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Abstract
We investigate the influence of target anisotropy on two characteristics of
diffusion-controlled reactions: harmonic measure density and mean first-
passage time. First, we compute the volume-averaged harmonic measure dens-
ity on prolate and oblate spheroidal targets inside a confining domain in three
dimensions. This allows us to investigate the accessibility of the target points to
Brownian motion. In particular, we study the effects of confinement and target
anisotropy. The limits of a segment and a disk are also discussed. Second, we
derive an explicit expression of the mean first-passage time to such targets and
analyze the effect of anisotropy. In particular, we illustrate the accuracy of the
capacitance approximation for small targets.

Keywords: diffusion-controlled reaction, harmonic measure,
mean first-passage time, anisotropy

(Some figures may appear in colour only in the online journal)

1. Introduction

Diffusion-controlled reactions play a prominent role in chemistry, biology and engineering
applications [1–3]. Smoluchowski [4] was the first to formalize diffusion-controlled reactions
in terms of diffusion equation that governs time evolution of a concentration of particles diffus-
ing towards a static target with an appropriate boundary condition that specifies the reactivity
of the target. At a single-molecule level, the search of the target and the consequent reaction
on it are characterized by the so-called first-passage statistics. When dealing with a small tar-
get, various characteristics of diffusion-controlled reactions can be obtained explicitly, such
as the mean first-passage time or the principal (smallest) eigenvalue of the governing Laplace
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operator [5–14]. In particular in the small target regime, the asymptotic expansion of the prin-
cipal eigenvalue involves the capacity of the target, which turns out to be a key quantity char-
acterizing diffusion-controlled reactions. In fact, any type of target shape can be considered
as long as its capacity is known. Anyway, most former studies concerned a spherical target
which is characterized by a single lenghtscale (its radius). If a small sphere is replaced by a
small cube or another nearly isotropic shape of the same size, the reaction rate or trapping
capacity for diffusing particles do not change much [15]. Yet, an anisotropic target presents
at least two geometrically relevant lenghtscales: ‘lenght’ and ‘width’, such that it is not obvi-
ous to say what is the target size. In this light, anisotropy deserves to be studied on its own
right. Despite several former studies on the impact of the target shape [16–22], the role of tar-
get anisotropy in diffusion-controlled reactions remains poorly understood. Moreover, some
biophysical applications require to go beyond the small target regime. For example, in living
cells, the ratio of the nucleus diameter to the cell diameter is typically between 1/3 and 1/2,
which is out of the small target regime [23–26].

In this paper, we consider a particle that starts from a point x0 and diffuses with a diffusion
coefficientD inside a bounded confining domainΩ ∈ R3 with a smooth boundary ∂Ω= ∂Ω0 ∪
Γ composed of two disjoint parts: a reflecting ‘outer’ boundary ∂Ω0 and an absorbing ‘inner’
part Γ, that we call a target. We study two characteristics of diffusion-controlled reactions: the
volume-averaged harmonic measure density and the mean first-passage time. The harmonic
measure ω(X,x0) of a subset X of the absorbing boundary Γ is the probability that a Brownian
motion started from x0 ∈ Ω hits that subset first, before hitting the remaining parts Γ\X [27].
For smooth boundaries, one can introduce the harmonic measure density ω(x,x0), to write

ω(X,x0) =
ˆ
X
ω(x,x0)dx. (1)

Given a point x ∈ Γ, ω(x,x0)dx is the probability of the first arrival in the vicinity dx of x.
The harmonic measure and its density have been thoroughly investigated in mathematical and
physical literature [27–32]. In particular, the harmonic measure density can be obtained as

ω(x,x0) =−∂nG(x,x0), (2)

where ∂n is the normal derivative oriented outwards the domain, and G(x,x0) is the Green’s
function which satisfies: −∆G(x,x0) = δ(x− x0) (x ∈ Ω),

G(x,x0) = 0 (x ∈ Γ),
∂nG(x,x0) = 0 (x ∈ ∂Ω0),

(3)

where δ (x− x0) is the Dirac distribution, and ∆ the Laplace operator.
In this paper, we focus on the volume-averaged harmonic measure density

ω(x) =
1
|Ω|

ˆ
Ω

ω(x,x0)dx0, (4)

i.e. the average over the starting point x0, as if it was uniformly distributed in the confining
domain of volume |Ω|. The volume-averaged harmonic measure density is then

ω(x) =
1
|Ω|

ˆ
Ω

(−∂nG(x,x0))dx0. (5)

In the simple case when Γ and ∂Ω0 are two concentric spheres, the rotational symmetry
of the domain implies that the volume-averaged harmonic measure density is uniform, i.e. all
target points are equally accessible to Brownian motion. One may wonder if the uniformity
holds approximately in the general case of a small target of arbitrary shape. As the starting
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point is distributed uniformly inside the domain, one may expect that the diffusing particle
has almost equal probabilities to reach different parts of the target despite its anisotropy. Such
uniformity was one of the assumptions in our previous work [33]. We will discuss the validity
of this assumption for anisotropic targets.

