (see details in appendix D). Note that the latter have a much simpler and explicit
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Figure 5. PDF (a) and (c) and associated survival probability (b) and (d) determining the FPT to a target of small angular size
ε = 0.01, with R2/R1 = 5 (a) and (b) (KR = 0.008) or R2/R1 = 3 (c) and (d) (the KR = 0.037), and with a starting point
uniformly distributed over the outer sphere (r/R1 = 5). Comparison between the direct search (open circles, appendix D) and
the ADS (coloured curves corresponding to different values of the ratio Ds/Db, see the legend). Vertical lines indicate the MFPTs
given by equation (37) for the ADS and by equation (D.5) for the direct search. The numerical results for the direct search were
obtained by using the approximate relation (D.20) with ninter = 50 and nmax = 250 and by truncating the series (D.6) at
nmax = 2000. Note that τ surf ≈ 5.2/Ds, whereas τ bulk ≈ 29.3 for R2/R1 = 5 and τ bulk ≈ 4.7 for R2/R1 = 3, i.e., τ surf is dominant
for all cases except for Ds/Db = 1. Note that length and time units are fixed by setting R1 = 1 and Db = 1.

form, as compared to the exact solution (which requires a numerical inversion of matrices), and are
remarkably accurate, as shown in [50]. In both cases the PDFs in the time domain are obtained via
numerical inversion of the corresponding Laplace transforms using the Talbot algorithm. We set the angular
size of the target equal to ε = 0.01, which is approximately ten times bigger than the angular size of a
typical nuclear pore. This choice of a larger value of ε is due to some numerical limitations. In fact, going to
very small values of ε necessitates taking into account too many terms in equation (D.2) for the direct
search, whose numerical accuracy cannot be properly controlled by our algorithm. Nevertheless, the
considered value ε = 0.01 allows us to illustrate the main features of the FPT PDF and compare the two
search scenarios. We fix length and time units by setting R1 = 1 and Db = 1 and investigate the effect of
other parameters onto the PDFs and the survival probabilities.

Figure 5 illustrates our main results. Panels (a) and (b) correspond to the geometric setting with a small
KR KR = 0.008 (with R2/R1 = 5), while panels (c) and (d) refer to the larger value KR = 0.037 (with
R2/R1 = 3). Panels (a) and (c) present the FPT PDFs for both scenarios, with different values of the ratio
Ds/Db (see the legends) and fixed angular size ε = 0.01 of the target, offering insight into the functional
form of the full PDFs, as well as of the locations of the most probable and MFPTs (see the vertical dashed
lines). For the ADS, the PDF is broadening with decreasing surface diffusion coefficient Ds. In fact,
according to equation (35), the left short-time tail of the PDF is mainly controlled by bulk diffusion and
thus does not change much with Ds. In turn, the right long-time tail is directly affected by Ds via the time
τ surf given by equation (20) which becomes dominant in equation (32) when Ds is small enough. For
instance, when Ds/Db = 10−3 (which is appropriate for diffusion on hard solid surfaces), the PDF shown in
panel (a) spans over five orders of magnitude in time. In turn, for larger Ds, the PDF of the ADS is more
compact and attains substantially larger values in the vicinity of the most probable FPT than its counterpart
for the direct search scenario. Decreasing R2/R1 from 5 to 3 [panels (c) and (d)] which results in the
increase of the KR from KR ≈ 0.008 to KR ≈ 0.037, shifts the left tail of the PDF to the left (towards
shorter times), because the target is now closer to the starting point. In turn, if Ds is sufficiently small, the
right tail of the distribution is still controlled by τ surf , which is independent of R2. As a consequence, the
PDF is getting even broader.
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Figure 6. Same as in figure 5 but for a larger target with ε = 0.1.

While panels (a) and (c) present a basic conceptual understanding of the structure of the PDFs, panels
(b) and (d) display the survival probability, which indeed proves to be a very robust measure of the relative
efficiency of both search scenarios. We observe that for a small ratio KR = 0.008 and all considered values
of Ds/Db, the survival probabilities for the ADS, at any fixed t, are smaller than the survival probability of
the target within the direct search scenario. In this situation, the ADS can be qualified as a more efficient
search strategy as compared to the direct search. This conclusion also agrees with the fact that the MFPT for
the direct search is longer than the MFPT within the ADS. Upon increase of KR (see the panel (d)), we
notice that the ADS still outperforms the direct search scenario for Ds/Db� 0.01, and it becomes less
efficient at Ds/Db = 0.001. Recall, however, that these curves are calculated for ε = 0.01, which is
somewhat higher than the typically encountered values of ε. On intuitive grounds, we may thus expect that
for a smaller target with ε = 0.001, as it is realised in the case of a nuclear pore, the ADS will perform better
even in this case. Therefore, we demonstrate that the ADS can indeed be more efficient search scenario for
quite reasonable values of the system parameters. We finally note that the survival probability at the MFPT
appears to be quite universally equal to 0.35, which signifies that two-thirds of searching trajectories find the
target before this time, and only the remaining one-third arrive to the target location at longer times.

We finish this section by the analysis of the effect of the target size on the shapes of the PDFs and the
survival probabilities. Figure 6 presents these functions in the same setting, except that now the target is
tenfold larger, ε = 0.1. As we already remarked, such a large value of ε can be indicative of the behaviour in
situations in which approximately 100 nuclear pores are present on the surface of the nucleus. Remarkably,
the PDFs within the ADS remain nearly the same as for a smaller target without any visible change, as
compared to figure 5. At first thought, this is a counter-intuitive behaviour. However, we recall that the right
tail of the PDF is mainly determined by τ surf , which changes logarithmically slowly at small ε. In fact, as
discussed in [80], ν0 ≈ 1/(2 ln(2/ε)) as ε→ 0 so that τ surf ≈ 2R2

1 ln(2/ε)/Ds. Moreover, as we saw in
section 3.2, the left tail of the distribution is also weakly dependent on the target size. For instance, the
PDFs for even smaller target size ε = 0.001, which is representative of the nuclear pore, are expected to be
similar to those shown in figure 5. In contrast, the FPT PDF for the direct search scenario depends much
more strongly on the target size. In fact, its right tail is characterised by the decay time, which is of the order
of the MFPT and thus scales as 1/ε. The amplitude of the left tail is also affected by ε. We thus observe that
the efficiency of the ADS is weakly dependent on the target size and mainly controlled by two ratios R1/R2

and Ds/Db. Overall, we conclude that in the case of larger targets the ADS outperforms the direct search
scenario for Ds/Db�0.01 (when R2/R1 = 5) and Ds/Db�0.1 (when R2/R1 = 3), and is less efficient
otherwise.
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Figure 7. PDF (a) and (c) and associated survival probability (b) and (d) determining the fFPT to a target of small angular size
ε = 0.01, with N = 10 (a0 and (b) and N = 100 (c) and (d) particles, R2/R1 = 5 (KR = 0.008), and starting positions
independently and uniformly distributed over the outer sphere (r/R1 = 5). Comparison between the direct search (open circles,
appendix D) and the ADS (coloured curves corresponding to different values of the ratio Ds/Db, see the legend). The numerical
results for the direct search were obtained by using the approximate relation (D.20) with ninter = 50 and nmax = 250.

