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Abstract
We investigate the survival probability of a particle diffusing between two par-
allel reflecting planes toward a periodic array of absorbing pillars. We approx-
imate the periodic cell of this system by a cylindrical tube containing a single
pillar. Using a mode matching method, we obtain an exact solution of the mod-
ified Helmholtz equation in this domain that determines the Laplace transform
of the survival probability and the associated distribution of first-passage times
(FPTs). This solution reveals the respective roles of several geometric paramet-
ers: the height and radius of the pillar, the inter-pillar distance, and the distance
between confining planes. This model allows us to explore different asymptotic
regimes in the probability density of the FPT. In the practically relevant case
of a large distance between confining planes, we argue that the mean FPT is
much larger than the typical time and thus uninformative. We also illustrate
the failure of the capacitance approximation for the principal eigenvalue of
the Laplace operator. Some practical implications and future perspectives are
discussed.

Keywords: diffusion-controlled reactions, first-passage time, spiky coating,
pillar, nanoforest, survival probability, modified Helmholtz equation

(Some figures may appear in colour only in the online journal)

1. Introduction

When a particle diffuses through a complex environment filled with traps, its survival prob-
ability, which determines the first-passage time (FPT) distribution, depends on the geometric
configuration in a very sophisticated way [1–13]. Most former theoretical studies were focused
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on the mean FPT or, equivalently, on the overall reaction rate on that traps (see [14–20] and
references therein). Despite the impressive progress in understanding the mean FPT for vari-
ous stochastic processes, its dominant role as a unique timescale determining the whole dis-
tribution has been questioned [21–24]. In fact, even though the mean FPT characterizes well
the diffusive exploration of a bounded confining domain, the absorption or reaction event may
occur onmuch shorter time scales. For instance, in the physiologically relevant example of cal-
cium diffusion towards calcium-sensing receptors inside a presynaptic bouton, the mean FPT
is usually around tens of milliseconds, whereas the typical FPT is two or even three orders of
magnitude shorter [25]. The limited role of the mean FPT is particularly clear for unbounded
domains, for which the mean FPT is infinite due to a large contribution of rare long trajector-
ies. The whole distribution of the FPT is therefore required for a systematic comprehension of
diffusion-controlled reactions and related search processes.

For this purpose, many efforts were dedicated to characterize the long-time behavior of the
survival probability in disordered or random environments [3, 26, 27] such as random packs of
absorbing immobile spheres [28–30], near a fractal boundary [31], or in dynamic heterogen-
eous media [32]. The random trajectories that survived up to long times thoroughly explore the
confining environment and thus keep some averaged information on its geometric structure.
Their contribution to the survival probability determines the right tail of the probability density
function (PDF) of the FPT. In turn, the short-time behavior of the survival probability is con-
trolled by so-called ‘direct trajectories’ which are close to the shortest geodesic path between
the starting point and the closest trap [22, 33, 34]. Such trajectories are therefore sensitive only
to the local geometric structure, yielding rather universal short-time behavior in the left tail of
the PDF. Its mathematical description goes back to the seminal works by Varadhan [35, 36]
and resembles the concepts of geometric optics in physics [37, 38].

In contrast, the whole distribution of the FPT, that encompasses all time- and geometric
length scales, is known exactly only for rather simple configurations such as an interval, a
rectangle, a disk, a sphere, or a pair of coaxial cylinders or concentric spheres [1, 39–41]. In
these settings, the symmetry of the confining domain allows for a separation of variables and
leads to explicit representations of the survival probability and the PDF of the FPT. When the
absorbing region is only a part of the otherwise reflecting boundary, such basic methods do
not work anymore, and one has to employ more sophisticated tools. For instance, Isaacson and
Newby proposed a uniform in time asymptotic expansion for the PDF of the FPT to a small
target [42]. Another approach was used in [43] to compute the survival probability inside
two-dimensional rotationally invariant domains (like a disk or a sector) in the presence of
an absorbing arc on the boundary. Both an exact solution relying on a matrix inversion, and
an approximate explicit solution were proposed. In the case of domains formed by coaxial
cylinders or concentric spheres, the survival probability in the presence of an absorbing region
was obtained with the aid of the self-consistent approximation [44–46]. A general method
for getting the survival probability in a medium with multiple spherical traps was described
in [47].

In a recent paper [48], we studied steady-state diffusion from a remote source towards a peri-
odic array of absorbing identical cylindrical pillars protruding from a flat base (figure 1(a)).
Using a mode matching method [49–51], we solved the underlying Laplace equation and
found the exact form of the diffusive flux onto each pillar, J= c0DA/(L2 + z0), where c0
is the imposed concentration of particles at the source, D is the diffusion coefficient, A is the
cross-sectional area of a periodic cell, L2 is the distance between the source and the top of the
pillars, and z0 is the offset parameter that aggregates the geometric complexity and reactivity
of the spiky coating. Using the exact though sophisticated expression for z0, we analyzed the
behavior of the steady-state diffusive flux in different asymptotic regimes.

2



J. Phys. A: Math. Theor. 56 (2023) 165002 D S Grebenkov and A T Skvortsov

Figure 1. (a) A square-lattice array of cylindrical pillars (in light blue) on a reflect-
ing support (in gray), capped by an upper reflecting plane (in pink). Periodicity of this
domain allows one to focus on diffusion in a periodic cell around one pillar—a green
rectangular parallelepiped. (b) A single pillar surrounded by an effective coaxial reflect-
ing cylindrical tube and capped by two parallel reflecting planes. (c) Planar (xz) projec-
tion of the three-dimensional domain from panel (b). Blue segments show the absorbing
pillar and green segments represent reflecting parts (the green vertical segment at r= 0
is also reflecting to respect the regularity and the axial symmetry of the solution, see
appendix A.1). Shadowed (light blue) region is the solid (inaccessible) interior of the
cylindrical pillar. Here R2 is the radius of the outer reflecting cylinder, R1 is the radius of
the absorbing pillar, L1 is its height, and L2 is the distance between the source and the top
of the pillar (i.e. L1 + L2 is the height of the whole system). Note that R2 is related to the
inter-pillar distance ℓ, e.g. R2 = ℓ/

√
π for the square lattice. (d) An equivalent problem

of twice longer pillars between two reflecting planes separated by distance 2(L1 + L2).

In the present work, we extend the above analysis to the modified Helmholtz equation,
(p−D∆)u= 0, which describes diffusion in a reactive medium with the bulk reaction rate p;
in addition, this equation results from the Laplace transform of the diffusion equation ∂tc=
D∆c and thus gives access to time-dependent diffusion. In particular, we focus on the survival
probability of a particle diffusing towards a nanoforest of absorbing pillars. We obtain the
exact solution for the Laplace transform of this quantity that yields the moments and the PDF
of the FPT to absorbing pillars.

The paper is organized as follows. In section 2, we formulate the problem and describe
the main steps of its solution. Section 3 presents several properties of the FPT distribution.
In particular, we discuss the short-time and long-time asymptotic behaviors of the PDF of the
FPT, the limited significance of the mean FPT, the failure of the capacitance approximation for
the decay time, and the respective roles of different geometric parameters of the nanoforest.
Conclusions and open problems are summarized in section 4. Details of the derivation are
re-delegated to appendices.

2. Exact solution

We consider ordinary diffusion of a point-like particle between two reflecting planes at
z=−L1 and z= L2 in three dimensions. The bottom plane is covered by a square-lattice array
of absorbing identical cylindrical pillars of radius R1 and height L1, with the inter-pillar dis-
tance ℓ between the centers of the closest pillars (figure 1(a)). The periodicity of this array
allows one to focus on diffusion in a periodic cell containing a single pillar, i.e. inside a rect-
angular parallelepiped (−ℓ/2, ℓ/2)2 × (−L1,L2) with periodic boundary conditions along x
and y directions. Following the rationale by Keller and Stein [52], we replace this original
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periodic cell by a cylindrical tube with reflecting boundary condition. The radius R2 of the
tube is chosen to preserve the volume of the periodic cell by setting πR2

2 = ℓ2. In this way,
we will approximate the solution of the original problem by the exact solution of the reduced
problem. The accuracy of this approximation can be accessed by a numerical solution of the
original problem. Its systematic study will be presented elsewhere (see the related discussion
in [53] for the Laplace equation in a different geometric setting).