We also consider the mean first-passage time T(x0) to the target Γ from a starting point x0.
The mean first-passage time satisfies the boundary value problem −D∆T(x0) = 1 (x0 ∈ Ω),

T(x0) = 0 (x0 ∈ Γ),
∂nT(x0) = 0 (x0 ∈ ∂Ω0).

(6)

As a consequence, it can be expressed in terms of the Green’s function as

T(x0) =
1
D

ˆ
Ω

G(x,x0)dx. (7)

One may wonder how target anisotropy affects the mean first-passage time, or to what extent
the mean first-passage time to an anisotropic target is different from that to a spherical target.
The present work aims to answer these questions and thus to complete our knowledge on the
effect of target anisotropy in diffusion-controlled reactions.

The paper is organized as follows. Section 2 is devoted to the effect of anisotropy of elong-
ated targets, modeled by prolate spheroids.We start by recalling the prolate spheroidal coordin-
ates, then we study the volume-averaged harmonic measure density for elongated targets. We
also investigate the effect of anisotropy of the target on the mean first-passage time for prolate
spheroids. In particular, we compare the mean first-passage time towards a spheroidal target
and an ‘equivalent’ spherical target. Section 3 follows the same structure for flattened targets,
modeled by oblate spheroids. In section 4, we discuss the results and conclude. Appendix
contains some technical details.

2. Elongated targets

In this section, we consider the domainΩ between biaxial concentric prolate spheroids in three
dimensions. After recalling the prolate spheroidal coordinates, we obtain the volume-avegared
harmonic measure density and investigate the effect of anisotropy on the mean first-passage
time in such domains.

2.1. Prolate spheroidal coordinates

We model an elongated target by the surface of a three-dimensional prolate spheroid (i.e. an
ellipsoid of revolution) with the single major semiaxis b along the z coordinate and two equal
minor semiaxes a< b,

Γ =

{
(x,y,z) ∈ R3 :

x2

a2
+
y2

a2
+
z2

b2
= 1

}
, (8)

surrounded by a concentric prolate spheroid with the single major semiaxis B along the z
coordinate and two equal minor semiaxes A<B:

∂Ω0 =

{
(x,y,z) ∈ R3 :

x2

A2
+
y2

A2
+
z2

B2
= 1

}
. (9)
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We introduce the prolate spheroidal coordinates (α,θ,ϕ), that are related to the Cartesian
coordinates (x,y,z) as x

y
z

= c

 sinhαsinθ cosϕ
sinhαsinθ sinϕ
coshαcosθ

 , (10)

where 0⩽ α <∞, 0⩽ θ ⩽ π, 0⩽ ϕ < 2π, and α
θ
ϕ

=

 cosh−1 [(r+ + r−)/(2c)]
cos−1 [(r+ − r−)/(2c)]

tan−1 (y/x)

 , (11)

where r± =
√
x2 + y2 +(z± c)2 are the distances to the two foci located at points (0,0,±c)

and

c=
√
b2 − a2 =

√
B2 −A2 (12)

is half of the focal distance. Note that this relation introduces a constraint on the shapes of two
spheroids. In this new coordinate system the domain Ω is defined as

Ω= {α1 < α < α2, 0⩽ θ ⩽ π, 0⩽ ϕ < 2π} , (13)

where α1 = tanh−1(a/b) determines the target boundary

Γ = {α= α1, 0⩽ θ ⩽ π, 0⩽ ϕ < 2π} , (14)

and α2 = tanh−1(A/B) determines the outer reflecting boundary

∂Ω0 = {α= α2, 0⩽ θ ⩽ π, 0⩽ ϕ < 2π} . (15)

In particular, the smallness of the target is determined by the condition

b
B
=

coshα1

coshα2
≪ 1. (16)

Note that a/b= tanhα1 and A/B= tanhα2 characterize the anisotropy of the target Γ and
of the outer boundary ∂Ω0, respectively. When the ratio approaches 1 the shape is close
to a sphere; in turn, when the ratio approaches 0 the shape is highly anisotropic (elong-
ated). Figure 1 illustrates different configurations of the domain Ω between two concentric
spheroids.

The volume and surface area of prolate spheroids are well known, in particular, the volume
of the confining domain Ω is

|Ω|= 4π
3

(
A2B− a2b

)
, (17)

and the surface area of the target Γ is

|Γ|= 2πa2
(
1+

b
ae

sin−1(e)

)
, with e=

√
1− a2

b2
. (18)

For further derivations, we use the scale factors of the change of coordinates

hα = c
√

sinh2(α)+ sin2(θ), (19)

hθ = c
√

sinh2(α)+ sin2(θ), (20)

hϕ = csinhαsinθ. (21)
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Figure 1. Examples of concentric prolate spheroids with c= 1, α1 ∈ {0.1,0.5,0.9} and
α2 = {1,2}. For the first line the ratio b/B is respectively 0.65, 0.73, 0.93. For the second
line the ratio b/B is respectively 0.27, 0.30, 0.38.