4. Amplified signals

We now extend our analysis to the important case of so-called ‘amplified’ signals, when N > 1
independently diffusing ligands search for a single target. We note that the ensuing speed-up of the search
process has been intensively studied in rather diverse geometrical settings (different from our setting here)
for the direct search scenario [84–92]. We start by introducing auxiliary notations and formulating some
basic general results.

Let Ti (with i = 1, 2, . . . , N) denote the time instant when the ith ligand arrives to the target for the first
time. Consequently, the target is considered to be ‘found’ when the fastest of the N particles arrives to the
target location, i.e., T = min{T1, T2, . . . , TN}. Moreover, if all ligands start from the same fixed point x, the
survival probability that determines the probability law of the fastest FPT (fFPT) is given by

SAD
N (t;x) = P{T > t} = P{T1 > t, T2 > t, . . . , TN > t} = [SAD(t;x)]N , (38)

where we took advantage of a physically plausible assumption that all ligands move independently of each
other. If, in contrast, each ligand starts from a random position, which is uniformly distributed on a sphere
of radius r, independently from the positions of the other ligands, then we have

SAD
N (t; r) = P{T > t} = P{T1 > t, T2 > t, . . . , TN > t} =

[
SAD(t; r)

]N
. (39)

In both cases, the associated PDFs are given by the time derivative

HAD
N (t;x) = N[SAD(t;x)]N−1HAD(t;x),

HAD
N (t; r) = N

[
SAD(t; r)

]N−1
HAD(t; r).

(40)

These two expressions allow for a detailed comparison of both scenarios in the amplified signal case, as
presented in figure 7. Expressions (40) signify that, once the survival probability for a single ligand is found
in the time domain—as evaluated in the previous sections—one has ready access to the statistics of the
fFPT T . Note, however, that the large-N asymptotic analysis of the moments of T is more cumbersome
(see, e.g., [84, 89] in the direct search case).
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Panels (a) and (c) of figure 7 depict the PDF HAD
N (t; r) for the case when the starting points of the

ligands are uniformly distributed over the outer sphere. The geometric setting is the same as for figure 5
with R2/R1 = 5. We see that the qualitative comparison between the ADS and the direct search does not
change much for N = 10 and N = 100; in particular, the PDF for the direct search is relatively close to that
for the ADS with Ds/Db = 10−3. As expected, all PDFs are narrowing with increasing N. This is expected
from the asymptotic behaviour for a single ligand. In fact, the long-time relation (32) implies that

HAD
N (t; r)  N[Cε(r)]N exp

(
−Nt/max{τbulk, τ surf}

)
(t →∞), (41)

i.e., the decay time is decreased by the factor N, and thus the right tail is shifted towards the left (to shorter

times). In contrast, as the survival probability SAD
N (t; r) is close to unity at short times, the left tail is just

multiplied by N and does not shift, i.e.,

HAD
N (t; r)  NHAD(t; r) (t → 0). (42)

This relation is valid for moderate values of N. In turn, when N is very large, we expect the emergence of an

intermediate range of times for which the factor
[

SAD(t; r)
]N−1

cannot be replaced by unity and starts to

affect the distribution of the fFPT.
In panels (b) and (d) we depict the corresponding survival probabilities. We observe that they exhibit

essentially the same behaviour as those in the case N = 1, except for the fact that an abrupt decay to zero
starts at progressively earlier times. We also infer from figure 7 that, maybe somewhat counter-intuitively,
the relative efficiency of both search scenarios is the same as in the case of a single particle. Thus, the ADS
appears to be more efficient for all considered values of Ds/Db. We recall, however, that the relative
efficiency also depends on the ratio R2/R1, see section 3.3. Similar conclusions hold for N particles started
from a fixed point located far from the target (not shown).

5. Conclusions

For the simple geometrical setting of two nested, concentric and impenetrable spheres with an immobile
target site being placed at the North pole of the inner sphere, we presented a detailed comparison of two
search scenarios: (i) the direct search mode, when the particle needs to locate the target solely by bulk
diffusion in the volume between the concentric spheres, with the surface of the inner sphere being perfectly
reflecting, except for the target (see [50] for more details); and (ii) the Adam–Delbrück
reduction-of-dimensionality scenario [1], for which the particle first attaches non-specifically to the reactive
surface of the inner sphere and locates the target by diffusive search on the 2D surface. For both scenarios
we calculate the FPT PDF for the searching ligand, that is initially released from a fixed point, or from a
random position on the surface of the outer sphere. We also considered the case of ‘amplified’ signals, when
initially N ligands are launched from the same fixed or random positions, and the search is completed when
the fastest out of N particles arrives to the target. Such settings indeed correspond to various situations and
problems encountered in cellular biology, biophysics, and biochemistry. In particular, they appear as a
crucial intermediate step in many signal transduction pathways in cellular environments.

To show that the reduction-of-dimensionality scenario may be beneficial in certain situations, Adam and
Delbrück originally presented a comparison of the efficiency of both direct and ADS diffusive searches for a
single ligand, judging solely from the mean times of diffusion towards the target site. In the present work
confronting both scenarios, we went beyond the analysis of the MFPT—which by now is known to be
non-representative in even simple geometries and sometimes even plainly misleading—and therefore
focussed our analysis on the PDF of the random individual FPTs from a fixed or a random starting position
to the target. We compared the behaviour of the full FPT PDF as well as of their integrated characteristic,
the survival probability, which appeared to be a robust measure of the actual efficiency of both search
scenarios. In fact, if

S1(t) � S2(t) ∀ t � 0 (43)

for all times, the first search process (described by S1(t)) is more efficient than the second one. As the MFPT
is the integral of the survival probability, this inequality implies the conventional efficiency criterion,

T1 � T2, (44)

in terms of the MFPTs T1 and T2 of two search processes. In this situation, both criteria are equivalent.
However, the opposite claim is not true, namely, (44) does not imply (43). For instance, one may have
S1(t) � S2(t) at short times and S1(t) � S2(t) at long times, even though T1 = T2. In other words, one
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search process can be more efficient at short times and less efficient at long times. We conclude that the
comparison of survival probabilities provides a more systematic and comprehensive insight into the search
efficiency. On this basis, we specified realistic physical conditions in which the reduction-of-dimensionality
scenario outperforms the direct search for both cases when a single ligand is present and when the signal is
amplified.

Our analysis can be generalised in several directions. First, we considered exclusively the case of standard
Brownian motion. In reality, both diffusion in the bulk and the surface diffusion may be (transiently)
anomalous. These anomalous features can be incorporated in a standard way, e.g., via a subordination
technique. Second, we supposed that the spherical-shell domain is a homogeneous liquid-filled region and
does not contain any obstacles or ‘crowders’. In turn, especially in cellular environments, this is not the case
due to the presence of organelles, proteins and etc, which will certainly affect the dynamics [53]. Moreover,
in some cases the cellular cytoplasm is actively moved by non-equilibrium action of molecular motors
[93–95], thus changing the mixing dynamics inside the cell and creating dynamics heterogeneities [96, 97].
Consequently, these effects may alter the relative efficiency of both search scenarios in the realistic cellular
setting. Third, both scenarios considered here pertain to two somewhat extreme situations: the particle is
either perfectly reflected by the surface of the inner sphere or, in the ADS, non-specifically adsorbs to it
upon first encounter. In reality, the situation can be more complex. As discussed recently in [70] within the
context of a narrow-escape problem, there are distance-dependent potential interactions with the surface on
which the target is located and the presence of such interactions modifies the search processes. As realised in
[70], the most efficient interactions, i.e., resulting in the shortest FPT to the target, are neither too
long-ranged not too short-ranged (as corresponds to the Adam–Delbrück picture) such that the optimal
trajectories are intermittent—upon arrival to the inner sphere a ligand performs a finite surface diffusion
tour and then desorbs to the bulk, arrives to the surface again, performing a new tour of surface diffusion,
and so on, until the target is finally found. Even though such intermittent search strategies have been
studied in the past (see, e.g., [32–38] and references therein), former works were almost exclusively focussed
on the MFPT and the search optimality was qualified by its minimisation. In our future work, we will
explore these possible generalisations of our present analysis.
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Appendix A. Moments of the conditioned first-passage time

