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Transport in complex networks can describe a variety of natural and human-
engineered processes including biological, societal and technological ones.
However, how the properties of the source and drain nodes can affect trans-
port subject to random failures, attacks or maintenance optimization in the
network remain unknown. In this article, the effects of both the distance
between the source and drain nodes and the degree of the source node on
the time of transport collapse are studied in scale-free and lattice-based trans-
port networks. These effects are numerically evaluated for two strategies,
which employ either transport-based or random link removal. Scale-free
networks with small distances are found to result in larger times of collapse.
In lattice-based networks, both the dimension and boundary conditions
are shown to have a major effect on the time of collapse. We also show
that adding a direct link between the source and the drain increases the
robustness of scale-free networks when subject to random link removals.
Interestingly, the distribution of the times of collapse is then similar to the
one of lattice-based networks.
1. Introduction
Transport in complex (or scale-free) networks is relevant for various natural and
artificial systems [1–4]. These networks have a degree distribution that follows a
power law P(k)∼ k−γ (or truncated power law) [5,6], where k is the node degree
and γ is an exponent. One often considers resistor networks, inwhich the transport
is modelled as a current (or flux) generated by a source and transiting throughout
the links to a drain. Nodes are assignedwith electric potentials, while each link has
a current (or flux).When applying a difference of potential between the source and
drain nodes, the transport self-organizes into a peculiar arborescent configuration,
with a tree-like structure emerging from the source and another one converging to
the drain [7]. These two trees merge into a large cluster with evenly distributed
potentials, the so-called Quasi-equipotential cluster (QEC) [7,8]. The QEC concen-
trates low fluxes, while high fluxes are instead concentrated in the links originating
from the source and terminating at the drain [7].

Natural and artificial systems forming such networks canbe alteredwith time,
and often exhibit properties related to the percolation phenomena,where links are
lost or destroyed with time. For instance, protein bonds may be lost with time in
proteins networks, while proteins, the nodes of the network, remain present [9].
Other examples include the lung airway tree [10], braided streams [11,12], social
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networks [13] and transportation networks for passengers
[14–17]. Previous studies have shown that scale-free networks
are fragile and prone to collapse. This was demonstrated theor-
etically [18] and for multiple dynamical real-world systems,
such as (species) evolution and ecosystems [19,20], the financial
sector [21] and social networks [22]. The stability of such
systems can be jeopardized with the removal of just one
element, possibly leading to collapse [23–27]. One well-
known topological feature that improves the robustness of
the network is the existence of cycles, i.e. directed closed
paths whose only repeated vertices are the first and the last.
They were shown to provide stability to systems such as
biochemical networks, for instance [28,29].

We previously studied three different strategies of a
resistor network evolution by progressive removal of the
weakest, random or strongest link at each time step t. These
strategies can model intentional attacks on the network, its
random failures and progressive network optimizations
when the weakest and thus least useful links are removed
(the pseudo-Darwinian strategy). In all three cases, transport
eventually collapses at a time tc, which depends on the
chosen evolution strategy and a set of network parameters.
In particular, it was shown that low γ values yield high tc
values [30]. In fact, low γ results in an increased proportion
of hubs (nodes with a high degree), which in turn increases
redundancy, i.e. the number of paths between each pair of
nodes in the network [31]. This is a key element to improve
network robustness and therefore to delay the time of col-
lapse tc. Based on our former simulations, the evolution
strategy which produced the smallest tc values corresponded
to the removal of the strongest links, i.e. the links which
hold the largest fluxes. These links are directly connected
to the source and drain nodes, and removing such links
results in a rapid disconnection of the source or the drain
from the rest of the network and thus the transport collapse.
On the contrary, largest values of tc were obtained using the
pseudo-Darwinian strategy when removing links with the
lowest fluxes. As stated earlier, such links are located in
the QEC and thus contribute less to the transportation
system [30]. Finally, values of tc for the random evolution
usually take place between the two above strategies. As a
consequence, the evolution strategies with the removal of
the weakest and the strongest links can serve to identify
lower and upper bounds for tc values, respectively. However,
beside the parameter γ, the other topological properties
affecting tc remain unclear.