2.2. Harmonic measure density

The derivation of the volume-averaged harmonic measure density is based on an explicit rep-
resentation of the Green’s function in prolate spheroidal coordinates (see appendix ‘Prolate
spheroids’). Taking the normal derivative and integrating over the starting point according to
its definition (5), we get after a lengthy computation

ω(x) =
1

4πcsinhα1hα1(θ)

(
1− 8πc3 sinh2(α1)

15|Ω|
I2P2(cosθ)

)
, (22)

where

I2 =−5
6
P ′
2 (coshα1)Q ′

2 (coshα2)−Q ′
2 (coshα1)P ′

2 (coshα2)

P2 (coshα1)Q ′
2 (coshα2)−Q2 (coshα1)P ′

2 (coshα2)
, (23)

and Pn(x) andQn(x) are the Legendre functions of the first and second kind, and prime denotes
the derivative with respect to the argument. In particular, P2(x) = 1

2 (3x
2 − 1) and Q2(x) =

3x2−1
4 ln

(
x+1
x−1

)
− 3x

2 . The first arrival position x is fully characterized by the angle θ (the axial

symmetry implies that ω(x) does not depend on ϕ). Figure 2 illustrates the behavior of the
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Figure 2. The volume-averaged harmonicmeasure density from equation (22) as a func-
tion of the angle θ, for prolate spheroids with c= 1 and α2 = 2.

volume-averaged harmonic measure density in equation (22). Asα1 gets smaller (i.e. the target
becomes more anisotropic), the volume-averaged harmonic measure density exhibits stronger
variations with θ, with two maxima on the extremities of the prolate spheroid which are the
most exposed to Brownian motion.

Let us inspect equation (22) in more details. One sees that there are two effects of the
angle θ onto the function ω(x): via a multiplicative factor proportional to 1/hα1(θ) and via
an additive term proportional to P2(cosθ). The first effect is a consequence of a non-linear
parameterization of the target surface by curvilinear coordinates θ and ϕ. In fact, the surface
element on the target surface is

dx= hθ(θ)hϕ(θ)dθdϕ = csinhα1hα1dξ dϕ, (24)

where ξ = cosθ ∈ (−1,1) and we used equations (19)–(21). The high values of ω(θ) at the
extremities, which appeared due to the factor 1/hα1(θ) in equation (22), are attenuated by the
low density of points there due to the factor hα1(θ) in equation (24). As these two factors cancel
each other, it is more natural to look directly at the probability of the first arrival in a vicinity
of point x,

ω(x)dx= ω̂(ξ,ϕ)dξ dϕ, (25)

where

ω̂(ξ,ϕ) = csinhα1hα1ω(x) =
1− γP2(cosθ)

4π
, (26)

with

γ =
2I2
5

sinh2(α1)

sinh2(α2)coshα2 − sinh2(α1)coshα1
. (27)

One can easily check thatˆ
Γ

ω(x)dx=
ˆ 1

−1

ˆ 2π

0
ω̂(ξ,ϕ)dξ dϕ = 1.
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Figure 3. Semi log plot of the coefficient γ in equation (27) (in symbols) as a function
of α2 for three values of α1, with c= 1. Lines present the asymptotic behavior (28) of
γ. Note that the values A/B equivalent to α2 are shown on the top.

One concludes that the first effect, which was responsible for large variations of ω(θ) in
figure 2, is removed when looking at ω(x)dx, or equivalently at ω̂(ξ,ϕ). In the following,
we focus on the second effect which is intrinsic and still present in equation (26).

Equation (22) or, equivalently (26), presents the main result of this section. It shows how
the volume-averaged harmonic measure density depends on the location of the arrival point
x through ξ = cosθ. The anisotropy of the target makes ω̂(ξ,ϕ) non-uniform, which is con-
trolled by the parameter γ given by equation (27). We checked numerically that γ > 0 for all
α1 < α2. When the target is small, the parameter γ is expected to be small as well. According
to equation (16), the relative smallness of the target can be ensured by setting α2 →∞. In this
limit, the shape of the target is fixed, while the outer boundary goes to infinity.

Using the asymptotic behavior of Legendre functions we get

γ ≈−e−3α2
8sinh2(α1)

3
Q ′

2 (coshα1)

Q2 (coshα1)
(α2 ≫ 1). (28)

The symbol≈ denotes the asymptotic behavior of γ when α2 goes to infinity; however, it also
emphasizes that the left-hand side is close to the right-hand side when α2 is large enough. One
sees that γ vanishes exponentially fast with α2. Since B/c= coshα2 ≈ eα2/2, one also gets
γ ≈ B−3 ∝ 1/|Ω| in this limit. As the volume of the confining domain grows, ω̂(ξ,ϕ) becomes
almost uniform (constant), i.e. all target points are (almost) equally accessible to Brownian
motion. Figure 3 shows the dependence of the coefficient γ on the size of the domain; one
sees that γ vanishes exponentially when the outer boundary gets larger.