The Laplace transform of the joint probability density j(t, s|x) in (6) determines all positive integer
moments of the FPT Ts to the inner sphere, conditioned by the arrival point s,

〈T k
s 〉 =

∫ ∞

0
dttk j(t, s|x) = (−1)k lim

p→0

∂k

∂pk
j̃(p, s|x). (A.1)

One sees that it is sufficient to compute the Taylor expansion in powers of p of the radial functions g(p)
n from

(7). For instance, the first moment is given by

〈Ts〉 = − 1

4πR2
1

∞∑
n=0

(2n + 1)Pn

(
(s · x)

|s||x|

)
lim
p→0

∂g(p)
n (r)

∂p
. (A.2)
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A lengthy but straightforward computation produces

lim
p→0

∂g(p)
n (r)

∂p
=

R2
2

4Db

(n + 1)(r/R2)n + n(r/R2)−n−1

(n + 1)(R1/R2)n + n(R1/R2)−n−1

{
1

(n + 1)(r/R2)n + n(r/R2)−n−1

×
[

n + 1

n + 3/2
(r/R2)n+2 − n − 1

n − 1/2
(r/R2)n +

n + 2

n + 3/2
(r/R2)−n−1 − n

n − 1/2
(r/R2)−n+1

]

− 1

(n + 1)(R1/R2)n + n(R1/R2)−n−1

[
n + 1

n + 3/2
(R1/R2)n+2

− n − 1

n − 1/2
(R1/R2)n +

n + 2

n + 3/2
(R1/R2)−n−1 − n

n − 1/2
(R1/R2)−n+1

]}
. (A.3)

The average of (A.2) over s results in the well-known expression for the MFPT to the inner sphere,

∫
∂Ω

ds〈Ts〉 = − lim
p→0

∂g(p)
0 (r)

∂p
=

(r − R1)(2R3
2 − rR1(R1 + r))

6DbrR1
. (A.4)

Similarly, if the starting point x is uniformly distributed on a sphere of radius r, the integral over the
angular coordinates in (A.2) cancels all terms with n > 0, yielding

1

4πr2

∫
|x|=r

dx〈Ts〉 = − 1

4πR2
1

lim
p→0

∂g(p)
0 (r)

∂p

=
1

4πR2
1

(r − R1)(2R3
2 − rR1(R1 + r))

6DbrR1
, (A.5)

which does not depend on the arrival point s.
Note that when the starting point is located on the outer sphere, r = R2, the first term in (A.3) is

cancelled, and one gets the simpler expression

lim
p→0

∂gn(R2)

∂p
= − R2

2

4Db

(2n + 1)(R1/R2)n+1[
n + (n + 1)(R1/R2)2n+1

]2

×
[

n + 2

n + 3/2
− n

n − 1/2
(R1/R2)2 − n − 1

n − 1/2
(R1/R2)2n+1 +

n + 1

n + 3/2
(R1/R2)2n+3

]
.

Appendix B. Surface diffusion on the sphere

The problem of surface diffusion on a sphere has been intensively studied in the past (see [77–80] and
references therein). In particular, the exact solution for the concentration profile in the presence of a perfect
target was given in [77, 78], whereas its extension to a partially reactive target with reversible binding was
provided in [80]. Here we extend the derivation from [80] to get two equivalent representations of the FPT
PDF for diffusion on the sphere.

Following [80], we consider diffusion on a sphere of radius R (which is set to R1 in the main text)
towards a circular target of angular size ε located on the South pole. This location is specific to this
appendix and differs from our consideration of the target on the North pole throughout the remaining text.
This choice is taken for the fact that the solution will be given in terms of Legendre functions Pν(x) with
non-integer index ν, which are regular at x = 1 (the North pole) and singular at x = −1 (the South pole).
As a consequence, it is natural to locate the target on the South pole to eliminate such singularities.
Alternatively, one could search for the solution in terms of Pν(1 − x), which is equivalent to exchanging the
North and South poles (i.e., by replacing the angle θ by π − θ). Either way, once the derivation is
completed, we will use such a swap to reformulate the final results for the target located on the North pole,
to be consistent with the remainder of the paper.

We search for the Laplace-transformed survival probability S̃surf(p; s) satisfying the boundary value
problem

(p − DsΔs)S̃surf(p; s) = 1 (θ > π − ε), (B.1)

Ds∂nS̃surf(p; s) + κsS̃
surf(p; s) = 0 (θ = π − ε), (B.2)

18



New J. Phys. 24 (2022) 083035 D S Grebenkov et al

where s = (θ,φ) is a point on the sphere, π − ε is the angular coordinate of the target region (here, it is a
circle around the South pole), ∂n is the normal derivative oriented towards the South pole, Δs is the
Laplace–Beltrami operator, and κs is the reactivity of the target. Even though the main text deals with a
perfect target (κs = ∞), we here consider the more general case of a partially reactive target with a finite
reactivity κs, from which the perfect target limit will follow. The axial symmetry of the problem implies that
the survival probability depends only on the angle θ so that Δs =

1
R2 L, where

L = ∂x(1 − x2)∂x with x = cos θ. (B.3)

In the following, we will therefore write functions in terms of x, e.g., S̃surf(p; x).

B.1. Two representations for the Green’s function
We start by considering the Green’s function for diffusion on the sphere, satisfying

(s − L)G̃(x, y|s) = δ(x − y),
(
∂xG̃(x, y|s)

)
|x=a =

qR√
1 − a2

G̃(a, y|s), (B.4)

where s = pR2/Ds, q = κs/Ds, and a = cos(π − ε) = −cos(ε) is the location of the target. The second
relation is the Robin boundary condition on the partially reactive target. While G̃(x, y|s) should be well
known, we provide here the main steps of its derivation for the reader’s convenience.