From nowon, we focus on diffusion inside a bounded domainΩ, surrounded by a cylindrical
tube of radius R2, towards a co-axial cylindrical absorbing pillar of radius R1 and height L1,
both confined between parallel reflecting planes at z=−L1 and z= L2 (figure 1(b)). Starting
from a point x inside this confining domain, the particle moves with the diffusion coefficient
D until the first arrival onto the surface of the pillar. The FPT to that surface, τ , is a random
variable, which is fully characterized by the survival probability, S(t|x) = P{τ > t}. The latter
satisfies the (backward) diffusion equation, ∂tS= D∆S, which is supplemented by the initial
condition S(0|x) = 1 and mixed boundary conditions: S(t|x) = 0 on the absorbing pillar, and
∂zS(t|x) = 0 on the reflecting planes. The negative time derivative, H(t|x) =−∂tS(t|x), is the
PDF of the FPT τ . In turn, the Laplace transform of the survival probability,

S̃(p|x) =
∞̂

0

dt e−pt S(t|x), (1)

satisfies the modified Helmholtz equation, subject to the same boundary conditions. More
explicitly, we search for the Laplace-transformed survival probability that satisfies the follow-
ing boundary value problem in cylindrical coordinates x= (r,z,ϕ):

(p−D∆)S̃= 1 in Ω, (2a)

S̃= 0 (r< R1, z= 0), (2b)

S̃= 0 (r= R1, −L1 < z< 0), (2c)

∂zS̃= 0 (0< r< R2, z= L2), (2d)

∂zS̃= 0 (R1 < r< R2, z=−L1), (2e)

∂rS̃= 0 (r= R2, −L1 < z< L2), (2f )

where ∆= ∂2
r +(1/r)∂r+ ∂2

z is the Laplace operator in cylindrical coordinates (without
the angular part). Here, equations (2b) and (2c) incorporate absorption on the pillar, while
equations (2d)–(2f ) describe reflections of the particle on the top and bottom boundaries and
on the outer cylindrical surface. The rotation invariance of this problem implies that S̃(p|r,z)
does not depend on the angle ϕ, which therefore will be omitted in what follows. Note also
that the reflection with respect to the plane at z=−L1 transforms this geometric setting into an
equivalent one, with a twice longer pillar located in the middle of the cylindrical tube of height
2(L1 +L2). In other words, we also approximate the Laplace-transformed survival probability
in the presence of twice longer absorbing pillars located in the middle between two parallel
reflecting planes (figure 1(d)).

Setting S̃(p|r,z) = (1− H̃(p|r,z))/p, one can transform the above inhomogeneous modified
Helmholtz equation into the homogeneous one:

(p−D∆)H̃= 0 in Ω, (3a)

H̃= 1 (r< R1, z= 0), (3b)
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H̃= 1 (r= R1, −L1 < z< 0), (3c)

∂zH̃= 0 (0< r< R2, z= L2), (3d)

∂zH̃= 0 (R1 < r< R2, z=−L1), (3e)

∂rH̃= 0 (r= R2, −L1 < z< L2). (3f )

In this way, we focus directly on the Laplace transform H̃(p|r,z) of the PDF H(t|r,z) of the
FPT. Since H̃(p|r,z) = E{e−pτ}, the derivatives of this function with respect to p determine
the integer-order moments of the FPT:

E{τ k}= (−1)k lim
p→0

∂kH̃(p|r,z)
∂pk

. (4)

Moreover, the function H̃(p|r,z) admits another interpretation as a steady-state concentration
of particles, emitted from the pillar into a reactive medium with the bulk reactivity p. Yet
another probabilistic interpretation is that H̃(p|r,z) is the probability for a particle started from
x= (r,z,ϕ) to arrive onto the pillar before being killed in the bulk. In other words, it describes
the survival of a mortal random walker [54–57].

In appendix A, we derive the exact solution of the problem (3) by using a mode matching
method [48–51]. In a nutshell, one represents a general solution of equation (3a) in subdo-
mains with z< 0 and z> 0 as two series (A.2) and (A.11) involving appropriate Bessel func-
tions. The continuity and differentiability of the solution at the junction z= 0 imply an infinite
system (A.29) of linear algebraic equations on the unknown coefficients of these series. The
elements of the infinite-dimensional matrix W that defines this system, are known explicitly
through equation (A.30). Truncating this system to a finite size N, one can solve it numerically
by inverting a finite-size matrix. Despite the need for a numerical step, the obtained solution
provides an analytic dependence of H̃(p|r,z) on the coordinates r and z of the starting point.
Moreover, the truncation error rapidly decreases with N, allowing one to use moderate trunca-
tion orders (say, few tens) and thus very rapid computations for a broad range of parameters.
Finally, the structure of the solution reveals the respective roles of different parameters and
opens a way to asymptotic analysis. In the following, we mainly focus on the PDFH(t|r,z) that
can be obtained numerically by representing the inverse Laplace transform of H̃(p|r,z) as the
Bromwich integral and approximating it with the help of the Talbot algorithm [58]. We fixed
the truncation size N= 10 and checked that this choice was sufficient to get accurate results.

As diffusion occurs in a bounded domain, the survival probability and the PDF of the FPT
admit general spectral expansions:

S(t|r,z) =
∞∑
n=0

e−Dtλn un(r,z)
ˆ

Ω

dxun(x) (5)

and

H(t|r,z) =
∞∑
n=0

Dλn e
−Dtλn un(r,z)

ˆ

Ω

dxun(x), (6)

where λn and un(x) are the eigenvalues and L2(Ω)-normalized eigenfunctions of the (negative)
Laplace operator −∆. The eigenvalues, which are positive and enumerated in an ascending
order, are determined by the poles {pn} of S̃(p|r,z) as λn =−pn/D. In turn, the poles are
obtained as the values of p in the complex plane C, at which the matrix I+W is not invertible,
i.e. when det(I+W) = 0 (with I being the identity matrix). As the eigenvalues are positive,
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one can search for the poles pn on the negative axis (see details in appendix A.4). In turn, the
eigenfunctions and the coefficients (given by the integral) are determined from the residues
of S̃(p|r,z) at the poles. Despite the simple intuitively appealing form of these spectral expan-
sions, their numerical computation is tedious so that we performed a numerical inversion of
the Laplace transforms S̃(p|r,z) and H̃(p|r,z), as described above.

3. Discussion

In this section, we discuss the properties of the survival probability S(t|r,z) and the PDF
H(t|r,z) of the FPT. In particular, we aim at understanding the respective roles of different
geometric parameters of the system, namely, the pillar’s radius R1 and height L1, the distance
L2 to the top reflecting plane, and the radius R2 of the outer reflecting surface, which is related
to the inter-pillar distance ℓ. Throughout this discussion, we fix the radius R2 and rescale all
other lengths by R2. While the obtained exact solution is valid for any set of these parameters,
we will mainly focus on configurations, in which L2/R2 is large and ρ= R1/R2 is small. In all
numerical examples, we set R2 = 1 and D= 1 to fix units of length and time.

We generally discuss the whole distribution of the FPT and its asymptotic behaviors. As
said earlier, the short-time asymptotic behavior is determined by ‘direct trajectories’ that go
straight from the starting point to the closest point on the pillar [22, 23]. As a consequence, the
left tail of the PDF is very sensitive to the starting point and to the closest part of the pillar. In
turn, the geometric configuration of the system does not almost affect this behavior. As earlier
discussed for other settings [24, 44–46], one generally gets the Lévy–Smirnov type behavior,

H(t|r,z)∼ δ√
4πDt3

e−δ2/(4Dt) (t→ 0), (7)

where δ is the distance between the starting point and the absorbing pillar. As this short-time
behavior is rather universal, we do not dwell on its analysis. In contrast, we focus on the
intermediate- and long-time behaviors when the particle has enough time to explore the bulk
around the pillar and is thus sensitive to the geometric configuration of the system.

3.1. Long-time behavior

The spectral expansion (6) implies an exponential decay of the PDF at long times:

H(t|r,z)≈ e−t/T

T
u0(r,z)

ˆ

Ω

dxu0(x), (8)

where the decay time T= 1/(Dλ0) is determined by the principal (smallest) eigenvalue λ0,
which depends on the geometric parameters of the domain Ω is a sophisticated way.