We also briefly discuss the limit α1 → 0 when the outer boundary is fixed, while the target
tends to a segment of length 2c, which is never hit by diffusion. Using the asymptotic behavior
of Legendre functions we get

γ ≈ 1

3sinh2(α2)coshα2 ln(2/α1)
(α1 ≪ 1). (29)
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Figure 4. Semi log plot of the coefficient γ in equation (27) (in solid line) as a function
of α1 for α2 = 1, with c= 1. Dashed-line presents the asymptotic behavior (29). The
inset shows the same plot with the linear horizontal axis.

One sees that γ exhibits a very slow decay as 1/ ln(2/α1), as illustrated in figure 4. This
result suggests that the inaccessibility of the target also makes its points almost equally
(in)accessible.

2.3. Mean first-passage time

The expression (A.9) of theGreen’s functionG(x,x0) allows us to derive themean first-passage
time T(x0) from equation (7) as

T(x0) = T0(α)−T2(α)P2(cosθ), (30)

where x0 = (α,θ,ϕ) is now the starting point,

T0(α) =
c2

3D

[cosh2(α1)− cosh2(α)
2

+ sinh2(α2)coshα2 (Q0 (coshα1)−Q0(coshα))
]
, (31)

T2(α) =
c2

9D

(
1+

P ′
2(coshα2)Q2(coshα)−Q ′

2(coshα2)P2(coshα)
P ′
2(coshα2)Q2(coshα1)−Q ′

2(coshα2)P2(coshα1)

)
. (32)

In the limit b→ a and B→A, one should retrieve the mean first-passage time to a per-
fectly reactive spherical target of radius ρ= a surrounded by a reflecting sphere of radius
R=A [34]

T(x0) =
(|x0| − ρ)

(
2R3 − ρ|x0|(|x0|+ ρ)

)
6D|x0|ρ

. (33)

For illustration purposes, we choose the reflecting spheroidal boundary ∂Ω0 to be close to a
sphere of radius 1, so that only the target exhibits anisotropy. For this purpose, we set A= 0.99
and B= 1.01 and thus α2 = tanh−1(A/B)≈ 2.30.
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Figure 5. Cross-section along the z-axis of the mean first-passage time T(x0) to the
target as a function of the starting point x0 of the particle for several spheroidal targets
(inwhite) with semiaxes: (a) a≈ 0.17 et b≈ 0.26, (b) a≈ 0.10 et b≈ 0.22, (c) a≈ 0.03 et
b≈ 0.20, (d) a≈ 0.01 et b≈ 0.20 surrounded by a ‘roundish’ concentric prolate spheroid
with semiaxes A= 0.99 and B= 1.01. We set D= 1.

Figure 5 illustrates themean first-passage time to the target as a function of the starting point
of the particle. It shows that for a ‘roundish’ target the mean first-passage time increases sym-
metrically in all directions as one moves away from the target and one retrieves the classical
behavior (33) for a spherical target. In turn, for anisotropic targets, the mean first passage-time
increases with distorsion depending on the shape of the target.

When the starting point x0 is located far away from the target, the anisotropy effect is greatly
reduced. To illustrate this effect, we set the starting point on the outer boundary, i.e. α= α2.
In this case one can easily check that T0(α2) exhibits the asymptotic behavior

T0(α2)≈
c2

24D
e3α2Q0(coshα1) (α2 ≫ 1), (34)

that is to say, T0(α2) exponentially grows with α2 as the domain increases while

T2(α2)≈
c2

9D
(α2 ≫ 1). (35)

9
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In other words, for a particle diffusing from the outer boundary the dependence on the starting
point (i.e. the dependence on θ) is insignificant, i.e.

T(x0)≈ T0(α2) (α2 ≫ 1). (36)

Moreover, using the expression (17) of the volume |Ω| and the capacity C of a prolate
spheroid in three dimensions [35]

C=
8πc

ln
(

1+c/b
1−c/b

) , (37)

we easily check the expected capacitance approximation [5, 7, 8, 14]:

T=
1
|Ω|

ˆ
Ω

T(x0)dx0 ≈
|Ω|
DC

≈ c2

24D
e3α2Q0(coshα1) (α2 ≫ 1). (38)

Indeed, integrating T(x0) over the volume we get

T=
πc5I
D|Ω|

, (39)

with

I= − 4coshα1

135

[
3cosh4α1 − 5cosh2α1 − 2

]
+

4
9
cosh2α1 coshα2 sinh

2α2

− 8
135

coshα2
[
6coshα2 − 5cosh2α2 + 1

]
+

4
9
sinh4α2 cosh

2α2
[
Q0(coshα1)−Q0(coshα2)

]
+

4
45

sinh2α1
P′
2(coshα2)Q′

2(coshα1)−Q′
2(coshα2)P′

2(coshα1)

P′
2(coshα2)Q2(coshα1)−Q′

2(coshα2)P2(coshα1)
.