On one hand, the Green’s function admits the spectral expansion over the Legendre functions Pν(x) of
the first kind which are the eigenfunctions of the operator L, LPν(x) = −ν(ν + 1)Pν(x). One thus gets (see
[80] for details)

G̃(x, y|s) =
∞∑

n=0

b2
nPνn (x)Pνn (y)

s + νn(νn + 1)
(a � x � 1, a � y � 1), (B.5)

where

bn =

(∫ 1

a
dx[Pνn (x)]2

)−1/2

(B.6)

are the normalisation constants, and νn are the solutions of the equation

P′
ν(a) =

qR√
1 − a2

Pν(a) (B.7)

that ensures the Robin boundary condition, and P′
ν(a) =

(
∂Pν (x)
∂x

)
|x=a

. We emphasise that the index ν of the

Legendre function Pν(x) is the unknown to be determined here. In the case of a perfect target (q = ∞), this
relation becomes

Pν(a) = 0. (B.8)

One can easily check that the spectral expansion in (B.5) is the solution of (B.4). Indeed, the application of
the operator (s − L) to G̃(x, y|s) yields∑∞

n=0
b2

nPνn (x)Pνn (y) = δ(x − y) (B.9)

due to the completeness relation for the eigenfunctions Pνn (x).
On the other hand, the Green’s function can be found as a combination of two linearly independent

solutions of the homogeneous equation (s − L)u = 0 which are given as Pμ(x) and Qμ(x), where Qν(x) is
the Legendre function of the second kind, and

μ =
−1 +

√
1 − 4s

2
(B.10)

is the solution of the equation s = −ν(ν + 1) which satisfies μ  −s in the limit s → 0. One searches a
solution of the form

G̃(x, y|s) =

⎧⎨
⎩

APμ(x) (y < x < 1),

B
(

Q̂Pμ(x) − P̂Qμ(x)
)

(a < x < y),
(B.11)

with the shortcut notations P̂ = Pμ(a) − hP′
μ(a) and Q̂ = Qμ(a) − hQ′

μ(a), where h =
√

1 − a2/(qR). The
first relation ensures the regularity of the solution at x = 1, while the second relation takes care of the
boundary condition (B.7) at x = a. The coefficients A and B are determined by requiring the continuity of
G̃(x, y|s) at x = y and the drop by 1/(1 − y2) of its derivative at x = y. One then finds

A = − Q̂Pμ(y) − P̂Qμ(y)

P̂
, (B.12)
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B = −Pμ(y)

P̂
, (B.13)

where the Wronskian

Pν(y)Q′
ν(y) − P′

ν(y)Qν(y) =
1

1 − y2
(B.14)

was used. One finally finds

G̃(x, y|s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pμ(x)

(
Qμ(y) − Q̂

P̂
Pμ(y)

)
(y < x < 1),

Pμ(y)

(
Qμ(x) − Q̂

P̂
Pμ(x)

)
(a < x < y).

(B.15)

Equating the right-hand sides of equations (B.5) and (B.15), one gets an identity which allows one to
evaluate various series involving the zeros νn (see the review [98] for other examples and applications).

B.2. FPT distribution
In order to get the Laplace-transformed survival probability, it is sufficient to integrate the Green’s function
G̃(x, y|s) over y from a to 1. For instance, the integral of (B.5) yields

S̃surf(p; x) =
R2

Ds

∫ 1

a
dyG̃(x, y|s) = R2

Ds

∞∑
n=0

b2
nPνn (x)(1 − a2)P′

νn
(a)

νn(νn + 1)
(

pR2

Ds
+ νn(νn + 1)

) , (B.16)

where we used the identity

∫ b

a
dxPν(x) =

Pν−1(a) − Pν+1(a) − Pν−1(b) + Pν+1(b)

2ν + 1

=
1 − a2

ν(ν + 1)
P′
ν(a) − 1 − b2

ν(ν + 1)
P′
ν(b), (B.17)

and a similar relation holds for Qν(x). Expression (B.16) was considered, e.g., in [80]. It can also be
written as

S̃surf(p; x) =
1

p

∞∑
n=0

b2
nPνn (x)(1 − a2)P′

νn
(a)

(
1

νn(νn + 1)
− 1

pR2

D + νn(νn + 1)

)

=
1

p

(
1 − (1 − a2)

∞∑
n=0

b2
nPνn (x)P′

νn
(a)

pR2

D + νn(νn + 1)

)
, (B.18)

where we evaluated explicitly the first sum by integrating (B.9) and using again (B.17). As a consequence,
the Laplace-transformed PDF then becomes

H̃surf(p; x) = 1 − pS̃surf(p; x) = (1 − a2)
∞∑

n=0

b2
nPνn (x)P′

νn
(a)

R2p
Ds

+ νn(νn + 1)
. (B.19)

The inverse Laplace transform can be easily found to be

Hsurf(t; x) =
(1 − a2)Ds

R2

∞∑
n=0

b2
nPνn (x)P′

νn
(a)e−νn(νn+1)Dst/R2

. (B.20)

This is a rare example of an exact explicit representation of the FPT PDF, except for a numerical step
required to find the roots νn. The MFPT can be formally deduced from the above equations, but it admits
the simple closed-formed expression [78]

Tsurf(x) =
R2

D
ln

(
1 + x

1 + a

)
+

R

κs

√
1 − a

1 + a
. (B.21)
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While the series representation (B.19) of H̃surf(p; x) was convenient for getting Hsurf (t; x), another
representation is needed for the analysis of the asymptotic behaviour. For this purpose, one can calculate
S̃surf(p; x) by integrating G̃(x, y|s) from (B.15). After simplifications, we get

S̃surf(p; x) =
1

p

⎛
⎝1 − Pμ(x)

Pμ(a) −
√

1−a2

qR P′
μ(a)

⎞
⎠ (B.22)

and thus

H̃surf(p; x) =
Pμ(x)

Pμ(a) −
√

1−a2

qR P′
μ(a)

. (B.23)

For a perfect target (q = ∞), one simply gets

H̃surf(p; x) =
Pμ(x)

Pμ(a)
. (B.24)

Note that these solutions could be obtained directly by solving the related boundary value problems with
the operator L.

B.3. Short-time asymptotic behaviour
The above representation for H̃surf(p; x) is suitable for getting the short-time asymptotic behaviour of the
PDF. This corresponds to the large-p limit, for which one can apply the asymptotic behaviour of the
Legendre functions. Indeed, as p →∞, μ  − 1

2 + i
√

s and we use

Pμ(cos θ) 
√

θ

sin θ
J0((u + 1/2)θ) ≈

√
θ

sin θ
J0(i

√
sθ) =

√
θ

sin θ
I0(

√
sθ)  e

√
sθs−1/4

√
2π sin θ

,

from which equation (B.24) yields for a perfect target,

H̃surf(p; θ) 
√

sin ε

sin θ
e−(θ−ε)R

√
p/Ds (p →∞). (B.25)

The leading exponential term here is expected, given that (θ − ε)R is the geodesic distance between the
starting point and the target. As a consequence, we get

Hsurf(t; θ) 
√

sin ε

sin θ

R(θ − ε)e−R2(θ−ε)2/(4Dst)

√
4Dst3

(t → 0). (B.26)

B.4. Green’s function in absence of the target
As mentioned in the main text, the self-consistent approximation (D.10) can also be expressed in terms of
Legendre functions. For this purpose, we need some identities that can be derived from the Green’s
function without the target. In the limit ε→ 0 (or a →−1), the Green’s function approaches

G̃(x, y|s) =
{

Pμ(x)
(
Qμ(y) − Pμ(y)Cμ

)
(y < x < 1),

Pμ(y)
(
Qμ(x) − Pμ(x)Cμ

)
(−1 < x < y),

(B.27)

with

Cμ = lim
a→−1

Qμ(a)

Pμ(a)
=

π

2 tan(πμ)
, (B.28)

where we used the asymptotic behaviour of Legendre functions (see [99], p 164). At the same time, this
Green’s function admits the spectral expansion over Legendre polynomials Pn(x),

G̃(x, y|s) =
∞∑

n=0

(n + 1/2)Pn(x)Pn(y)

s + n(n + 1)
. (B.29)