In this article, we investigate how the degree of the source
and the distance (in terms of nodes) between the source and
drain nodes can affect tc. These two properties are studied in
the context of percolation, in order to understand what role
they may play in delaying tc. We also investigate resistor
grids with regular, lattice-based geometry, which are widely
employed as models for many problems in science and engin-
eering [32,33]. Our interest in including these networks lies in
their homogeneous topology, which can serve as a reference
for comparing the effects of the studied properties (distance
and degree). We only investigate finite D-dimensional lattice-
based networks, which can be constructed [34] and used in
stealth [35], sensors in robotics [36] or for energy dissipation
in road or railroad vehicles [37,38], for instance. We also aim
at studying how the dimensionality can increase the robustness
of such networks which can, in turn, help in increasing circuit
boards reliability.
2. Methods
In this section, we describe the construction and parameters of
the networks, which can be either scale-free networks (§2.1) or
lattice-based networks (§2.3). Each network (or graph [39]) is
undirected and contains a total of N0 nodes and L0 links. The
transport in these networks is modelled using two main
elements (§2.1). First, two nodes are selected: one for the
source and the other for the drain, such that the transport
starts from the source node and ends at the drain node. The selec-
tion of the source and drain nodes can either be random or
deterministic, depending on the effect we aim to assess (see
§2.1 for a random selection and §3.1 for a specific selection of
the source and drain pair). Second, the transport mechanism is
described by the Kirchhoff’s equations, i.e. the sum of currents
entering any node is equal to the sum of currents leaving it.
This basic rule ensures the conservation of charge in electric cir-
cuits or the conservation of mass in transport systems. An
application of the electrical potential differences (voltage)
between the source and the drain nodes results in a direction
of the current from the source to the drain. In other words, the
flux self-organizes from the source to the drain [7]. This set-up
can serve as an analogy to transport for several real-world
phenomena (see references in §1). We then detail two strategies
of network evolution, in which we progressively remove links
at each time step depending on the chosen strategy (§2.2).
The evolution stops either when the transport is no more
possible between the source and drain or when a portion of
the network is separated from the rest. These conditions
define the time of collapse, which depends on the initial net-
work, the choice of the source and drain and the network
evolution. If at least one of these elements is random (e.g. the
random evolution strategy), the time of collapse is a random
variable, and we are interested in characterizing its probability
density via numerical simulations.
2.1. Network structure and transport
We construct a random scale-free network with N0 nodes using
the uncorrelated configuration model with a given degree expo-
nent γ [40] (figure 1). In each realization of the network with a
prescribed exponent γ, we select a pair of source and drain
nodes, at which the potential is fixed to be 1 and 0, respectively.
In some cases, this selection is performed randomly (uniformly)
among all pairs of nodes. In other cases, we run simulations for
all pairs of nodes. The rule of the selection will be specified for
each study. As a permutation of the source and the drain in
any pair does not change the (absolute values of) fluxes and
potentials (see below), such two choices lead to the same evol-
ution and result in the same time of collapse. For this reason,
one can reduce the total number of pairs of distinguishable
nodes, N0(N0− 1), to the twice smaller number of pairs of indis-
tinguishable nodes, N0(N0− 1)/2. The flux through the network
satisfies conservation of mass [41]: at every node i, we imposeP

j qi,j ¼ 0, where qij is the flux through the link connecting
nodes i and j. These fluxes are calculated as follows:

qi,j ¼ �(Pi � Pj), ð2:1Þ
where Pi and Pj are the potentials at the nodes i and j, respect-
ively, and we set the unit resistance for all links. Note that we
have studied similar networks with distance-dependent resist-
ances and showed their marginal effect on the transport [7,30].
In such a setup, the system of linear Kirchhoff’s equations [42]
describing the transport in a network is

� L0P0` ¼ 0, ð2:2Þ
with ` denoting transposition, L0 the Laplacian matrix of
N0 ×N0 elements and P0` the N0 × 1 column vector of known
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Figure 1. Examples of network realizations. Scale-free networks with γ = {2, 3, 4} and N0 = 100 are illustrated in (a–c), respectively. Grid networks with reflecting
boundary conditions and dimensions D = {2, 3} and sizes N0 = {100, 64} are presented in (d,e), respectively.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220906

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 M

ar
ch

 2
02

3 
(fixed) and unknown potentials. Each element of L is defined
as follows:

Li,j ¼
ki if i ¼ j
�1 if node i = j, and i is adjacent to node j
0 otherwise:

8<
: ð2:3Þ

After removing the source and drain nodes, at which the
potentials are fixed, the aforementioned system can be rewritten
in the following form:

LP` ¼ S`, ð2:4Þ
where P` is the vector of N0− 2 unknown potentials, L is the
Laplacian matrix of (N0− 2) × (N0− 2) elements obtained from
L0 after removal of two lines and two columns corresponding
to the source and drain nodes, and S` is a (N0− 2) × 1 column
vector, in which each element corresponds to the total flux
exiting each node i

S ¼ 1 if node i is adjacent to the source node
0 otherwise:

�
ð2:5Þ

The system described in equation (2.4) is solved for P numeri-
cally using a custom routine in Matlab. The distributions of
potentials on nodes and fluxes in links are then obtained. In par-
ticular, we compute the total flux Q, i.e. the sum of fluxes exiting
from the source node.

Let us come back to the aforementioned statement that the
exchange of roles between the source and the drain does not
change the total flux. This statement follows directly from the lin-
earity of the Kirchhoff’s equations and zero flux condition at each
node. In fact, if P0 is a solution of equation (2.2), then P00 = I− P0 is
also a solution because L0I = 0, where I ¼ ð1, 1, . . . , 1Þ`. But the
removal of the source and drain nodes from P00 is equivalent to
permuting the source and the drain in the corresponding
vector S in equation (2.4). In other words, one can first shift
the potential by −1 (i.e. the source has the potential 0 instead
of 1 and the drain has potential −1 instead of 0) and then
multiply them by −1. This is of course consistent with the fact
that an electric potential in physics is defined up to a constant.
This property can have practical implications for real-life net-
works that can also be described by resistor grids, such as
supply chain networks, water distribution systems, road/air
transportation networks, electric power networks and social
networks for instance [43–47].
2.2. Network evolution
The constructed network evolves at discrete steps according to a
pre-selected strategy. At each evolution step, we solve the system
of Kirchhoff’s equations (2.4) and remove either the weakest link
(pseudo-Darwinian strategy) or a random link (random strategy)
[30]. After a link removal, we also remove ‘dead-end’ nodes (i.e.
nodes whose degree equals 1), thus requiring any existing node
after an evolutionary step to have at least degree 2. Each evol-
ution step is associated with ‘time’ t, and t0 = 0 being the initial
time, when the evolution starts. We denote by Q0 and L0 the
total flux and the number of links, respectively, at t0.

We aim at estimating the time of collapse tc of the network.
The evolution ends when at least one of the following conditions
is met: (i) no path exists between the source and the drain (i.e. the
source and drain are disconnected), (ii) the source or the drain is
removed from the network, and (iii) a portion of the network—a
subgraph containing more than one node—is disconnected from
the rest of the network. This last condition is implemented to
reflect natural systems such as energy, transportation and bio-
logical networks, where it is not desirable to remove a portion
of nodes from the rest of the network. The end of the simulation
defines tc, corresponding to a situation where the transport can
no longer be maintained through the whole network.

We generally obtain a distribution of tc by runningmany simu-
lations for a given set of network parameters. The total number of
simulations is given as nr · np · ns, where nr is the number of random
realizations of the network, np is the number of choices of the
source-drain pair (either np = 1 for a single random choice or
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Figure 2. Effect of distance Δ between the source and the drain on the distribution of the time of collapse tc for scale-free networks of size N0 = 100. (a) tc as a
function of Δ for a single network realization (nr = 1) for each of three values of γ = {2, 3, 4} and the pseudo-Darwinian strategy (ns = 1). (b) The probability
density of tc for nr = 1000 realizations, γ = 2 and the random strategy (ns = 1). (c–e) The probability density of tc for one realization (nr = 1) and ns = 1000
simulations for the random strategy with different values of γ: γ = 2 (c), γ = 3 (d ) and γ = 4 (e). Probability densities in (b–e) are smoothed using an
Epanechnikov kernel.
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np =N0(N0− 1)/2) for a systematic analysis of all pairs, and ns
is the number of random evolutions (note that ns = 1 for the
pseudo-Darwinian strategy, which is deterministic).
2.3. Comparison with lattice-based networks
For comparison, we also investigate the transport in lattice-based
networks of dimension D = {2, 3, 4}. Such a network consists of
integer points on {1, …, N}D, each of them being connected to
its nearest neighbours (figure 1). We consider two boundary con-
ditions: periodic boundary condition (when each node degree k
is equal to 2D) and reflecting (also known as ‘open’) boundary
condition (with k∈ [D, 2D]). We aim here to reveal the role of
topological properties of the network, which are different
between lattice-based and scale-free networks. In particular, we
assess whether lattice-based networks are more robust than
scale-free ones for both evolution strategies. Another point of
interest is to assess the effect of dimensionality and of the type
of boundary conditions on tc. To reduce finite-size effects, we
normalize each tc by L0.
3. Results
3.1. Effect of the distance between source and drain
We start by studying the effect of the distance Δ (measured in
nodes) between the source and the drain on the time of col-
lapse tc of a scale-free network for a given γ value. Note
that Δ = 0 means that there is a direct link between the
source and the drain. Figure 2 summarizes our results for a
scale-free network of size N0 = 100.