Figure 6 illustrates these asymptotic behaviors for a particle diffusing from the outer bound-
ary. On this semi log plot, one sees the expected exponential growth of T0(α2) when the size
of domain increases, and the relevance of the asymptotic relations (34) and (38). In contrast,
when α2 is close to α1 (i.e. the target Γ is close to the outer boundary ∂Ω0), the exact solu-
tion T(α2) from (31) deviates from the capacitance approximation (38). In other words, this
approximation becomes invalid beyond the small target regime, as expected. In this case, the
capacity is not enough to represent the target’s shape, and one has to solve the boundary value
problem (6), as we did here for spheroidal domains.

We compare the mean first-passage time of a particle diffusing from the outer boundary to a
prolate spheroidal target and that to an ‘equivalent’ spherical target. It is important to underline
that the choice of the criterion of equivalence between a sphere and a spheroid is central. For
example, given a prolate spheroid of two minor semiaxes a and major semiaxis b, one can
choose a sphere whose radius is the mean of the semiaxes of the spheroid:

ρm = (2a+ b)/3. (40)

With this configuration the particle always reaches the sphere faster (compare blue circles and
dashed green line on figure 7).

10
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Figure 6. Semi log plot of T0(α2) from equation (31) (in symbols) as a function of α2

for three values of α1, with c= 1 and D= 1. Lines present the asymptotic behavior (34)
of T(x0), while stars present the asymptotic relation (38). Note that the values of A/B
equivalent to α2 are shown on top.

One can consider other criteria of ‘equivalence’. Since the harmonic capacity plays a major
role in diffusion-reaction processes [5, 33], we can set the radius of the sphere ρC such that the
spherical target and the spheroidal one have the same harmonic capacity:

ρC =
2c

ln
(

1+c/b
1−c/b

) . (41)

Here, it appears that the mean first-passage times are very close to each other (compare blue
circles and solid black line on figure 7), even when the target is highly anisotropic.

One can also think about the equivalence in terms of optimization. For example, how to
minimize the mean first-passage time to the target given a certain amount of reactants uni-
formly distributed on the target boundary (i.e. given a surface area |Γ|). In our study (limited
to spheres and spheroids) we set the radius of the spherical target ρA such that the surface areas
of both targets are equal:

ρA =

√
|Γ|
4π

. (42)

This time, it is curious to remark that the mean first-passage time to the anisotropic target
is smaller than the mean first-passage time to the spherical target (compare blue circles and
dash-dotted red line on figure 7), meaning that for a given target surface area a prolate spheroid
presents a better ‘trapping ability’. This difference is enhanced even more when the reactive
surface is reduced and the target anisotropy increases.

In all three cases, the mean first-passage time shown on figure 7 vanishes as a/b approaches
one. This is a consequence of the constraint (12). In fact, as A and B are fixed, c is also fixed. To
make a/b close to one, one should increase both a and b (under the constraint b2 − a2 = c2),
i.e. enlarge the target that makes it closer to the starting point on the outer boundary and thus

11
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Figure 7. Mean first-passage time to a prolate spheroidal target Γ (shown by filled
circles) as a function of its aspect ratio a/b for a particle diffusing from the outer
boundary—a concentric spheroid with semiaxis A= 0.99 and B= 1.01 which implies
α2 = tanh−1(A/B)≈ 2.30 and c≈ 0.04 according to equation (12). For comparison,
three curves shown by lines present the mean first-passage time to an equivalent spher-
ical target with three choices ρm, ρC, ρA of the effective radius.

diminishes themean first-passage time. To eliminate the growth of the target, one has tomodify
the shape of the outer boundary, as we did in figure 6.

3. Flattened targets

In this section, we consider the domain Ω between biaxial concentric oblate spheroids in three
dimensions and replicate the earlier analysis for such domains.

3.1. Oblate spheroidal coordinates

Wemodel a flattened target by the surface of a three-dimensional oblate spheroid (i.e. an ellips-
oid of revolution) with the single minor semiaxis a along the z coordinate and two equal major
semiaxes b> a:

Γ =

{
(x,y,z) ∈ R3 :

x2

b2
+
y2

b2
+
z2

a2
= 1

}
, (43)

surrounded by an oblate spheroid with the single minor semiaxis A along the z coordinate and
two equal major semiaxes B>A:

∂Ω0 =

{
(x,y,z) ∈ R3 :

x2

B2
+
y2

B2
+
z2

A2
= 1

}
. (44)

12
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We introduce the oblate spheroidal coordinates (α,θ,ϕ) that are related to the Cartesian
coordinates (x,y,z) as x

y
z

= c

 coshαcosθ cosϕ
coshαcosθ sinϕ

sinhαsinθ

 , (45)

where 0⩽ α⩽∞, −π/2⩽ θ ⩽ π/2, 0⩽ ϕ < 2π, and α
θ
ϕ

=

 cosh−1 [(r+ + r−)/(2c)]
sign(z)cos−1 [(r+ − r−)/(2c)]

tan−1 (y/x)