To get some insights onto the decay time, let us first establish a simple upper bound. If the
starting point x is located in the upper part of the domain (with z> 0), the survival probability
obeys the following inequality:

S(t|r,z)⩾ S1(t|z) (t⩾ 0, z> 0), (9)

where S1(t|z) is the survival probability in a capped cylinder of radiusR2 with an absorbing disk
at z= 0 and a reflecting disk at z= L2. Due to the axial symmetry, this is actually the survival
probability on the interval (0,L2) with the absorbing endpoint 0 and the reflecting endpoint
L2. This inequality follows from the continuity of Brownian motion: any trajectory that hits
the absorbing pillar at time t should cross the level z= 0 and thus hit the disk at an earlier
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time t′, i.e. it is more probable to avoid the contact with the pillar than the contact with the
absorbing disk at z= 0. The survival probability S1(t|z) is known explicitly (see, e.g. [1]) and
is reproduced in equation (B.1) for completeness. In particular, it decays exponentially at long
times, with the decay rate Dπ2/(4L2

2). To ensure the inequality (9), the decay rate of S(t|r,z)
should be slower than (or equal to) the decay rate of S1(t|z), i.e. λ0 ⩽ π2/(4L2

2). Similarly, if
the particle starts from a point with r> R1, the survival probability obeys another inequality:

S(t|r,z)⩾ S2(t|r) (t⩾ 0, r> R1), (10)

where S2(t|r) is the survival probability inside the annulus between an absorbing circle of
radius R1 and a reflecting circle of radius R2. Once again, before hitting the pillar, any traject-
ory started from a point with r> R1 must cross the cylindrical surface at r= R1, whatever the
vertical coordinate is. The survival probability S2(t|r) in the annulus also admits an explicit
solution (see, e.g. [41]) and is reproduced in equation (B.2). Its long-time behavior is determ-
ined by the decay rate Dα2

0,1/R
2
2 so that λ0 ⩽ α2

0,1/R
2
2, where α0,1 is the smallest positive

solution of equation (A.9). Combining two inequalities, we get the following lower bound for
the decay time:

T⩾max

{
R2
2

α2
0,1D

,
4L2

2

π2D

}
. (11)

Depending on the geometric parameters, either of two bounds can be dominant. If the pillar
is very thin, α2

0,1 is small, so that R2
2/(α

2
0,1D) can be the maximum, if L2/R2 is not too large

(see further discussion in section 3.5). In contrast, if L2/R2 is large enough, 4L2
2/(π

2D) is the
maximum. Since α2

0,1 decreases logarithmically slowly as R1 → 0 according to equation (19),
the latter case is more relevant for applications. Note also that the upper bound does not depend
on the pillar’s height L1; one can therefore expect that the impact of this geometric parameter
onto the decay time is moderate, at least in the settings with large L2/R2. We return to this
point in section 3.3.

3.1.1. Mean FPT. When the target is small (as compared to the confining domain), the decay
time T is usually close to the mean FPT. In the regime L2/R2 ≫ 1, there is a simple approx-
imation for the mean FPT. In fact, a spiky bottom surface can be approximated by an effect-
ive absorbing flat boundary located at z=−z0, where the offset parameter z0 was thoroughly
investigated in [48]. In this way, the original problem is reduced to one-dimensional diffusion
on the interval (−z0,L2) with the absorbing endpoint −z0 and the reflecting endpoint L2, for
which the mean FPT is:

T(z) =
(z+ z0)(2L2 + z0 − z)

2D
. (12)

Moreover, if the starting point is uniformly distributed, the volume average of T(z) yields
T= (L2 + z0)2/(3D), where z0 incorporates the dependence on the geometric parameters of
the system. As z0 is usually much smaller than L2, one has T≈ 1

3L
2
2/D, which is close to the

lower bound 4
π2 L2

2/D on the decay time T.

3.1.2. Capacitance approximation. When the pillar is small as compared to the cylindrical
tube, i.e. L1/R2 ≪ 1 and ρ= R1/R2 ≪ 1, the reflecting boundary can be treated as being at
infinity, and one often approximates the principal eigenvalue as [59–63]:

λ0 ≈
C

|Ω ′|
, (13)
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Figure 2. Principal eigenvalue λ0 of the Laplace operator, rescaled by its upper bound
π2/(4L2

2), as a function of L2, for the domain with R1 = 0.1, L1 = 1 and R2 = 1. The
eigenvalue λ0 (shown by solid line) was obtained as −p0/D, where p0 is the pole of
S̃(p|r,z) with the smallest absolute value, which was found numerically as the first zero
of det(I+W) = 0 (see appendix A.4). Dashed line presents the capacitance approxima-
tion (13), while dash–dotted horizontal line indicates the upper bound (here, it is located
at 1 due to rescaling).

where |Ω ′|= 2|Ω|= 2π (L1(R2
2 −R2

1)+ L2R2
2) is the volume of the twice bigger domain Ω ′,

which is obtained by reflection with respect to the plane at z=−L1, and C is the capacitance
of the twice longer pillar [64]:

C = 4πR1
1+(L1/R1)

2

π
2 + L1

R1
ln L1

R1

(14)

(note that we use the convention, in which the capacitance of a sphere of radius r is 4π r). As
a consequence, the capacitance approximation (13) implies the following expression for the
decay time:

Tcap =
L2R2

2D
1+(1− ρ2)L1/L2

ρ
(

1+(L1/R1)2

π/2+(L1/R1) ln(L1/R1)

) . (15)

In the same vein, the capacitance was employed to describe the mean FPT, the overall reac-
tion rate, and the long-time behavior of the survival probability (see [65–68] and references
therein).

However, one can see that this approximation is incompatible with the lower bound (11) in
the regime L2/R2 ≫ 1. In fact, the decay time Tcap grows linearly with L2 when other paramet-
ers are fixed, whereas the lower bound grows quadratically with L2. This is a striking example
of the failure of the capacitance approximation (13) for anisotropic confining domains. In other
words, when speaking about the small target limit, one has to take the double limit L2 →∞
and R2 →∞ simultaneously to keep the confining domain more or less isotropic.

Figure 2 illustrates the behavior of the principal eigenvalue λ0 as a function of L2. It is res-
caled by π2/(4L2

2) to highlight the role of this upper bound. One sees thatλ0 rapidly approaches
its upper bound as L2 increases. In turn, the capacitance approximation (13) captures qualit-
atively the behavior of λ0 when L2 ≲ 2 but then exceeds the upper bound and thus fails. Note
that the shift between two curves at small L2 is caused by the fact that the target is not small
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enough as compared to the confining domain (here, R1/R2 = 0.1 and L1/R2 = 1). For smaller
R1/R2 and/or L1/R2 (not shown), the agreement in the region of small L2 is better, but the
capacitance approximation still fails at large L2.

3.1.3. Role of the decay time. We conclude that if L2/R2 is large, the decay time T is close
to its lower bound 4

π2 L2
2/D. Most importantly, it does not almost depend on the geometric

parameters of the system (except L2), i.e. this time scale is uninformative for the considered
first-passage process. Similarly, the mean FPT, which is usually close to the decay time, does
not bear substantial information on the search process in this case. Moreover, in the limit L2 →
∞, the decay time and the mean FPT diverge and therefore become useless. For this reason,
we do not discuss the mean FPT in the remaining text and focus on the whole distribution.

3.2. Role of distance L2

In many applications, the distance L2 is much larger than the other length scales. An interesting
question is how the long-time behavior changes as L2 goes to infinity. In this limit, the prin-
cipal eigenvalue λ0 vanishes so that the exponential decay (8) should transform into a slower
decrease at L2 =∞. In the particular case R1 = R2, the original three-dimensional problem
reduces to one-dimensional diffusion on the positive semi-axis R+, with the Lévy–Smirnov
PDF:

H1D(t|z) =
ze−z2/(4Dt)

√
4πDt3

, (16)

behaving as t−3/2 as t→∞ [1]. The origin of this slow power-law decay is the existence
of very long random trajectories that can go arbitrarily far away from the absorbing point at
z= 0. Even though such long trajectories are unlikely, their contribution makes the mean FPT
infinite. The same probabilistic argument holds in the case R1 < R2 so that the PDF H(t|r,z)
behaves as t−3/2 in general. In appendix A.3, we deduce this general behavior from the exact
solution. To grasp the origin of this slow power-law decay without technical analysis, one can
again apply the inequality (9), in which S1(t|z) is now the survival probability on the positive
semi-axis, which is known exactly:

S1D(t|z) = erf

(
z√
4Dt

)
, (17)

where erf(z) is the error function. At long times, one has S1D(t|z)≈ z/
√
πDt so that the survival

probability S(t|r,z) cannot decrease faster than t−1/2. This simple argument excludes, e.g. an
exponential decay of S(t|r,z) in the limit L2 =∞.