Firstly, we produce a single (random) realization of the
scale-free network (nr = 1) and consider all possible pairs
of source and drain nodes. For each pair, we run a pseudo-
Darwinian strategy and compute the time of collapse tc.
This simulation yields np =N0(N0− 1)/2 = 4950 values of tc,
which are grouped according to the distance Δ (figure 2a).
As the pseudo-Darwinian strategy is deterministic, different
values of tc can be interpreted, to some extent, as the result
of a ‘random choice’ of the source and drain nodes. For
γ = {2, 3}, the values of tc for each Δ are almost identical,
with a minor variation. In other words, the time of collapse
is mainly determined by the distance Δ between the source
and the drain and is almost independent of their particular
location in the network. Due to a finite-size effect (N0 =
100), the maximal value of Δ is limited to 6 for γ = 2 and to
8 for γ = 3. The behaviour is different for γ = 4. One sees a
much bigger variation of tc for each value of Δ, meaning
that the distance Δ alone does not determine the time of
collapse, and the location of the source and drain nodes
does matter here. This qualitative difference originates from
the structure of the scale-free network, which has a larger
proportion of ‘hubs’ for smaller γ.

The aforementioned results were obtained for a particular
random realization of the network. To study the effect of
stochasticity (i.e. node degree and wiring), we generated
nr = 1000 random realizations of the scale-free network with
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N0 = 100 and γ = 2. For each realization, we consider all poss-
ible pairs of the source and drain nodes, and for each
assignment, we perform the pseudo-Darwinian evolution to
determine the time of collapse. In this way, we obtain nr
N0(N0− 1)/2 values of tc. We split them into groups accord-
ing to the distance Δ and then plot a probability density
of tc (a rescaled empirical histogram) for each group in
figure 2b. One sees that these histograms are still relatively
narrow (with the standard deviation approximately 10
being much smaller than the mean) but exhibit a larger vari-
ation than for a single realization of the network. It is
expected that randomness of the network structure broadens
the distribution of the time of collapse. As Δ increases, the
maximum of the probability density shifts to the left (to smal-
ler tc), suggesting that the network becomes less robust. In
other words, large Δ is generally associated with small tc.

It is instructive to check whether this statement remains
valid for the random strategy. For this purpose, we generated
a single realization of the network and performed ns = 1000
random evolutions of this network until its collapse. As men-
tioned previously, we consider all pairs of the source and
drain nodes. In this way, we generated 1000 N0(N0− 1)/2
values of tc that were split into groups according to the distance
Δ. The probability densities of tc for each group are shown in
figure 2c–e for γ = 2, 3, 4, respectively. One observes a similar
trend that the maximum of the distribution is shifted to the
left as Δ increases. In turn, these distributions are more
skewed than that of figure 2b for thepseudo-Darwinian strategy.
3.2. Effect of artificial connection
Since the distance Δ strongly affects the time of collapse, one
may wonder how an addition of a direct link between the
source and the drain can change tc for two strategies. The
direct link resets the distance Δ of an already existing network
to 0. For this purpose, we fix N0 = 100 and γ = 2, impose Δ≥ 4
and compare two empirical distributions of tc, without and
with an artificial connection. To fulfil the condition Δ≥ 4, we
randomly select a pair of nodes and check whether their dis-
tance is greater or equal to 4; if yes, these nodes are assigned
to be the source and the drain; otherwise, a newpair is selected,
and so on, until the condition is satisfied. Figure 3 summarizes
the results for two strategies in three settings.