 , (46)

where r± =
√
(
√
x2 + y2 ± c)2 + z2 are the distances to the two foci located at points (±c,0,0)

and

c=
√
b2 − a2 =

√
B2 −A2 (47)

is half of the focal distance.
In this new coordinate system the domain Ω is defined as

Ω= {α1 < α < α2,−π/2⩽ θ ⩽ π/2,0⩽ ϕ < 2π} , (48)

where α1 = tanh−1 ( a
b

)
determines the target boundary

Γ = {α= α1, −π/2⩽ θ ⩽ π/2, 0⩽ ϕ < 2π} , (49)

and α2 = tanh−1 (A
B

)
determines the outer reflecting boundary

∂Ω0 = {α= α2, −π/2⩽ θ ⩽ π/2, 0⩽ ϕ < 2π} . (50)

As previously, α1 and α2 determine the anisotropy of the target and of the outer boundary,
respectively. Figure 8 illustrates different configurations of the domain Ω between two con-
centric oblate spheroids.

The volume and surface area of oblate spheroids are well known, in particular, the volume
of the confining domain Ω is

|Ω|= 4π
3

(
AB2 − ab2

)
, (51)

and the surface area of the target Γ is

|Γ|= 2π

(
b2 +

a2

e
tan−1(e)

)
, with e=

√
1− a2

b2
. (52)

For further derivations, the scale factors of the change of coordinates are

hα = c
√

sinh2(α)+ sin2(θ), (53)

hθ = c
√

sinh2(α)+ sin2(θ), (54)

hϕ = ccoshαcosθ. (55)

13
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Figure 8. Examples of concentric oblate spheroids with c= 1, α1 ∈ {0.1,0.5,0.9} and
α2 = {1,2}. For the first line the ratio b/B is respectively 0.65, 0.73, 0.93. For the second
line the ratio b/B is respectively 0.27, 0.30, 0.38.

3.2. Harmonic measure density

Using the Green’s function from appendix ‘Oblate spheroids’, we derive the volume-averaged
harmonic measure density in oblate spheroidal coordinates as

ω(x) =
1

4πccoshα1hα1(θ)

(
1− 8πc3 cosh2(α1)

15|Ω|
Ī2P2(sinθ)

)
, (56)

where

Ī2 =
5i
6
P′
2(isinhα1)Q′

2(isinhα2)−Q′
2(isinhα1)P′

2(isinhα2)

P2(isinhα1)Q′
2(isinhα2)−Q2(isinhα1)P′

2(isinhα2)
.

In the limit a→ 0, an oblate spheroid reduces to a disk of radius b, which implies α1 = 0 and
c= b. In this configuration, the first term of equation (56) reads

ωdisk(x) =
1

4πc2 sinθ
=

1

4πc
√
c2 − |x|2

, (57)
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where |x|=
√
x2 + y2 + z2 = ccosθ. This expression is identical to the classicalWeber’s result

for the harmonic measure density on a disk of radius c in the three-dimensional space (see [36],
p 64). Expectedly, this density is correctly normalized:ˆ

Γ

ωdisk(x)dx= 2
ˆ 2π

0
dϕ
ˆ c

0
r

1

4πc
√
c2 − r2

dr= 1, (58)

where the factor 2 accounts for two facets of the disk. One sees that, in the disk limit, the first
term of equation (56) is the classical result, while the second term is a correction related to the
outer boundary. When the outer boundary goes to infinity, the second term vanishes. Indeed,
one gets

Ī2(α1 = 0) =
20sinhα2 cosh

2α2

3i sinhα2 cosh
2α2 ln

(
1+i sinhα2
1−i sinhα2

)
− 6sinh2α2 − 4

. (59)

Note that in the limit α2 →∞ one has Ī2(α1 = 0)→−20/(3π). Hence, the second term in
equation (56) vanishes due to the factor 1/|Ω|.

As before, we focus on the probability ω(x)dx= ω̂(ξ,ϕ)dξ dϕ, where

ω̂(ξ,ϕ) = ccoshα1hα1ω(x) =
1+ γ̄P2(ξ)

4π
, (60)

with ξ = sin(θ) ∈ (−1,1) and

γ̄ =
−2cosh2(α1)Ī2

5(sinhα2 cosh
2(α2)− sinhα1 cosh

2(α1))
. (61)

We checked numerically that γ̄ > 0 for all α1 < α2. One can easily check thatˆ
Γ

ω(x)dx=
ˆ 1

−1

ˆ 2π

0
ω̂(ξ,ϕ)dξ dϕ = 1. (62)

For large α2, we find

γ̄ ≈−e−3α2
8i cosh2(α1)

3
Q ′

2 (i sinhα1)

Q2 (i sinhα1)
(α2 ≫ 1). (63)

Figure 9 shows the dependence of the coefficient γ̄ on the size of the domain. One sees that
γ̄ vanishes when the outer boundary gets larger. As a consequence, when the target is small as
compared to the domain the coefficient γ̄ is exponentially small that implies the uniformity of
ω̂(ξ,ϕ).