Figure 3(a) illustrates the effect of an increasing distance L2 onto the probability density
H(t|r,z). The starting point is located above the top of the pillar, at a height z= 1. At short
times, only ‘direct’ trajectories to the pillar contribute to the left tail of the PDF so that the
distance L2 to the top boundary does not matter, and all three curves coincide. In contrast,
the long-time limit corresponds to a diffusive exploration of the bounded domain so that an
increase of L2 strongly affects the right tail, shifting it to longer times. Even though there is
an exponential cut-off for any finite L2, one can clearly see the emergence of an intermediate
regime with a power-law decay t−3/2, starting from t≳ 1, in agreement with the above ana-
lysis. This behavior can be recognized by a straight line in the log-log plot; for comparison,
equation (16) is also shown. One sees that the exponential cut-off is progressively shifted to
the right as L2 increases, thus confirming that the PDF in the limit L2 =∞ exhibits the same
power-law decay at any long enough time t.
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Figure 3. (a) Probability density H(t|r,z) of the FPT to the absorbing pillar, with
R1 = 0.1, L1 = 10, r= 0, z= 1, and three values of L2 (see the legend). Gray and black
dotted lines present respectively the probability densitiesH1D(t|r,z) andH1D(t|r,z+ z0)
from equation (16) for the half-line, illustrating the emergence of a power-law shoulder
before an exponential cut-off. The offset parameter z0 ≈ 0.75was calculated by the exact
formula given in [48]. (b) Survival probability S(t|r,z) and its approximations S1D(t|z)
and S1D(t|z+ z0) given by equation (17) for the same setting.

Curiously, the straight part of the curve corresponding to H(t|r,z) lies above the PDF
H1D(t|z) for the half-line; one can therefore conclude that the probability of hitting a thin
pillar at time t (large enough) is actually bigger than that for a thick pillar (with R1 = R2).
This result sounds counter-intuitive. To rationalize it, let us first recall again that the steady-
state flux on a spiky surface is equal to the steady-state flux on an equivalent absorbing flat
surface located at z=−z0, where z0 ⩾ 0 is the offset parameter [48]. As a consequence, the
long-time behavior of the PDF H(t|r,z) can be approximated by that of H1D(t|z+ z0) for the
half-line with the origin at −z0, not at 0. This is confirmed by the black dotted curve that
shows H1D(t|z+ z0). Indeed, this curve lies above H1D(t|z) at long times thanks to the lar-
ger prefactor z+ z0. This behavior can be rationalized in probabilistic terms. In fact, any
random trajectory that hits the absorbing point −z0 at time t has to cross the intermediate
level z= 0 at an earlier time t′. As the probability density H1D(t|z)monotonously decreases at
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large t, one has H1D(t|z+ z0) = H1D(t ′|z)> H1D(t|z). For comparison, figure 3(b) shows the
corresponding survival probability S(t|r,z) and its approximations S1D(t|z) and S1D(t|z+ z0),
given by equation (17).

In the following, we assume that L2 is large enough so that the right tail of the PDF can be
approximated by (z+ z0)/

√
4πDt3 (with z> 0) over a broad range of times. In this case, the

mean FPT is very large (of the order of L2
2/D) and is thus not informative.

3.3. Role of height L1

In the previous subsection, we saw how an increase of L2 transforms an exponential decay of
the PDF into a power-law decay. This is a direct consequence of the fact that the confining
domain Ω becomes unbounded in the limit L2 →∞. Alternatively, the confining domain Ω
can be made unbounded by taking the limit L1 →∞ (with a large but fixed L2). In this limit,
however, the exponential decay persists even for L1 =∞. In fact, if one formally sets L2 → 0,
the problem is reduced to diffusion in a semi-infinite tube containing a semi-infinite absorbing
pillar. Due to the reflecting boundary at z= L2, this is equivalent to diffusion in an infinite tube
with an infinite pillar, for which diffusion along the tube axis z does not matter, and the survival
probability is determined by diffusion in the cross-section, i.e. in an annulus between an inner
absorbing circle and an outer reflecting circle. Despite the fact that the domain is unbounded,
this survival probability admits a spectral expansion (B.2) and exhibits an exponential decay
at long times. The decay rate is given by the principal eigenvalue λ0 = α2

0,1/R
2
2, where α0,1

is the smallest zero of equation (A.9). This argument can be extended to any finite L2 > 0,
for which the particle has an additional space 0< z< L2 for diffusion, so that it is easier to
survive and thus λ0 ⩽ α2

0,1/R
2
2, in agreement with the earlier established bound (11). At the

end of appendix A.3, we provide additional analytic arguments why there is no power-law
decay in the limit L1 →∞ for any finite L2.

Figure 4(a) shows the PDF H(t|r,z) for three values of L1. To eliminate the impact of the
tube height, we set L2 = 100 and keep the starting point to be above the pillar, with r= 0 and
z= 1. One can see that the pillar’s height L1 has a low impact onto the PDF; moreover, the
curves for L1 = 10 and L1 = 100 are almost identical. This is expected because the matrix
W that determines the coefficients of series representations of H̃(p|r,z), depends on L1 only
through the elements B(1)

n given by equation (A.19), in which h1 = L1/R2 enters in the argu-
ment of ctanh(α ′

n,1h1), with α ′
n,1 given by equation (A.10). When α ′

n,1h1 ⩾ α ′
0,1h1 ≫ 1, the

elements B(1)
n do not almost depend on h1, implying the independence of H̃(p|r,z) and thus of

H(t|r,z) on the height L1, when L1 is large enough, in agreement with panel (a). This argument
is valid for any z> 0, i.e. when the particle starts above the pillar.

In turn, if the particle starts on a side of the pillar (z< 0), the dependence on L1 is stronger
because L1 also appears in the function sn,1(z) given by equation (A.4). Panel (b) of figure 4
illustrates this effect for the starting point at (r,z) = (1,0), i.e. at the outer reflecting boundary
on the level of the pillar’s top. Even here, the effect of L1 is moderate, especially for large L1.
In the next subsection, we inspect the dependence on the height of the starting point in the case
of long enough pillars.

It is worth noting that the opposite limit L1 → 0 corresponds to a periodic array of absorbing
disks on the reflecting plane. Steady-state diffusion towards such configurations was studied
earlier (see [48, 69–71] and references therein). For any small but strictly positive L1, the ele-
ments B(1)

n behave as R2/(α
′
n,1)

2/L1 for n≪ n0, and as 1/α ′
n,1 for n≫ n0, where the index n0

is determined by the condition α ′
n0,1 ∼ R2/L1. As a consequence, the elements with moderate

11



J. Phys. A: Math. Theor. 56 (2023) 165002 D S Grebenkov and A T Skvortsov

Figure 4. Probability density H(t|r,z) of the FPT to the absorbing pillar, with R1 = 0.1,
L2 = 100, three values of L1 (see the legend), and two starting points: r= 0, z= 1 (a) and
r= 1, z= 0 (b).

n are getting larger as L1 → 0, but the asymptotic form of this matrix remains unchanged. One
sees that the analysis of the limit L1 → 0 is much more subtle and is beyond the scope of this
paper.

3.4. Role of position z

To analyze the role of the vertical position z of the starting point, we fix the pillar’s height
L1 = 10 and keep again L2 = 100.

Figure 5 shows the PDF H(t|r,z) evaluated at r= 1 (i.e. at the outer cylindrical boundary)
and three values of z: 0,−2, and−4. Expectedly, the short-time behavior, which is determined
by ‘direct’ trajectories and thus by the distance to the absorbing pillar, is almost identical for
three cases. The long-time behavior exhibits the same power-law decay t−3/2 but with dif-
ferent prefactors (we recall that the exponential cut-off due to the boundness of the domain
appears at much longer times exceeding L2

2/D= 104). When z= 0, one can still rely on the
one-dimensional PDF H1D(t|z0) from equation (16) with the offset parameter z0 accounting
for the reduced radius R1 of the pillar (as compared to R2). The resulting long-time asymptotic
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Figure 5. Probability density H(t|r,z) of the FPT to the absorbing pillar, with R1 = 0.1,
L1 = 10, L2 = 100, and different locations of the starting point (r, z), with r= 1 and three
values of z (see the legend). Three dotted lines present the long-time behavior (18), with
α0,1 ≈ 1.10, C(1)≈ 1.11, and z0 ≈ 0.75 found in [48]. Note that the solid blue is not
shown at times t≲ 0.03 due to numerical instabilities in the inversion of the Laplace
transform.

behavior z0/
√
4πDt3, which is shown by blue dotted line, is in excellent agreement with

H(t|r,0).
In order to characterize the reduced amplitude of this line for negative z, we employ the

following argument. When the particle starts in the region z< 0, one can split random traject-
ories in two groups: (i) those that arrived onto the pillar without crossing the level z= 0, and
(ii) those that crossed the level z= 0. For the first group, the survival probability decays expo-
nentially in time, with the decay time of the order of T1 = R2

2/(α
2
0,1D) (see section 3.3). At

times t≫ T1, this contribution is negligible, and the long-time asymptotic behavior is mainly
determined by the trajectories of the second group that managed to escape from the region with
z< 0 and thus can explore the elongated upper region with z> 0. In a first approximation, the
long-time behavior of H(t|r,z) can thus be approximated again by z0/

√
4πDt3, multiplied by

the fraction of trajectories in the second group. This fraction is given by the splitting probab-
ility computed in appendix C. When |z|/R2 is large enough, the splitting probability can be
approximated by the leading term, see equation (C.4), so that:

H(t|r,z)≈ C(r)eα0,1z/R2
z0√

4πDt3
, (18)

where the amplitude C(r) is defined by equation (C.5). The good accuracy of this asymptotic
relation is confirmed on figure 5.