(i) We start with a single random realization of a scale-free
network (nr = 1), which is independently evolved ns =
2 × 104 times by random strategy to get an empirical dis-
tribution of tc. Then, a link between the source and the
drain is added to the initially constructed network,
such that Δ now equals 0, and 2 × 104 evolutions are per-
formed again to get another distribution of tc. Figure 3a
compares two empirical distributions. One sees that
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adding a single link between the source and drain nodes
delays the time of collapse. Moreover, it produces an
important change in the distribution of tc, switching
the mode of the distribution from low to high values.
Interestingly, the modified distribution looks similar to
the distribution for lattice-based networks (figure 5),
whose properties are controlled by dimensionality D
and boundary conditions (see below).

(ii) To study the effect of stochasticity, we then constructed
nr = 103 realizations of the scale-free network, and
each of these networks is evolved ns = 104 times by
the random strategy to get the distribution of tc. Another
distribution is obtained after connecting the source
and the drain for each initial network and evolving it
104 times again. Figure 3b compares two distributions,
which are similar to those shown in figure 3a. We
conclude that stochasticity of the network does not
matter here.

(iii) Finally, we perform simulations similar to (ii), but the
random strategy is replaced by the pseudo-Darwinian
strategy. One can see in figure 3c that two distributions
of tc are almost identical, i.e. the effect of an artificial
connection is minor here. In fact, the inclusion of the
direct link just requires one supplementary step to dis-
connect the source and the drain, thus replacing tc by
tc + 1. This is not surprising because the direct link
supports the strongest current and is thus removed at
the very end of the pseudo-Darwinian evolution.

3.3. Effect of the degree of the source
The degree kS of the source node is another quantity that
may affect the distribution of tc. To investigate its role, we
undertook a similar procedure as in §3.1, namely, we first
considered the pseudo-Darwinian strategy for a single realiz-
ation of the scale-free network, then investigated the effect of
stochasticity and finally compared with the evolution by
random strategy (figure 4). Figure 4a,b shows that the distri-
bution of tc is almost independent of the degree of the source
when using the pseudo-Darwinian strategy. On the contrary,
the random strategy results in an increase of tc when kS is
greater than 2 (see figure 4c–e). The same results are obtained
for the degree of the drain (not shown).

3.4. Comparison with lattice-based networks
Let us now analyse how the topological structure of the net-
work may affect the time of collapse. For this purpose, we
compare the previous results for scale-free networks with
those obtained for lattice-based networks. We fix the lattice
dimension D, its size N0 =ND, and the type of boundary con-
ditions (periodic or open). For each pair of the source and
the drain (i.e. np =N0(N0− 1)/2), we run ns = 1000 evolutions
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Figure 5. Effect of the distance Δ between the source and the drain on the time of collapse tc for lattice-based networks of various dimensions D = {2, 3, 4} that
evolve via the random strategy. The shown probability densities of tc are obtained from ns = 1000 random evolutions for both open boundary conditions (dotted
lines) and periodic ones (solid lines). Probability densities are smoothed using an Epanechnikov kernel.

Table 1. Effect of dimension and periodic versus open boundary conditions
of lattice-based networks on tc/L0 when using the pseudo-Darwinian
strategy. There are two values for each dimension and type of boundary
condition, depending on the location of the source and drain nodes. The
frequency of the corresponding tc/L0 is also given.

D N0 N0(N0− 1)/2
type of
condition tc/L0 frequency

2 36 630 open 0.400 4

0.417 626

periodic 0.500 5

0.514 625

3 125 7750 open 0.583 57

0.587 7693

periodic 0.667 317

0.669 7433

4 81 3240 open 0.625 8

0.630 3232

periodic 0.750 21

0.753 3219
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by the random strategy to obtain the distribution of tc
(figure 5). Contrary to the case of scale-free networks (see
figure 2), there is only a little effect of Δ on the distribution
of tc in all considered lattice-based networks. This effect
is stronger for large Δ, but this result may originate from
finite-size effects (a limited number of configurations with
large Δ). Such networks have a homogeneous structure that
can serve as a benchmark for comparison with other net-
works with a different topology. We also observe that the
mode value of tc/L0 is affected by both the dimension and
the boundary condition: (i) the higher dimension generally
yields larger tc; (ii) periodic boundary condition yields
larger tc, i.e. more robust networks.