3.3. Mean first-passage time

The derivation of the mean first-passage time for an oblate spheroidal target is very similar.
Using the expression (A.11) of G(x,x0) in the oblate spheroidal coordinates we get

T(x0) = T0(α)+P2(sinθ)T2(α), (64)

where

T0(α) =
c2

3D

[ sinh2α1 − sinh2α
2

+ icosh2α2 sinhα2((Q0(isinhα1)−Q0(isinhα))
]
,

T2(α) =
c2

9D

(
1+

P ′
2(isinhα2)Q2(isinhα)−Q ′

2(isinhα2)P2(isinhα)
P ′
2(isinhα2)Q2(isinhα1)−Q ′

2(isinhα2)P2(isinhα1)

)
. (65)
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Figure 9. Semi log plot of the coefficient γ̄ from equation (61) (in symbols) as a function
ofα2 for three values ofα1, with c= 1. Lines present the asymptotic behavior (63). Note
that the values of A/B equivalent to α2 are shown on the top.

In the limit b→ a and B→A, one should retrieve the mean first-passage time to a perfectly
reactive spherical target of radius ρ= a surrounded by a reflecting sphere of radius R=A given
in equation (33). Also, setting the starting position of the particle on the outer boundary, one
can show that T0(α2) exhibits the asymptotic behavior

T0(α2)≈ i
c2

24D
e3α2Q0(isinhα1) (α2 ≫ 1), (66)

that is to say, T0(α2) exponentially grows as the domain increases while T2(α2)≈
c2

9D
for α2

large enough. As a consequence,

T(x0)≈ T0(α2) (α2 ≫ 1). (67)

Moreover, using the expression (51) of the volume |Ω| and the capacityC of an oblate spheroid
in three dimensions [35]

C=
4πc

cos−1 (a/b)
, (68)

we easily check the expected asymptotic relation (38):

T≈ |Ω|
DC

≈ ic2

24D
e3α2Q0(isinhα1) (α2 ≫ 1). (69)

Indeed, integrating T(x0) over the volume we get

T=
4πc5I
D|Ω|

, (70)
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Figure 10. Semi log plot of T0(α2) given by equation (65) (in symbols) as a function
of α2 for three values of α1, with c= 1 and D= 1. Lines present the asymptotic beha-
vior (66), while stars present the asymptotic relation (69). Note that the values A/b
equivalent to α2 are shown on top.

with

I=
(
sinh3α2 − sinh3α1

)−12sinh2α2 + 3sinh2α1 − 10
135

+(sinhα2 − sinhα1)
sinh2α1

(
12sinh2α2 + 15

)
+ 2

135

+
i
9
cosh4α2 sinh

2α2 (Q0 (i sinhα1)−Q0 (i sinhα2))

+
cosh2α1

405i
P′
2 (i sinhα2)Q′

2 (i sinhα1)−Q′
2 (i sinhα2)P′

2 (i sinhα1)

P′
2 (i sinhα2)Q2 (i sinhα1)−Q′

2 (i sinhα2)P2 (i sinhα1)
.

Figure 10 illustrates these asymptotic behaviors for a particle diffusing from the outer
boundary. On this semi log plot, one sees the expected exponential growth of T(x0) when
the size of domain increases and the relevance of the asymptotic relations (66) and (69).

In what follows, the confining spheroidal boundary ∂Ω0 is chosen to be close to a sphere of
radius 1, by setting A= 0.99 and B= 1.01 and thus α2 = tanh−1(A/B)≈ 2.30. We compare
the mean first-passage time of a particle diffusing from the outer boundary to a spherical or
to an oblate spheroidal target. As previously, we consider three criteria of ‘equivalence’, by
setting

ρm = (a+ 2b)/3, (71)

ρC =
c

cos−1(a/b)
, (72)

ρA =

√
|Γ|
4π

. (73)
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Figure 11. Mean first-passage time to an oblate spheroidal target Γ (shown by filled
circles) as a function of its aspect ratio a/b for a particle diffusing from the outer
boundary—a concentric spheroid with semiaxis A= 0.99 and B= 1.01 which implies
α2 = tanh−1(A/B)≈ 2.30 and c≈ 0.04 according to equation (47). We set D= 1. For
comparison, three curves shown by lines present the mean first-passage time to an equi-
valent spherical target with three choices ρm, ρC, ρA of the effective radius.

In the first case, the particle always reaches the sphere faster (compare blue circles and dashed
green line on figure 11). In the second case, the mean first-passage times are very close (solid
black line and blue circles on figure 11), even when the target is highly anisotropic. In the last
case, figure 11 shows that the mean first-passage time to the anisotropic target is smaller than
the mean first-passage time to the spherical target, meaning that for a given surface area the
oblate spheroid presents a better ‘trapping ability’. Curiously, for highly anisotropic target (e.g.
a disk) the result is reversed, i.e. the mean first-passage time to the anisotropic target is greater
than the mean first-passage time to the spherical target (compare blue circles and dash-dotted
red line on figure 11).