The integral of G̃(x, y|s) over y from a to 1, for a < x < 1 yields the identity

1

2

∞∑
n=0

Pn(x)(Pn−1(a) − Pn+1(a))

s + n(n + 1)
=

1

s

(
1 − (1 − a2)Pμ(x)

(
Q′

μ(a) − CμP′
μ(a)
))

, (B.30)
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where we used the identity (B.17). We emphasise that the condition a < x < 1 should be satisfied,
otherwise the identity does not hold. In the opposite case, one needs to integrate G̃(x, y|s) over y from −1
to a, to get for −1 < x < a that

1

2

∞∑
n=0

Pn(x)(Pn−1(a) − Pn+1(a))

s + n(n + 1)
= −

(1 − a2)P′
μ(a)
(
Qμ(x) − CμPμ(x)

)
s

. (B.31)

The integral of (B.30) over x from a to 1 yields another identity,

1

2

∞∑
n=0

(Pn−1(a) − Pn+1(a))2

(2n + 1)(s + n(n + 1))
=

(1 − a2)2P′
μ(a)
(
Q′

μ(a) − CμP′
μ(a)
)

s2
+

1 − a

s
. (B.32)

Note that the derivatives P′
ν(x) and Q′

ν(x) can be rewritten using the recurrence relations,

(2ν + 1)(1 − x2)P′
ν(x) = ν(ν + 1)(Pν−1(x) − Pν+1(x)), (B.33)

(2ν + 1)(1 − x2)Q′
ν(x) = ν(ν + 1)(Qν−1(x) − Qν+1(x)). (B.34)

Finally, integrating the representation of the Dirac distribution,

1

2

∞∑
n=0

(2n + 1)Pn(x)Pn(y) = δ(x − y) (B.35)

over y from a to 1, yields
1

2

∞∑
n=0

Pn(x)(Pn−1(a) − Pn+1(a)) = Θ(x − a), (B.36)

where Θ(x − a) is the Heaviside step function.

Appendix C. Solution for the Adam–Delbrück scenario

We here start from the convolution-like relation (5) and show how the integral over the arrival point on the
inner sphere can be evaluated. We recall that the Laplace transforms j̃(p, s|x) and H̃surf(p; s) were given by
the explicit relations (6) and (10). To proceed, we use the addition theorem for (normalised) spherical
harmonics Ymn(θ,φ),

2n + 1

4π
Pn

(
(s · x)

|s||x|

)
=

n∑
m=−n

Y∗
mn(θ,φ)Ymn(θ′,φ′), (C.1)

where x = (r, θ,φ) and s = (R1, θ′,φ′). We substitute this expression into equation (6) and then into
equation (5). As H̃surf(p; θ′) does not depend on φ′ due to the axial symmetry, the integral over φ′ cancels
all contributions in the sum over m, except for m = 0:

H̃AD(p;x) =

∫ π

0
dθ′ sin θ′

∫ 2π

0
dφ′

∞∑
n=0

g(p)
n (r)

n∑
m=−n

Y∗
mn(θ,φ)Ymn(θ′,φ′)H̃surf(p; θ′)

=

∞∑
n=0

g(p)
n (r)(n + 1/2)Pn(cos θ)c(p)

n (ε),

where

c(p)
n (ε) =

∫ π

0
dθ′ sin θ′Pn(cos θ′)H̃surf(p; θ′)

=

∫ ε

0
dθ′ sin θ′Pn(cos θ′) +

1

Pμ(a)

∫ π

ε

dθ′ sin θ′Pn(cos θ′)Pμ(cos(π − θ′))

=
Pn−1(cos ε) − Pn+1(cos ε)

2n + 1
+

(−1)n

Pμ(a)
I(p)

n (− cos ε),

with

I(p)
n (a) =

∫ 1

a
dxPn(x)Pμ(x), (C.2)
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where we used Pn(−x) = (−1)nPn(x). Multiplying the Legendre equation for Pμ(x) by Pn(x), subtracting its
symmetrised version, and integrating over x from a to 1, one immediately finds

I(p)
n (a) = (1 − a2)

P′
n(a)Pμ(a) − P′

μ(a)Pn(a)

n(n + 1) − μ(μ+ 1)
. (C.3)

Substituting this expression, we get

c(p)
n (ε) =

Pn−1(cos ε) − Pn+1(cos ε)

2n + 1
− 1 − cos2 ε

pR2

Ds
+ n(n + 1)

P′
n(cos ε)Pμ(a) + Pn(cos ε)P′

μ(a)

Pμ(a)
, (C.4)

where we used P′
n(−x) = (−1)n+1P′

n(x), and −μ(μ+ 1) = pR2/Ds.

The additive structure of the coefficients c(p)
n (ε) suggests to represent H̃AD(p;x) as a linear combination

of the two contributions
H̃AD(p;x) = H̃1(p;x) − H̃2(p;x), (C.5)

where

H̃1(p;x) =
1

2

∞∑
n=0

g(p)
n (r)Pn(cos θ)

[
Pn−1(cos ε) − Pn+1(cos ε)

]
,

H̃2(p;x) = (1 − cos2 ε)
∞∑

n=0

g(p)
n (r)Pn(cos θ)

n + 1/2
pR2

Ds
+ n(n + 1)

P′
n(cos ε)Pμ(a) + Pn(cos ε)P′

μ(a)

Pμ(a)
.

If the particle starts on the inner sphere, r = R1, one has g(p)
n (R1) = 1, and the first contribution is simply

H̃1(p;x) = Θ(ε− θ). Indeed, it is equal to unity when θ < ε (i.e., the start is on the target), and to 0
otherwise. In general, for r > R1, this contribution corresponds to the direct arrival onto the target. This
can be seen by integrating the probability flux density j̃(p, s|x) from (6) over the target, yielding precisely
H̃1(p;x). Note that equation (C.5) is reproduced in the main text as equation (27). When the starting point
x is uniformly distributed over a sphere of radius r, all terms with n > 0 are cancelled, and one gets the
much simpler expression (33).

C.1. Short-time behaviour
It is instructive to analyse the large-p asymptotic behaviour of equation (33) that corresponds to the
short-time behaviour of HAD(t; r). As p →∞ one has μ ≈ − 1

2 + i
√

pR2
1/Ds, i.e., Pμ(z) is close to a conical

function, for which

Pμ(z) ≈ P− 1
2 +iη(z) ≈

(
θ

sin(θ)

)1/2

I0(ηθ) (η →∞), (C.6)

where η =
√

pR2
1/Ds, θ = acos(z), and I0(z) is the modified Bessel function of the first kind. Using the

large-z behaviour of I0(z), one gets

Pμ(z) ≈ exp(η acos(z))√
2πη(1 − z2)1/4

(η →∞). (C.7)

Evaluating the derivative with respect to z, we find

P′
μ(z)

Pμ(z)
≈ − η√

1 − z2
+

z

2(1 − z2)
(η →∞), (C.8)

where we kept the second (sub-leading) term. As a consequence,

P′
μ(a)

Pμ(a)
≈ −

√
pR2

1/Ds

sin(ε)
− cos(ε)

2 sin2(ε)
(p →∞). (C.9)

Substituting this expression into equation (33) and using g(p)
0 (r) ≈ R1

r e−(r−R1)
√

p/Db as p →∞, we get

H̃AD(p; r)  (1 − cos(ε))R1

2r
exp

(
−(r − R1)

√
p

Db

)(
1 +

1 + cos(ε)

sin(ε)R1

√
Ds

p
+

Ds cos(ε)

2(1 − cos(ε))pR2
1

)
. (C.10)

One can thus evaluate the inverse Laplace transform term by term, yielding equation (34).
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C.2. Long-time behaviour
The long-time behaviour of the PDF HAD(t; x) is determined by the largest pole of the Laplace transform
H̃AD(p;x) (we recall that all poles are negative and thus the largest pole has the smallest absolute value). In
the special case of the starting point on the inner sphere, |x| = R1, there is no bulk diffusion, and the ADS is
reduced to the surface tour alone, i.e., HAD(t; s) = Hsurf (t; s), which was studied earlier (see, e.g., [80]). We
exclude therefore this special case and assume that |x| > R1.