In the case of the deterministic pseudo-Darwinian strategy,
the only step that might allow for variability of tc is the choice
of the source and drain nodes. Table 1 shows that this choice
has almost no effect onto the time of collapse. For example,
for the lattice-based network with D = 2, N0 = 36 and open
boundary condition, there are only two values of tc/L0: 0.400
(obtained for four source-drain pairs) and 0.417 (obtained for
the remaining 626 source-drain pairs, among N0(N0− 1)/2 =
630 possible pairs). As in addition these two values are very
close, we conclude that the time of collapse does not depend
on the choice of the source and the drain, nor on their distance.
This is in sharp contrast to the case of scale-free networks.
In turn, tc depends on the dimension, the network size and
the type of boundary conditions.
4. Discussion
In this article, we studied two evolution strategies that alter
the network iteratively [30]. The pseudo-Darwinian strategy,
which is deterministic and controlled by fluxes, results in
targeted, transport-based evolution; in particular, it can
represent the process of transport network optimization, in
which least used elements are progressively removed. In
turn, the random strategy is a stochastic procedure that acts
independently of the fluxes and results in random, topologi-
cally-based evolution; it can model spontaneous failures
and progressive degradation due to, e.g. ageing of the net-
work elements. However, the evolution is driven by two
transport-based mechanisms that are independent of the
chosen strategy. Firstly, the evolution is stopped (at the time
of collapse tc) when transport is no longer possible in the
whole network, either because the source or the drain was
removed or because a portion of the network became discon-
nected (isolated). Second, when a link is removed from a
node with degree k = 2, the node becomes a ‘dead-end’
(k = 1) and no longer contributes to the transport in the rest
of the network; it is then also removed. These two mechan-
isms imply that, independently of the chosen strategy, the
outcomes remain transport based.

In both strategies, we observed that tc is higher when the
distance Δ is small, such as the network is more resilient to
transport-based and topological-based evolutions when the
source and the drain are close to each other. This is valid
only for scale-free networks, as Δ has little effect in lattice-
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based networks (figure 5). In scale-free networks, this topolo-
gical effect was further demonstrated when adding a direct
link between the source and the drain (figure 3), i.e. by creat-
ing one shortest path of length zero (one link). Such an
operation is equivalent to shunts in electronics where small
devices are used for creating alternatives paths for electric
currents [48]. In biological mass-transfer networks, such as
lung airways and blood vessels, these alternative direct
paths arise naturally [49,50] or can be added deliberately to
compensate insufficient flux due to large resistance in the
system [51]. In our simulations, this shunt greatly changed
the distribution of tc for the random strategy (figure 3a,b).
On the contrary, this artificial modification had little to
no effect when using the pseudo-Darwinian strategy
(figure 3c). This difference is interesting because a small
distance Δ tends to produce a larger tc for both strategies
(figure 2), but the posterior topological modification (which
results in Δ = 0) is only beneficial when using the random
strategy (figure 3). It suggests that Δ is an indicator of robust-
ness rather than the cause when it comes to transport-based
collapses. Thus, the increased robustness not only depends
on one-link connection between the source and drain
nodes, but rather originates from the construction itself,
implying a peculiar organization of links with small Δ.
Another interesting result of this artificial modification is
that the collapse of transport is similar in scale-free and
lattice-based networks (figures 3 and 5).

A similar observation can be made about the degree kS of
the source node: while kS has an effect on tc when using the
random strategy (figure 4c–e), it plays very little (or no) role
when using the pseudo-Darwinian strategy (figure 4b). This
further highlights the fact that the two strategies differ in their
behaviour. As such, the degree of the source (or of the drain)
cannot serve as a common indicator of robustness for both
strategies. On the contrary, the distance Δ is more appropriate.