3.5. Role of radius R1

We analyze the role of the pillar’s radius R1. When R1 = R2, the pillar fills the tube, there is
no diffusion in the region z< 0, while the survival probability for the upper region z> 0 is
simply given by S1D(t|z) for diffusion on the interval (0,L2), see equation (B.1). When R1 is
smaller but still comparable to R2, the particle that managed to enter the region z< 0, is rapidly
absorbed by the side surface of the pillar. In this light, configurations with long but thin pillar
(i.e. R1 ≪ R2) seem to be most interesting from both theoretical and practical points of view.
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In the limit ρ= R1/R2 → 0, the pillar shrinks to a needle, i.e. a finite segment or a half-
line, which are ‘invisible’ for Brownian motion [72]. In other words, an infinitely thin pillar
cannot absorb the particle, and the survival probability is equal to 1 in this limit. However, the
approach to this limit is very slow. As discussed in [48], the asymptotic behavior of Bessel
functions implies that:

α0,1 ≈
√
2√

ln(1/ρ)− 3/4
(ρ→ 0). (19)

One sees that α0,1 indeed vanishes as ρ→ 0 but extremely slowly. In particular, this slow decay
ensures that the decay timeR2

2/(α
2
0,1D) associated to planar diffusion is generally (much) smal-

ler than the decay time 4L2
2/(π

2D) associated to diffusion in the upper regionwhen L2/R2 ≫ 1.
In fact, this occurs when:

L2

R2
>

π

2
√
2

√
ln(1/ρ)− 3/4 . (20)

For instance, if ρ= 10−2, this inequality leads to a moderate constraint L2/R2 > 2.18. Altern-
atively, one can get a bound on the relative radius of the pillar:

ρ > exp
(
−3/4− (8/π2)(L2/R2)

2
)
. (21)

Even for a moderate value L2/R2 = 5, the decay time associated to one-dimensional diffusion
is dominant whenever the relative radius exceeds 7.5× 10−10, i.e. in any relevant setting.

3.6. Role of proximity to the pillar

In previous sections, the starting point was located relatively far from the pillar, with the dis-
tance to the pillar being equal to R2. Let us now look at the effect of proximity of the starting
point to the pillar.

If the particle is released from a point (r, z) near the top of the pillar (i.e. 0< z≪ R1 and
r≪ R1), the particle explores at short times the vicinity of a flat boundary, as it was near an
absorbing plane in the upper half-space. As a consequence, the PDF of the FPT is accurately
described byH1D(t|z) from equation (16). As time increases, the particle starts to ‘feel’ that the
top of the pillar has a finite radius, and thus deviates from equation (16). Note that if L2 is large
enough, the long-time behavior is again one-dimensional and given by H1D(t|z+ z0), which
exhibits the same long-time t−3/2 behavior but with a higher amplitude (see section 3.2).

Let us now examine another setting when the particle is released from a point (r, z) near the
side of the pillar (i.e.R1 < r≪ R2 and z< 0with |z| ≫ R2). At short times, the particle explores
a vicinity of the curved surface of a cylindrical pillar of radius R1, as if it diffused outside an
infinite absorbing cylinder of radius R1 in the three-dimensional space. This is equivalent to
planar diffusion outside an absorbing circle of radius R1 (at this time, diffusion along the z
axis does not matter yet). In this case, the survival probability is known to exhibit a very slow
decay (see, e.g. [73–75]):

S2D(t|r)≈
2ln(r/R1)

ln(Dt/R2
1)

(t→∞), (22)

from which:

H2D(t|r)≈
2ln(r/R1)

t[ln(Dt/R2
1)]

2
(t→∞). (23)
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Figure 6. Probability density H(t|r,z) of the FPT to the absorbing pillar, with R1 =
0.01, L1 = 10, (r,z) = (0.05,−2), and three values of L2 (see the legend). Dotted
line presents the long-time behavior (24) for planar diffusion. Vertical dashed lines
indicate several time scales: (r−R1)

2/(6D)≈ 2.7× 10−4 is the most probable FPT,
R2
2/( j

2
0,1D)≈ 0.17 is the decay time for planar diffusion towards an absorbing disk of

radius R2, where j0,1 ≈ 2.4048 is the first positive zero of J0(z), while 4× 12/(π2D)≈
0.4, 4× 102/(π2D)≈ 40 and 4× 1002/(π2D)≈ 4000 are the decay times for one-
dimensional diffusion with L2 = 1,10 and 100, respectively.

A more accurate expression for the asymptotic behavior of the PDF was given in [44, 76]

H2D(t|r)≈
2ln(r/R1)

t
[
π2 +

(
ln(R2

1/(4Dt))+ 2γ
)2] , (24)

where γ≈ 0.5772 is the Euler constant. Note that the integral of this expression yields:

S2D(t|r)≈
2ln(r/R1)

π
arctan

(
π

ln(4Dt/R2
1)− 2γ

)
. (25)

At very large t, one retrieves equations (22) and (23).
These expressions provide the long-time asymptotic behavior for planar diffusion outside

an absorbing circle. In our case, however, these expressions yield the transient behavior at
intermediate time scales, until the particle starts to ‘feel’ the confinement. As time increases
further, the motion of the particle is affected by confinement, and the asymptotic behavior
changes. This change occurs at the time needed to reach the outer boundary of radius R2.
The latter can be estimated as the decay time T2 = R2

2/( j
2
0,1D)≈ 0.17 of the survival prob-

ability of a particle diffusing inside a disk of radius R2 with the absorbing boundary, where
j0,1 ≈ 2.4048 is the first positive zero of the Bessel function J0(z). At even longer times, the
particle may reach the upper region (with z> 0) and diffuse further away from the pillar. If
L2 is large enough, another intermediate regime with the t−3/2 decay is established, as dis-
cussed in section 3.2. This regime is terminated by an exponential cut-off with the decay time
T discussed in section 3.1.

Figure 6 illustrates the effect of proximity of the starting point to the pillar’s side. Here we
consider a thin pillar (R1 = 0.01) and locate the starting point (r, z) close to the pillar’s bound-
ary at r= 0.05 and z=−2. At short times, at which the particle does not ‘feel’ the presence of
the outer reflecting boundary, one retrieves the asymptotic behavior (24) reminiscent of planar
diffusion. At the time scale T2 shown by a black dashed vertical line, there appear deviations
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from equation (24). At even longer times, one observes another intermediate regime with the
t−3/2 decay, which corresponds to a diffusive exploration of the upper region (with z> 0).
This regime is terminated by an exponential cut-off at the time decay 4L2

2/(π
2D) for one-

dimensional diffusion, which is equal to 0.4, 40 and 4000 at L2 = 1,10, and 100, respectively.
Clearly, this time scale for L2 = 1 is too close to T2 ≈ 0.17 so that the intermediate regime
does not exist. In turn, it is clearly visible at L2 = 100.

3.7. Comparison with the self-consistent approximation

In [44], the distribution of the FPT was studied for a similar configuration of two coaxial
cylinders of radiiR1 andR2, capped by the parallel planes at z=−L1 and z= L2. The absorbing
region was located on a lower part (−L1 < z< 0) of the inner cylinder, while its upper part
(0< z< L2) was reflecting. While this configuration resembles our setting with an absorbing
pillar, there is a significant difference: the upper inner cylinder was impenetrable to diffusing
particles so that the top of the pillar was inaccessible in [44]. When the inner cylinder is very
thin, such a difference does not seem to be significant. In contrast, if the inner cylinder is
moderately thin, the excluded volume may play an important role. In particular, the top of the
pillar may have very high chances to absorb the particle arriving from a remote point above the
pillar, thus screening the side of the pillar. Note also that the limit L1 → 0 is totally different in
two settings: in our case, the pillar shrinks to a disk, which can still absorb particles; in turn, in
the setting of [44], the absorbing region was exclusively located on the side of the pillar, and
the survival probability becomes equal to 1 in the limit L1 → 0. We conclude that our study
provides complementary insights onto diffusion-controlled reactions in such domains.