According to equation (5), the set of poles of this function is the union of the poles {pbulk
k } of j̃(p, s|x)

and of the poles {psurf
k } of H̃surf(p; s). The former are determined as the poles of the functions g(p)

n (r); in

particular, the largest pole pbulk
0 is the pole of g(p)

0 (r), which is given by equation (23). In turn, the largest
pole psurf

0 is determined by the smallest zero ν0 of equation (12) as

psurf
0 = − 1

τ surf
< 0, (C.11)

with τ surf given by equation (20). The long-time behaviour of HAD(t; x) is determined by
p0 = max{pbulk

0 , psurf
0 }. As psurf

0 depends on the target size ε, whereas pbulk
0 does not, one has pbulk

0 �= psurf
0 in

the general case. While the analysis is similar for pbulk
0 = psurf

0 , we do not discuss this special case.
The long-time behaviour of HAD(t; x) can be determined by evaluating the inverse Laplace transform by

the residue theorem and keeping only the contribution from the largest pole. We separately consider two
situations:

(i) If p0 = psurf
0 > pbulk

0 , the function j̃(p, s|x) is not singular at p = p0 and is thus kept in equation (5); in
turn, we only keep the singular term with n = 0 from expansion (B.19) of H̃surf(p; s). The residue
theorem then yields

HAD(t;x)  ep0t

(
2πR2

1

∫ 1

a
dx′̃j(p0, (acos(x′), 0)|x)

Ds sin2(ε)

R2
1

b2
0Pν0 (x′)P′

ν0
(a)

)
, (C.12)

where b2
0 is given by equation (B.6), a = −cos(ε), and the integral over ∂Ω was reduced to the integral

over θ′, which is written in terms of x′ = cos(θ′). This integral can be evaluated explicitly by use of
equation (6) and the addition theorem (C.1). However, it is more convenient to focus on the average
when the starting point is uniformly distributed on a sphere of radius r, for which

j̃(p, s|x) ≡ 1

4πr2

∫
|x|=r

dx̃j(p, s|x) =
g(p)

0 (r)

4πR2
1

, (C.13)

and thus equation (C.12) becomes

HAD(t; r)  ep0t

(
g(p0)

0 (r)

2

∫ 1

a
dx′

Ds sin2(ε)

R2
1

b2
0Pν0 (x′)P′

ν0
(a)

)
 ep0tCε(r), (C.14)

with

Cε(r) = g(p0)
0 (r)

Ds sin4(ε)

2R2
1

b2
0[P′

ν0
(− cos(ε))]2

ν0(ν0 + 1)
, (C.15)

where we used the identity ∫ 1

a
dxPν(x) =

1 − a2

ν(ν + 1)
P′
ν(a). (C.16)

Note that equation (7) implies for p0 < 0 that

g(p0)
0 (r) =

R1

r

R2

√
|p0|/Db cos(

√
|p0|/Db(R2 − r)) − sin(

√
|p0|/Db(R2 − r))

R2

√
|p0|/Db cos(

√
|p0|/Db(R2 − R1)) − sin(

√
|p0|/Db(R2 − R1))

. (C.17)

(ii) If p0 = pbulk
0 > psurf

0 , the function H̃surf(p; s) is not singular at p = p0 and is thus kept in equation (5); in
turn, we only keep the singular term with n = 0 from expansion (6) of j̃(p, s|x). The residue theorem
then yields

HAD(t;x)  ep0tCε(r), (C.18)

with

Cε(r) =
1

2
Resp0{g(p)

0 (r)}
∫ π

0
dθ′ sin(θ′)H̃surf(p0; θ

′). (C.19)

As p0 is a pole of g(p)
0 (r), other radial functions disappeared, and the result does not depend on the

starting point x.
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Note that the integral over θ′ can be evaluated explicitly by use of equation (10),∫ π

0
dθ′ sin(θ′)H̃surf(p0; θ

′) =

∫ ε

0
dθ′ sin(θ′)1 +

∫ π

ε

dθ′ sin(θ′)
Pμ0(− cos(θ′))

Pμ0(a)

= (1 − cos(ε)) +

∫ 1

a
dx′

Pμ0(x′)

Pμ0(a)
= (1 − cos(ε)) −

P′
μ0

(a)(1 − a2)Ds

Pμ0(a)p0R2
1

,

where μ0 =
1
2 (−1 +

√
1 − 4p0R1/Ds), and we used the identity (C.16), the relation

μ0(μ0 + 1) = −p0R2
1/Ds and recalled that H̃surf(p; θ′) = 1 for any 0 � θ′ � ε (on the target). The

residue of g(p)
0 (r) can also be found by direct computation,

Resp0{g(p)
0 (r)} =

2Dbα0R1

√
1 + β2α2

0

r(R2 − R1)2(1 + β(βα2
0 − 1))

[
βα0 cos

(
α0

R2 − r

R2 − R1

)
− sin

(
α0

R2 − r

R2 − R1

)]
,

where β = R2/(R2 − R1).
Combining equations (C.14) and (C.18), we obtain relation (32), in which the amplitude Cε(r) is

given either by equation (C.15) for psurf
0 > pbulk

0 , or by equation (C.19) for psurf
0 < pbulk

0 .

C.3. Mean first-passage time
Evaluating the derivative of H̃AD(p;x) at p = 0 we obtain the MFPT within the ADS. To get some
qualitative picture we start from the general representation (5),

TAD(x) = − lim
p→0

∂H̃AD(p;x)

∂p

=

∫
∂Ω

ds

⎡
⎢⎢⎣(−∂p̃j(p, s|x)

)
p=0

H̃surf(0; θs)︸ ︷︷ ︸
=1

+ j̃(0, s|x)
(
−∂pH̃surf(p; s)

)
p=0︸ ︷︷ ︸

=Tsurf(s)

⎤
⎥⎥⎦.

The first term can be interpreted as the MFPT to the inner sphere from a fixed point x, conditioned to
arrive at point s, and then averaged over all locations s. In turn, the second term is the average of the MFPT
Tsurf (s) on the surface, averaged over the arrival point s with the harmonic measure density (factor
j̃(0, s|x)). In practice, we can use the exact solution (27) to compute the MFPT. Even though the exact
computation of this limit is feasible, we consider the simpler case of the surface-averaged MFPT

TAD ≡ 1

4πr2

∫
|x|=r

dxTAD(x) = − lim
p→0

∂pH̃AD(p; r)

= −1 − cos ε

2

⎧⎪⎪⎨
⎪⎪⎩
(
∂pg(p)

0 (r)
)

p=0

(
1 − Ds(1 + cos ε)

pR2
1

P′
μ(a)

Pμ(a)

)
p=0

+
(

g(p)
0 (r)

)
p=0︸ ︷︷ ︸

=1

(
∂p

(
Ds(1 + cos ε)

pR2
1

P′
μ(a)

Pμ(a)

))
p=0

⎫⎪⎪⎬
⎪⎪⎭.