Several former studies showed that network integrity
depends on a particular topology when subject to targeted
or random attacks [18,52]. In particular, Holme et al.
showed that Erdös-Rényi random networks are the most
robust, while scale-free networks are the most vulnerable to
attacks on links or nodes [18]. In the present work, we com-
pared the time of collapse of scale-free and lattice-based
networks. In lattice-based networks, tc is related to the type
of boundary conditions and the dimensionality D, with per-
iodic boundary conditions and higher values of D providing
higher tc (figure 5). The topology of lattice-based networks is
similar to the one of hypercubic graphs Qn, but with an
increased number of nodes per edge. We stress that Qn are
commonly used and appreciated in data sciences for both
their versatile topology and efficiency in distributing numeri-
cal data between nodes in interconnection networks [53–55].
They are efficient structures for transport, which are also resi-
lient to attacks [55,56]. This is in line with our results, which
suggest that lattice-based networks of higher dimensions can
lead to efficient transport and possibly higher resistance to
topological attacks (figure 5). This may also apply to scale-
free networks, as suggested by Wu et al., who studied the
correlation between dimension and robustness of scale-free
networks [57]. However, Wu et al. did not directly investigate
link percolation in an evolutionary framework but rather
relied on typical robustness metrics such as network effi-
ciency and average edge betweenness, which can be
incomplete in regard to our methodological framework.
Yet, it remains to be seen if the dimension and fractal dimen-
sion can correlate with the time of collapse tc. This problem
will be investigated in a subsequent work.

Multiple former studies also demonstrated the usefulness
of centrality measures for assessing node importance in terms
of topology only [58–60]. However, these studies were
focused on the progressive removal of links or nodes under
various strategies but without taking into account transport,
which is critically relevant for various physical, natural and
artificial systems. In particular, these studied did not take
into account the two transport-based mechanisms discussed
earlier. We demonstrate that introducing a single link
between the source and the drain can increase the robustness
of the network (figure 3). This artificial modification results in
an increase of the (node) betweenness centrality (BC) of both
the source and drain nodes. The BC is a practical compu-
tational metric for measuring network robustness subject to
attacks [61]. This metric essentially indicates the number of
shortest paths going through a node. The BC also explains
why dimensionality and periodic conditions are important
for robustness in lattice-based networks, as the BC depends
on both. However, in our set-up, it is difficult to provide a
straightforward interpretation of what BC really is. From a
topological point of view, we study the evolution of a
single network that remains to be a connected undirected
graph at each time step. As such, one can typically consider
the shortest paths that go through the source and drain
nodes and simply ignore the transport information (flow).
From the transport point of view, however, the network
self-organizes and becomes a directed graph, with a flow
originating from the source and ending at the drain [7].
One can then take into account this flow and use it as the
direction for the links and accordingly compute the BC in
this directed graph. However, this would result in the
source and drain nodes having their BC values equal to 0,
as the current originates from the source and ends up to
the drain, resulting in these two nodes having no paths
going through. These are distinct ‘end-nodes’ of major impor-
tance in terms of the transport that cannot be ignored. Thus,
typical metrics such as the BC or closeness centrality should
be further updated with the transport information in order
to better measure node importance in such a set-up. For
instance, one can potentially exploit new metrics such as
the current flow BC [62–64], which is based on random
walks and employs the established connections between
electric current flows and random walks [65].

In summary, this work contributes to the understanding
of transport in scale-free or lattice networks, and more gener-
ally, to dynamical real-world systems that can experience the
progressive removal of links. This includes both natural and
artificial networks, or networked systems: species evolution
[19,20,66], biological systems [67], such as the protein-inter-
action network [68,69], metabolic network [70] and cellular
network [71], economic systems [72], the financial sector
[21,73], social networks [22] such as the author-collaboration
network in social systems [71,74], communication systems
such as the Internet [67,71,75], World Wide Web [67,71,76],
power-grid and industrial networks [67,71], and transpor-
tation networks [77,78]. Dorogovtsev et al. and Albert et al.
review numerous other additional examples of empirical
scale-free networks in [67,71]. Despite the physics-inspired
character of the considered transport model, our work
revealed several features that may find applications in real-
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world networks. First, the source-drain distance Δ is a simple
yet useful indicator for network robustness when environ-
mental changes randomly alter the links. Second, the
inclusion of one additional link can further improve robust-
ness, thus delaying the collapse. This work was focused on
the collapse of transport, which is understood in terms of
fluxes from the source to the drain. This is a simple set-up
which focuses exclusively on a single pair of the source and
drain nodes. We also included condition (iii) which stops the
simulations when the main network is divided into two or
multiple subgraphs (see §2.2). One source and drain and this
breaking condition are reasonable for some applications and
not relevant for others. For instance, in the transportation
field, there can be multiple origins (sources) and destinations
(drains) in one network. When an origin gets disconnected
from the main network, transport remains possible, thanks to
other origins. In a future work, we plan to extend this study
and investigate the time of collapse in more general settings
by removing condition (iii) and including multiple sources
and drains [79,80].
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