4. Conclusion

In this paper, we investigated the distribution of the FPT to a periodic array of absorbing pillars
confined between two parallel reflecting planes. The replacement of a periodic cell of the
original system by a cylindrical tube with reflecting boundary that englobes a single pillar
allowed us to solve exactly the modified Helmholtz equation in cylindrical coordinates. For
this purpose, we adopted the mode matching method that we recently developed for studying
steady-state diffusion governed by the Laplace equation [48]. In this way, we managed to
obtain an exact representation of the Laplace-transformed PDF H̃(p|r,z) of the FPT. Despite
the need for a numerical inversion of a truncated matrix with explicitly known elements, this
solution presents many advantages: (i) analytical dependence of H̃(p|r,z) on the starting point
(r, z); (ii) rapid convergence and therefore very fast numerical computation; (iii) identification
of respective roles of different geometric parameters onto the solution; and (iv) asymptotic
analysis. In particular, the method was fast enough to undertake an inverse Laplace transform
numerically and to get the survival probability S(t|r,z) and the PDF H(t|r,z) in time domain.

From a theoretical point of view, an absorbing pillar surrounded by a reflecting boundary
is a rich geometric model to investigate various aspects of the FPT distribution. In fact, former
theoretical studies were focused on simpler geometric settings like coaxial cylinders or con-
centric spheres. In turn, the current model has four geometric parameters: the pillar’s height
L1 and radius R1, the distance L2 to the upper plane, and the radius R2 of the outer reflect-
ing boundary (which is also related to the inter-pillar distance in the original periodic array
of pillars). As a consequence, different asymptotic regimes can emerge and even co-exist. For
instance, figure 6 presented the PDF with four distinct regimes: (i) a universal short-time beha-
vior e−(r−R1)

2/(4Dt)/t3/2 governed by ‘direct trajectories’ (left tail), an intermediate behavior
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1/(t ln2(Dt/R2
1)) due to effectively planar diffusion, an intermediate behavior t−3/2 due to

effectively one-dimensional exploration of the upper region, and a universal exponential cut-
off e−t/T due to confinement. Even though each of these regimes have been studied in the
past, we are unaware of earlier observations of all these features in a single PDF. In order to
better understand these features, we discussed how different geometric parameters affect the
distribution.

From a practical point of view, spiky coatings have recently drown significant attention due
to the rapid progress in fabrication technology and favorable performance inmany applications
[77] such as superhydrophobic materials [78], filtration [79, 80], sensing systems [81, 82],
selective protein separation [83], to name but a few. At the same time, a theoretical description
of their trapping efficiency was still missing, especially in a transient time-dependent regime.
To our knowledge, this is the first study of the FPT in such structures. We stress that the derived
exact solution goes far beyond the conventional mean FPT, which is uninformative and actually
misleading if the upper plane is located far away from the pillars. We therefore expect that the
presented method and solution may guide experimentalists in the intelligent design of spiky
coatings with desired trapping properties.
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Appendix A. Exact solution

In this appendix, we provide the details of the derivation of the exact solution of the boundary
value problem (3). This derivation closely follows the appendix of [48], in which the mode
matching method was used to solve the Laplace equation. Even though many notations and
equations are identical, we reproduce the whole derivation to highlight subtle modifications
that are required for solving the modified Helmholtz equation (3a).

A.1. Derivation of the solution

Due to the axial symmetry, the boundary value problem (3) is actually a two-dimensional
problem in an L-shape region (see figure 1(c)). Note that one has to add the Neumann boundary
condition,

∂rH̃= 0 (r= 0, 0< z< L2), (A.1)

to account for the regularity and axial symmetry of the problem. One can search for its solu-
tion separately in two rectangular subdomains, Ω1 = (R1,R2)× (−L1,0) and Ω2 = (0,R2)×
(0,L2), and then match them at the junction interval (at z= 0).

A general solution in Ω1 reads:

H̃(p|r,z) = w(r/R2)−
∞∑
n=0

cn,1 vn,1(r/R2)sn,1(z) , (A.2)
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with unknown coefficients cn,1, where:

w(r̄) =
K1(α)I0(αr̄)+ I1(α)K0(αr̄)
K1(α)I0(αρ)+ I1(α)K0(αρ)

, (A.3)

with α= R2

√
p/D, ρ= R1/R2, r̄ denoting dimensionless radius,

sn,1(z) =
cosh(α ′

n,1(L1 + z)/R2)

cosh(α ′
n,1L1/R2)

(A.4)

and

vn,1(r̄) = enwn(r̄), (A.5)

with

wn(r̄) = J1(αn,1)Y0(αn,1r̄)−Y1(αn,1)J0(αn,1r̄), (A.6)

and we used J ′0(z) =−J1(z), Y ′
0(z) =−Y1(z), prime denotes the derivative, Jν(z) and Yν(z)

are the Bessel functions of the first and second kind, respectively, and Iν(z) and Kν(z) are the
modified Bessel functions. The prefactor:

en =

√
2√

[wn(1)]2 − ρ2[w ′
n(ρ)/αn,1]

2
(A.7)

ensures the normalization of the radial function vn,1(r̄):

1ˆ

ρ

dr̄ r̄ [vn,1(r̄)]
2 = 1, (A.8)

where we used:
1ˆ

ρ

dr̄ r̄w2
n(r̄) =

1
2α2

n,1

(
r̄2[w′

n(r̄)]
2 +α2

n,1r̄
2[wn(r̄)]

2

)1

ρ

=
[wn(1)]2 − ρ2[w′

n(ρ)/αn,1]
2

2
,

withwn(ρ) = 0 andw ′
n(1) = 0 being employed. By construction, H̃(p|r,z) from equation (A.2)

satisfies equations (3a), (3f ) and (3e). The parameters αn,1 are obtained by imposing the con-
dition (3c) at r= R1 (i.e. setting wn(ρ) = 0) and solving the resulting equation:

Y1(αn,1)J0(αn,1ρ)− J1(αn,1)Y0(αn,1ρ) = 0. (A.9)

This equation has infinitely many positive solutions {αn,1}, which are enumerated by n=
0,1,2, . . . in an increasing order [84]. As {vn,1(r̄)} are the eigenfunctions of the differential
operator ∂2

r +(1/r)∂r, they form a complete orthonormal basis in the space L2(ρ,1) of r-
weighted square-integrable functions on (ρ,1). Finally, one sets:

α ′
n,1 =

√
α2
n,1 +R2

2 p/D. (A.10)

A general solution in Ω2 reads:

H̃(p|r,z) =
∞∑
n=0

cn,2 vn,2(r/R2)sn,2(z), (A.11)

with unknown coefficients cn,2, where:

vn,2(r̄) =
J0(αn,2r̄)
J0(αn,2)

, (A.12)
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and

sn,2(z) =
cosh(α ′

n,2(L2 − z)/R2)

cosh(α ′
n,2L2/R2)

. (A.13)

By construction, H̃(p|r,z) from equation (A.11) satisfies equations (3a), (3d) and (A.1). The
parameters {αn,2} are obtained by imposing the condition (3f ), which reads as:

J1(αn,2) = 0 (n= 0,1,2, . . .). (A.14)

This equation has infinitely many positive solutions {αn,2}, which are enumerated by n=
0,1,2, . . . in an increasing order [84]. The prefactor in equation (A.12) ensures the normaliz-
ation:

1ˆ

0

dr̄ r̄ [vn,2(r̄)]
2 =

1
2
. (A.15)

As {
√
2vn,2(r̄)} are the eigenfunctions of the differential operator ∂2

r +(1/r)∂r, they form a
complete orthonormal basis in the space L2(0,1). Finally, one sets:

α ′
n,2 =

√
α2
n,2 +R2

2 p/D. (A.16)

Note that α0,2 = 0 so that α ′
0,2 = α.