In the first term, we have

lim
p→0

(
∂pg(p)

0 (r)
)
= − (r − R1)(2R3

2 − rR1(r + R1))

6rR1Db
. (C.20)

In the limit p → 0 we approximate μ  −s − s2 + O(s3) (with s = pR2
1/Ds), so that we can use the

expansion (see [100, 101])

Pν(x) = 1 + ν ln

(
1 + x

2

)
− ν2Li2

(
1 − x

2

)
+ O(ν3) (ν → 0), (C.21)

where Li2(z) is the dilogarithm function of the second order, L2(z) = −
∫ z

0 dx ln(1 − x)/x. We thus find

Pμ(a) = 1 − s ln

(
1 + a

2

)
− s2

(
ln

(
1 + a

2

)
+ Li2

(
1 − a

2

))
+ O(s3), (C.22)

25



New J. Phys. 24 (2022) 083035 D S Grebenkov et al

Figure C1. FPT PDF to a circular target located on the North pole of the inner sphere within the ADS, for R1 = 1, R2 = 5,
r = 5, ε = 0.1, Ds/Db = 1 (a), and Ds/Db = 0.01 (b). The surface-averaged PDF HAD(t; r) (circles) is compared to the PDF
HAD(t; x) with a fixed starting point x = (r, θ, 0), for three choices of θ, as indicated in the legend. All PDFs were obtained via
numerical inversion of the Laplace transform by the Talbot algorithm.

P′
μ(a) = − s

1 + a
− s2

(
1

1 + a
+

ln((1 + a)/2)

1 − a

)
+ O(s3), (C.23)

so that
Pμ(a)

P′
μ(a)

= −1 + a

s

(
1 − s

(
1 +

2

1 − a
ln

1 + a

2

)
+ O(s2)

)
, (C.24)

and thus
Ds(1 + cos ε)

pR2
1

P′
μ(a)

Pμ(a)
= −1 − a

1 + a

(
1 + s

(
1 +

2

1 − a
ln

1 + a

2

))
+ O(s2). (C.25)

From this we conclude that

TAD = (−∂pg0(r))p=0 −
(1 − a)R2

1

2Ds

(
1 +

2

1 − a
ln

1 + a

2

)
, (C.26)

which can also be written more explicitly as equation (37).

C.4. Fixed vs random starting point
As argued in section 3.3, the average of the PDF when the starting point is uniformly distributed on a
sphere of given radius r is often more representative than the case of a fixed starting point. Here we briefly
discuss the differences between these two situations. As expected, the long-time behaviour of the PDF does
not depend on the starting point, whereas the short-time behaviour is generally much more sensitive to the
distance between the starting point and the target. Figure C1 illustrates this point for the geometric setting
considered in the main text (with R1 = 1 and r = R2 = 5), except that we take a larger target size, ε = 0.1.
Note that this larger value actually enhances possible differences due to the starting point since a larger
target is found faster and thus the diffusing particle has less time to loose the information on the starting
point. When Ds = Db [panel (a)], the left tail of the PDF is most shifted to the left (to shorter times) when
the fixed starting point is located on the North pole of the outer sphere, i.e., right above the target (located
on the North pole of the inner sphere). In other words, this setting favours the fastest arrival onto the target,
as expected. In particular, it is faster than in the case of random starting point, which is a sort of weighted
average with different distances to the target. In turn, when the fixed target is located on the equator
(θ = π/2) or on the South pole (θ = π) of the outer sphere, the surface averaged PDF provides the faster
arrival at short times. Overall, the difference between the four cases is moderate. This difference is, however,
increased when Ds/Db = 0.01 [panel (b)].

Appendix D. PDF for one-stage search process

The exact spectral solution for the Laplace-transformed FPT PDF in the conventional one-stage scenario
was presented in [50]. This solution involves an infinite-dimensional matrix with explicitly known
elements. In practice, one has to truncate this matrix and then numerically invert it.
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In order to avoid these numerical steps, we use the self-consistent approximation developed and
validated in [50]. The approximate solution reads

H̃app
dir (p;x) = Jp

∞∑
n=0

g(p)
n (r)Pn(cos θ)

1

μ
(p)
n

Pn−1(cos ε) − Pn+1(cos ε)

2
, (D.1)

where

Jp =

(
1

q
+

1

2(1 − cos ε)

∞∑
n=0

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)μ(p)
n

)−1

, (D.2)

and

μ(p)
n = −

(
∂g(p)

n (r)

∂r

)
r=R1

. (D.3)

Here, there is no need for matrix inversion as the expression is fully explicit. Moreover, the limit q →∞ can
be easily obtained by simply setting q = ∞ in equation (D.2). While the inverse Laplace transform of
equation (D.1) can be found exactly via the residue theorem (see [50] for details), we resort to a numerical
inversion by the Talbot algorithm. When the starting point x is uniformly distributed over a sphere of
radius r, equation (D.1) is reduced to

H̃app
dir (p; r) =

Jpg(p)
0 (r)

2μ(p)
0

(1 − cos ε). (D.4)

The approximate solution (D.1) can also be used to compute the moments of the FPT, in particular, the
MFPT was derived in appendix B of [50]. The surface average of equation (B.9) from [50] reads

Tapp
dir =

R3
2 − R3

1

3DbR1

[
Cε +

5R3
2 − 9R2

2R1 + 1

5(R3
2 − R3

1)
− R1

5r3 + 10R3
2 − 3r(R2

1 + 6R2
2)

10r(R3
2 − R3

1)

]
, (D.5)

where

Cε =
2

(1 − cos ε)R1q
+

1

(1 − cos ε)2

∞∑
n=1

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)R1μ
(0)
n

, (D.6)

and

μ(0)
n =

n(n + 1)

R1

1 − (R1/R2)2n+1

n + (n + 1)(R1/R2)2n+1
. (D.7)

When R1 � R2 the factor (R1/R2)2n+1 can be neglected, so that μ(0)
n ≈ (n + 1)/R1. The asymptotic

behaviour of series like in equation (D.6) was analysed in [70]. Since R1μ
(0)
n can be interpreted as

Rg′n(R)/gn(R) from the supplementary material of [70], one has 1/(R1μ
(0)
n ) ≈ 1/(n + 1) = 1/n − 1/n2 +

O(n−3) such that one can apply equation (S76) with ω = 3 from equation (S56). This yields the small-ε
behaviour

Cε ≈
4

R1q
ε−2 +

32

3π
ε−1 − ln(1/ε) + O(1) (ε→ 0). (D.8)

When the target is partially reactive (q < ∞) the dominant term scales as ε−2, showing that the direct
search is reaction-limited. In turn, for a perfect target, on which we focus in this paper, the first term
disappears, and one gets the ε−1-behaviour, with a logarithmic correction. As discussed in [70] for the
problem of the narrow escape from a sphere, the numerical factor 32/(3π) ≈ 3.40 differs by only 8% from
the exact value π, which was known for that problem. This minor difference comes from the self-consistent
approximation. We expect therefore that substitution of Cε ≈ π/ε in equation (D.5) would result in the
correct leading-order behaviour of Tdir in our setting. In particular, when ρ � R1 � R2 (and thus ε � 1),

we get Tapp
dir ≈ τdir = R3

2/(3Dbρ) that was introduced in section 1.
Limit R1→R2.
This is an interesting limit in which the thickness of the shell region between the outer and inner spheres

shrinks, such that a particle is deemed to perform a diffusive motion almost on the surface of a sphere and
seeking a circular target on that surface.