The unknown coefficients cn,1 and cn,2 are then determined by matching the representa-
tions (A.2) and (A.11) at z= 0, i.e. by requiring the continuity of H̃(p|r,z) and of its derivative
∂zH̃(p|r,z). The second condition, which should be satisfied for any R1 < r< R2, reads:

R2(∂zH̃)z=0− =
∞∑
n=0

c̃n,1vn,1(r/R2) =
∞∑
n=0

c̃n,2vn,2(r/R2) = R2(∂zH̃)z=0+ , (A.17)

where

c̃n,1 =
cn,1

B(1)
n

, c̃n,2 =−cn,2B(2)
n , (A.18)

and

B(1)
n =

1
R2s ′n,1(0)

=
ctanh(α ′

n,1L1/R2)

α ′
n,1

, (A.19)

B(2)
n =−R2s

′
n,2(0) = α ′

n,2 tanh(α
′
n,2L2/R2), (A.20)

with tanh(z) and ctanh(z) denoting the hyperbolic tangent and cotangent functions, respect-
ively. Multiplying equation (A.17) by r̄ vk,1(r̄) and integrating from ρ to 1, one gets:

∞∑
n=0

c̃n,2

1ˆ

β

dr̄ r̄ vk,1(r̄)vn,2(r̄) = c̃k,1

due to orthogonality of {vk,1(r̄)}. Setting,

Ak,n =

1ˆ

ρ

dr̄ r̄ vk,1(r̄)vn,2(r̄), (A.21)
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we can rewrite the above equations as:

ck,1 = B(1)
k

∞∑
n=0

Ak,nB
(2)
n cn,2 . (A.22)

Moreover, as the radial functions vk,1(r̄) and vk,2(r̄) are linear combinations of Bessel functions
of the same order, the integral in equation (A.21) can be found explicitly:

Ak,n =

(
r̄
vk,1(r̄)v ′n,2(r̄)− v ′k,1(r̄)vn,2(r̄)

α2
k,1 −α2

n,2

)1

r̄=ρ

=
ρv ′k,1(ρ)vn,2(ρ)

α2
k,1 −α2

n,2

, (A.23)

where we used the boundary conditions vk,1(ρ) = v ′k,1(1) = v ′n,2(1) = 0.

Similarly, we impose the continuity of the function H̃(p|r,z) at z= 0, together with
equation (3b):

H̃(p|r,0+) =

{
1 (0< r< R1),

H̃(p|r,0−) (R1 < r< R2).
(A.24)

Multiplying this relation by r̄vk,2(r̄) and integrating from 0 to 1, we get:

ck,2
2

=−
ρv ′k,2(ρ)

α2
k,2

+

1ˆ

ρ

dr̄ r̄ vk,2(r̄)w(r̄)−
∞∑
n=0

cn,1An,k, (A.25)

where we used the orthogonality of functions {vk,2(r̄)} and their normalization (A.15); note
that the first term is equal to ρ2/2 for k= 0. Substituting cn,1 from equation (A.22), we get:

ck,2 + 2
∞∑
n=0

An,kB
(1)
n

∞∑
n ′=0

An,n ′B(2)
n ′ cn ′,2 = Vk , (A.26)

where

Vk
2

=−
ρv ′k,2(ρ)

α2
k,2

+

1ˆ

ρ

dr̄ r̄ vk,2(r̄)w(r̄). (A.27)

In analogy to equation (A.23), one can compute the second integral explicitly:

Vk
2

=−
ρv ′k,2(ρ)

α2
k,2

+

(
r̄
vk,2(r̄)w ′(r̄)− v ′k,2(r̄)w(r̄)

α2
k,2 +α2

)1

r̄=ρ

=−
ρv ′k,2(ρ)

α2
k,2

− ρ
vk,2(ρ)w ′(ρ)− v ′k,2(ρ)

α2
k,2 +α2

, (A.28)

where we used that w(ρ) = 1. It is convenient to re-arrange two sums in equation (A.25) as:

ck,2 +
∞∑
n=0

Wk,n cn,2 = Vk (k= 0,1,2, . . .), (A.29)

where

Wk,n = 2
∞∑

n ′=0

An ′,kB
(1)
n ′ An ′,nB

(2)
n , (A.30)
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i.e. we got the infinite system of linear algebraic equations for the unknown coefficients
ck,2 with k= 0,1,2, . . . . To compute these coefficients, one needs to construct the infinite-
dimensional matrix W and then to invert the matrix I+W, where I is the identity matrix. In
practice, one can truncate the matrix I+W to a finite size N×N and then perform the inver-
sion numerically. Once the coefficients cn,2 are found, one can determine cn,1 according to
equation (A.22). This completes the construction of the exact solution of the problem (3). Even
though this construction involves numerical inversion of the truncated matrix, the obtained
expressions (A.2) and (A.11) provides an explicit analytical dependence of H̃(p|r,z) on r and
z via the functions vn(r/R2) and sn(z). Moreover, the accuracy of the numerical computation
of H̃(p|r,z) rapidly improves as the truncation order N increases. In most cases, one can use
moderate values of N (say, few tens) to get very accurate results.

Importantly, the structure of the exact solution reveals how different geometric parameters
can affect the FPT distribution: the pillar height L1 enters only via B(1)

n , the distance to the
source L2 enters only via B(2)

n , so that the matrix A does not depend on L1 and L2. Similarly, the
matrix A does not depend on p. These properties can be used for deriving various asymptotic
behaviors (see, e.g. appendix A.3). For instance, in the limit p→ 0, one has w(r̄)→ 1 and
w ′(ρ)≈ (ρ− 1/ρ)α2/2. As a consequence, one gets:

Vk
2

≈−ρ
vk,2(ρ)w ′(ρ)

α2
k,2

→ 0 (k> 0), (A.31)

whereas V0 → 1. Moreover, one has B(2)
0 → 0 so that Wk,0 → 0. In this limit, one deals with

the homogeneous system of linear equations,

ck,2 +
∞∑
n=1

Wk,ncn,2 = 0 (k= 1,2, . . .), (A.32)

which has the trivial solution ck,2 = 0 for all k> 0. In addition, one gets c0,2 = 1 and therefore
retrieves the expected normalization:

∞̂

0

dtH(t|r,z) = H̃(0|r,z) = 1. (A.33)

A.2. Averages over the starting point

In some applications, the precise location of the starting point is unknown or irrelevant, and
it is convenient to average the survival probability and the PDF of the FPT as if the starting
point was uniformly distributed.

First, we consider the average over a cross section at a given height z. We get

H̃1(z) =
2π

π (R2
2 −R2

1)

R2ˆ

R1

drrH̃(p|r,z) =− 2ρ
1− ρ2

(
w ′(ρ)

α2
+

∞∑
n=0

cn,1sn,1(z)
v ′n,1(ρ)

α2
n,1

)
(z< 0),

(A.34)

and

H̃2(z) =
2π
πR2

2

R2ˆ

0

drrH̃(p|r,z) = c0,2
cosh((L2 − z)

√
p/D)

cosh(L2

√
p/D)

(z> 0), (A.35)
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where we used:

1ˆ

ρ

dr̄ r̄ vn,1(r̄) =
ρv ′n,1(ρ)

α2
n,1

(A.36)

due to the boundary conditions (and similar equation holds for the integral of r̄w(r̄)), and
α ′

0,2 = α= R2

√
p/D. One sees that the coefficient c0,2 can thus be interpreted as the cross-

sectional average of H̃(p|r,z) at z= 0. In addition,

H̃1(−L1) =− 2ρ
1− ρ2

(
w ′(ρ)

α2
+

∞∑
n=0

cn,1
cosh(α ′

n,1L1/R2)

v ′n,1(ρ)

α2
n,1

)
(A.37)

corresponds to the setting when the particle is released from the bottom surface and has high
chances to be absorbed by the pillar; the knowledge of the PDF allows one to quantify an
escape from the nanoforest of absorbing pillars. When L1/R2 is large (i.e. the pillars are high),
the sum can be neglected, and one retrieves the surface-averaged Laplace-transformed PDF in
an annulus between an absorbing inner circle and a reflecting outer circle. In contrast, if the

particle is released from the top surface, H̃2(L2) characterizes how efficiently the nanoforest
of absorbing pillars can capture such a particle diffusing from a remote location.

Second, we can use these expressions to compute the volume average, as if the starting
point was uniformly distributed in the bulk:

H̃=
1

π
(
R2
2 −R2

1

)
L1 +πR2

2L2

π
(
R2
2 −R2

1

) 0ˆ

−L1

dzH̃1(z)+πR2
2

L2ˆ

0

dzH̃2(z)


=

1
(1− ρ2)h1 + h2

(
−2

ρw′(ρ)

α2
h1 − 2

∞∑
n=0

cn,1
ρv′n,1(ρ)

α2
n,1

tanh(α′
n,1h1)

α′
n,1

+ c0,2
tanh(αh2)

α

)
,

where h1 = L1/R2 and h2 = L2/R2.