Setting R1 = R − δ, R2 = R and r = R, we get from (D.3), to the leading order,

μ(p)
n  δ

(
p

D
+

n(n + 1)

R2

)
+ O(δ2). (D.9)
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Figure D1. Laplace-transformed PDF H̃dir(p;x) for diffusion in a thin spherical shell between spheres of radii R1 = 0.999 and
R2 = 1 towards a circular target of angular size ε = 0.1 located at the North pole, with r = 1 and θ = π/2. Green circles show
the exact solution from [50] with q = 1 (truncated at nmax = 100) and the solid blue line represents equation (D.10) (the
self-consistent approximation in the limit δ→ 0). For comparison, the Laplace-transformed PDF H̃surf(p; θ) from
equation (B.23) for surface diffusion with Ds = Db towards the same target is shown by the dash-dotted grey line for q = 1 and
by the dashed red line for q = ∞.

In this limit, the self-consistent approximation (D.1) yields

H̃app
dir (p;x) = (1 − cos ε)

⎛
⎝ ∞∑

n=0

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)
(

R2p
D + n(n + 1)

)
⎞
⎠−1

×
∞∑

n=0

Pn(cos θ)(Pn−1(cos ε) − Pn+1(cos ε))(
R2p
D + n(n + 1)

) . (D.10)

One can easily check that H̃app
dir (p;x) converges to unity as p → 0, as it should to fulfill the normalisation

condition of the PDF. Note that both series can be evaluated explicitly by using the identities (B.31) and
(B.32).

Curiously, the approximation (D.10) does not depend on the reactivity parameter q = κ/Db. This
behaviour is illustrated in figure D1, in which we compare the Laplace-transformed PDF for diffusion
inside a thin shell (of width 0.001) to that for surface diffusion on the sphere. There is good agreement
between the three curves: the exact solution for a thin shell with q = 1, the self-consistent approximation
(D.10) (independent of q), and the exact solution H̃surf(p; θ) from (B.23) for surface diffusion on the sphere
towards a perfectly reactive target (q = ∞). In contrast, the exact solution for surface diffusion on the
sphere towards a partially reactive target (q = 1) stands out. We conclude that the Laplace-transformed PDF
in a very thin shell is close to that for surface diffusion towards a perfect target.

To rationalise this behaviour, let us consider diffusion in a very thin stripe, R× (0, δ), on which an
interval (−R, R) × {0} represents the target. Once a particle enters the proximity of the target (i.e., the
rectangle (−R, R) × (0, δ)), it hits the target a very large number of times, so that the reaction occurs very
rapidly after entering this zone. In the limit δ → 0, the number of encounters grows, such that the effective
target on the line is perfectly reactive. The same argument holds for three-dimensional diffusion between
parallel planes, R2 × (0, δ), when the target is a disk {(x, y, 0) ∈ R3 : x2 + y2 < R2}. This is equivalent to
our setting because the curvature of the spherical shell does not matter in the limit δ → 0.

Numerical implementation.
Even though the approximative solution (D.1) is fully explicit, its numerical computation may be

challenging, especially for small ε. In fact, one needs to truncate the infinite series in (D.2), and the
truncation order nmax has to be large when ε is small. At the same time, the numerical evaluation of the
radial function g(p)

n that involve in(z) and kn(z) and determine μ(p)
n , becomes unstable for large n. Moreover,

as one needs to perform an inverse Laplace transform of H̃app
dir (p;x) to get back to the time domain, this

computation has to be realised for any p ∈ C. In order to overcome these numerical difficulties, we adopt
the following two-step scheme.

In the first step, we approximate the radial functions with large n as

g(p)
n (r) ≈ g(p)

n,∞(r) =
kn(αr)

kn(αR1)
, (D.11)
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where α =
√

p/D and g(p)
n,∞(r) are the radial functions for the problem without outer sphere (i.e., for

R2 = ∞). This approximation can be easily justified in the limit p →∞ for any r < R2 and any n just by
looking at the asymptotic behaviour of the modified spherical Bessel functions in(z) and kn(z) in (7). We
checked numerically that this approximation is also applicable for smaller p if r � R2 and n � 1.

In the second step, we employ the recurrence relations for kn(z) to enable an iterative computation of
the radial function. In fact, one has

kn+1(z) = kn−1(z) +
2n + 1

z
kn(z), k′n(z) = −kn−1(z) − n + 1

z
kn(z). (D.12)

Using the first relation, one gets

g(p)
n+1,∞(r) =

kn−1(αr) + 2n+1
αr kn(αr)

kn−1(αR1) + 2n+1
αR1

kn(αR1)
= g(p)

n,∞(r)
R1

r

1 + fn(αr)
2n+1

1 + fn(αR1)
2n+1

, (D.13)

where

fn(z) = z
kn−1(z)

kn(z)
. (D.14)

Using again the first recurrence relation and the explicit form k0(z) = e−z/z one finds

f1(z) =
z2

z + 1
, fn(z) =

z2

fn−1(z) + 2n − 1
(n = 2, 3, . . .). (D.15)

One sees that the fn(z) are rational functions, which can be computed iteratively. These functions have the
following asymptotic behaviours

fn(z)  z2

2n − 1
− z4

(2n − 1)2(2n − 3)
+ O(z6) (z → 0) (D.16)

for n > 1 (note that f1(z) = z2 − z3 + · · · contains the z3 term), and

fn(z)  z − n +
n(n + 1)

2z
+ O(z−2) (z →∞). (D.17)

Finally, we can approximate

μ(p)
n ≈ μ(p)

n,∞ = −
(
∂rg

(p)
n,∞(r)

)
r=R1

= −α
k′n(αR1)

kn(αR1)
. (D.18)

Using the second recurrence relation, one then gets

R1μ
(p)
n,∞ = n + 1 + fn(αR1) (n = 1, 2, . . .) (D.19)

(note that R1μ
(p)
0,∞ = 1 + αR1). We then use the following numerical approximation

Jp ≈

⎛
⎜⎝1

q
+

1

2(1 − cos ε)

⎧⎪⎨
⎪⎩

napp∑
n=0

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)μ(p)
n

+

nmax∑
n=napp+1

(Pn−1(cos ε) − Pn+1(cos ε))2

(2n + 1)μ(p)
n,∞

⎫⎬
⎭
⎞
⎠−1

, (D.20)

in which we keep the first napp + 1 terms with the exact form of μ(p)
n and replace μ(p)

n by its approximation

μ
(p)
n,∞ from (D.19) for the terms with napp < n � nmax. In this way, the truncation order nmax can be made

sufficiently large to ensure accurate computations. We used napp = 50 and nmax = 250.
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[45] Palyulin V V, Chechkin A V and Metzler R 2014 Lévy flights do not always optimize random blind search for sparse targets Proc.
Natl. Acad. Sci. USA 111 2931

[46] Palyulin V V, Chechkin A V, Klages R and Metzler R 2016 Search reliability and search efficiency of combined Lévy–Brownian
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