A.3. Long-time behavior in the limit L2 =∞

In this section, we discuss the long-time behavior of the PDFH(t|r,z) in the configuration with
L2 =∞. We recall that L2 affects the coefficients cn,1 and cn,2 of the Laplace-transformed PDF

H̃(p|r,z) only through the matrix elements B(2)
n given by equation (A.20). As the long-time

behavior of H(t|r,z) corresponds to the small-p behavior of H̃(p|r,z), it is instructive to look
at the behavior of B(2)

n as p→ 0. For n> 0, α ′
n,2 → αn,2 > 0, with O(p) corrections, so that the

elements B(2)
n tend to strictly positive limits. In contrast, α ′

0,2 = α= R2

√
p/D→ 0, and the

asymptotic behavior of B(2)
0 depends on whether L2 is finite or not:

B(2)
0 ≈

{
L2/R2 (L2 <∞)
α (L2 =∞)

(p→ 0). (A.38)

We start with the case L2 =∞. According to the definition (A.30), the matrix I+W can be
written as:

I+W≈ I+W0 +αY+O(p), (A.39)
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where W0 denotes the matrix W evaluated at p= 0, and the matrix Y has the elements:

Yk,n = 2δn,0

∞∑
n ′=0

An ′,kB
(1)
n ′ An ′,0 , (A.40)

i.e. it has only one nonzero column at n= 0. The coefficients cn,2 can then be found as:

cn,2 =
[
(I+W)−1V]n ≈

[
(I+W0)

−1 −α(I+W0)
−1Y(I+W0)

−1 +O(p)

]
n

.

Substituting these coefficients into equation (A.11), one gets:

H̃(p|r,z) = 1−C
√
p/D+O(p), (A.41)

where the constant term comes from the normalization, while the subleading term is of the
order of p1/2, with some prefactor C (this prefactor can be expressed from the above formu-
las). This asymptotic behavior implies S̃(p|r,z)≈ C/

√
pD, from which the Tauberian theorem

yields the long-time behaviors:

S(t|r,z)≈ C√
πDt

⇒ H(t|r,z)≈ C√
4πDt3

. (A.42)

The above ‘derivation’ does not pretend to be mathematically rigorous; in fact, one deals
here with infinite-dimensional matrices that requires a more refined analysis, in particu-
lar, on the convergence. Nevertheless, this derivation highlights the emergence of the p1/2-
contribution from the matrix element B(2)

0 as the mathematical origin of the slow power-law

decay. In fact, if L2 is finite, B(2)
0 → L2/R2, and there is no p1/2-term. In this case, one would

simply get H̃(p|r,z) = 1+O(p), and the coefficient in front of −p would be the mean FPT.
Moreover, the analysis of the poles (see appendix A.4) would yield the exponential decay of
H(t|r,z), in sharp contrast to equation (A.42) for L2 =∞.

Note that the situation is different in the limit L1 →∞ (with a finite L2). Here, the height
L1 affects the coefficients cn,1 and cn,2 through the matrix elements B(1)

n , which involve α ′
n,1

that approach strictly positive limits αn,1 as p→ 0 for all n. As a consequence, the p1/2-terms
do not emerge, and the mean FPT remains finite, regardless whether L1 is finite or infinite.

A.4. Poles

The poles of the Laplace-transformed survival probability S̃(p|r,z) determine the eigenvalues
λn of the Laplace operator in the considered domain. As discussed in the text, the eigenvalues
are strictly positive so that all the poles lie on the negative axis in the complex plane p ∈ C. At
each pole, the matrix I+W determining the coefficients cn,2 is not invertible, i.e. its determ-
inant is zero: det(I+W) = 0. This equation can be used for a numerical computation of the
poles. However, the computation is rather subtle because the matrix W, which was originally
constructed for positive p, is divergent at some negative values of p. We recall that the mat-
rix W depends on p through two diagonal matrices B(1) and B(2) whose elements are given
by equations (A.19) and (A.20). As these elements involve respectively ctanh(α ′

n,1h1) and
tanh(α ′

n,2h2) (with h1 = L1/R2 and h2 = L2/R2), they become infinite when α ′
n,1h1 = iπ k or

α ′
n,2h2 = i(π/2+π k), for any integer k. In other words, there are two families of points,

R2
2

D
p(1)n,k =−π2k2

h21
−α2

n,1

(
n= 0,1,2, . . .
k= 0,1,2, . . .

)
, (A.43a)

R2
2

D
p(2)n,k =−π2(k+ 1/2)2

h22
−α2

n,2

(
n= 0,1,2, . . .
k= 0,1,2, . . .

)
, (A.43b)
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at which det(I+W) is infinite. By ordering these points, one can search for the poles (i.e. the
zeros of det(I+W)) on intervals between each pair of these consecutive points. These points
actually help to locate the poles. Moreover, they can also be used to get upper and lower bounds
on each pole. For instance, the pole p0 determining the principal eigenvalue λ0 is bounded by:

0< |p0|⩽min
{
|p(1)0,0 |, |p

(2)
0,0 |
}
=min

{
α2

0,1D

R2
2

,
π2D

4L2
2

}
, (A.44)

in agreement with the bound (11).

A.5. Thin pillar asymptotic behavior

In this section, we briefly discuss the limit R1 → 0, which affects the solutions αn,1 of
equation (A.9) and thus the matrix elements of A and B(1). Following a similar analysis in
[48], we reproduce the asymptotic behavior (19) of α0,1. In general, αn,1 approach αn,2 while
the associated eigenfunctions vk,1(r̄) approach

√
2vk,2(r̄) as R1 → 0 (see also [60]). As a con-

sequence, the matrix A, whose elements were defined in equation (A.21) as a weighted scalar
product of these functions, approaches I/

√
2, where I is the identity matrix. In the leading

order, one gets thus

Wk,k ′ ≈ δk,k ′B
(1)
k B(2)

k ′ , (A.45)

and the diagonal structure of this matrix allows for the explicit inversion of I+W. We get
therefore:

cn,2 ≈
Vn

1+B(1)
n B(2)

n

(ρ→ 0), (A.46)

where B(1)
n and B(2)

n are given by equations (A.19) and (A.20). Using the asymptotic behavior
of the modified Bessel functions, we get in the leading order in ρ:

w ′(ρ)≈− ρ−1

K1(α)
I1(α)

− γ− ln(αρ/2)
, (A.47)

from which

Vk ≈
2vk,2(ρ)

(α2
k,2 +α2)

[K1(α)
I1(α)

− γ− ln(αρ/2)
] . (A.48)

In other words, we obtained a fully explicit approximate solution which does not require a
numerical inversion of the infinite-dimensional matrix I+W.

Appendix B. Auxiliary survival probabilities

For completeness, we provide here the well-known expressions for the survival probabilities
for one-dimensional and planar diffusions. When the particle diffuses on the interval (0,L2)
with absorbing endpoint 0 and reflecting endpoint L2, the survival probability reads:

S1D(t|z) = 2
∞∑
n=0

sin(π (n+ 1/2)z/L2)

π(n+ 1/2)
e−π2(n+1/2)2Dt/L2

2 . (B.1)
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In turn, if the particle diffuses in an annulus between an inner absorbing circle of radius R1

and an outer reflecting circle of radius R2, the Laplace transform of the PDF is given by
equation (A.3), while its inverse Laplace transform via the residue theorem yields:

S2D(t|r) =
∞∑
n=0

ρv ′n,1(ρ)

α2
n,1

vn,1(r/R2)e
−α2

n,1Dt/R
2
2 . (B.2)

Appendix C. Splitting probability

In this appendix, we consider diffusion in a semi-infinite reflecting cylindrical tube of radiusR2

with a coaxial semi-infinite absorbing pillar of radius R1:Ω= {(x,y,z) ∈ R3 : R2
1 < x2 + y2 <

R2
2, z< 0}. We sketch the computation of the splitting probability u(r,z), i.e. the probability

of hitting the annular region at the level z= 0 before hitting the cylindrical part of the pillar at
r= R1. The splitting probability satisfies:

∆u= 0 in Ω, (C.1a)

u(R1,z) = 0, (C.1b)

u(r,0) = 1, (C.1c)

(∂ru)(R2,z) = 0, (C.1d)

u(r,z)→ 0 (z→−∞). (C.1e)

In analogy to the derivation in appendix A, one can search the solution as:

u(r,z) =
∞∑
n=0

cn vn,1(r/R2)e
αn,1z/R2 , (C.2)

where the coefficients cn are found from the boundary condition (C.1c) by multiplication by
r̄ vk,1(r̄) and integration over r̄ from ρ and 1,

cn =

1ˆ

ρ

dr̄ r̄ vn,1(r̄) =
ρv ′n,1(ρ)

α2
n,1

. (C.3)

When |z|/R2 is large enough, the leading contribution is given by the first termwith the smallest
value α0,1:

u(r,z)≈ C(r)eα0,1z/R2 , (C.4)

with

C(r) =
ρv ′0,1(ρ)

α2
0,1

v0,1(r/R2). (C.5)
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