4. Discussion and conclusion

In this paper, we investigated restricted diffusion inside a bounded domain towards an aniso-
tropic target. Our first result is the derivation of the exact expressions of the volume-averaged
harmonic measure density ω(x) for both prolate and oblate spheroids. The non-linear paramet-
erization of the target surface via spheroidal coordinates strongly affects this density. In fact,
the strong dependence of ω(x) on the angle θ for highly anisotropic targets emerges through
the factor 1/hα1(θ) in equations (22) and (56) for prolate and oblate spheroids, respectively.
However, this factor is compensated by hα1(θ) in the surface element dx. In other words, even
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though the volume-averaged harmonic measure density may strongly vary with x, the prob-
ability ω(x)dx= ω̂(ξ,ϕ)dξ dϕ may still be almost constant. The density ω̂(ξ,ϕ) depends on
the anisotropy of the target through the parameter γ (or γ̄). We showed that γ and γ̄ vanish
exponentially as the confining domain grows that implies the uniformity. In the case of prolate
spheroids, we also showed that γ vanishes when α1 goes to zero with a fixed outer bound-
ary, so that the inaccessibility of a segment-like target to Brownian motion also restores the
uniformity. Note that both options are not geometrically equivalent. Indeed, increasing the
parameter α2 results in an exponential growth of A and B such that the ratio b/B diminishes
and the fixed target is small as compared to the domain. In turn, decreasing the parameter α1

results in changes in the target shape: the semiaxis b= ccoshα1 approaches c while the other
semiaxis a= csinhα1 vanishes. In other words, to study the effect of anisotropy of a small
target, one should first fix the target and then expand the outer boundary.

Our results urge to revise the uniformity hypothesis formulated in [33]. In fact, one deriv-
ation step consisted in replacing ω(x) by a constant 1/|Γ|, which is approximately valid for
moderately anisotropic targets but fails for highly anisotropic ones (see figure 2). At the same
time, our analysis of the density ω̂(ξ,ϕ) suggested that all points of a small spheroidal target
are almost equally accessible to Brownian motion. This weaker form of the uniformity hypo-
thesis can potentially be used to remediate the above derivation step in [33] and thus to extent
the applicability of its results to highly anisotropic targets. Note also that irregular structure of
the target surface (e.g. long channels) can fully break the equal accessibility of its points [31,
32, 37, 38]. This issue has to be investigated in the future.

Our derivation of exact analytical expressions for the considered spheroidal shapes cru-
cially relied on the separation of variables in the Laplace equation via appropriate curvilinear
coordinates. Other target shapes could also be handled by solving numerically the Laplace
equation via, e.g. a finite elements method or Monte Carlo simulations. However, one of the
main advantages of the derived analytical expressions that motivated our work is the possibil-
ity of studying the asymptotic approach to the limiting shapes of a segment and a disk. Getting
such asymptotic results from numerical solutions for other shapes would be more challenging.

The second result concerned the mean first-passage time and the impact of target anisotropy
that was mainly ignored in former studies. We obtained the exact formula for the mean first-
passage time in a bounded domain between both prolate and oblate concentric spheroids. We
illustrated the behavior of the mean first-passage time to both elongated and flattened targets.
We showed that when the target is small as compared to the outer boundary, T(x0) is exponen-
tially large with respect to α2, and one retrieves the expected capacitance approximation (38).

We compared the mean first-passage time of a particle diffusing from the outer boundary to
a spherical or to a spheroidal target under several criteria of ‘equivalence’ between the targets.
Targets with the same harmonic capacity or with the same surface area appeared to be the
most interesting cases. In the former case, the mean first-passage time towards a spheroidal
target is almost identical to that of the sphere, demonstrating that the capacity is indeed one
of the main diffusion-sensitive characteristics of the target. Curiously, in the case of identical
surface areas, the mean first-passage times to highly elongated or flattened targets (but not too
flattened) are smaller than that of the spherical target. In other words, given a surface area, an
anisotropic spheroid presents a better ‘trapping ability’ than the sphere.

In summary, we provided analytical results on the effects of target anisotropy on diffusion-
controlled reactions in the particular case of prolate and oblate spheroids. A more systematic
numerical analysis of these effects for targets of arbitrary shapes and sizes presents an inter-
esting perspective in the future.
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Data availability statement

No new data were created or analysed in this study.

Appendix. Green’s functions

Even though Green’s functions are known for different sets of boundary conditions (see, e.g.
[19, 39]), we summarize here the main formulas for our setting and sketch the main steps of
their derivation for completeness. The derivations are based on an explicit representation of
the Green’s function in both prolate and oblate spheroidal coordinates.

Prolate spheroids

The Green’s function can be decomposed in two parts and written as

G(x,x0) =
1

4π|x− x0|
− g(x,x0), (A.1)

where 1
4π|x−x0| is the fundamental solution of the Laplace equation in three dimensions and g

is a regular part satisfying

∆g(x,x0) = 0 (x ∈ Ω), (A.2a)

g(x,x0) =
1

4π|x− x0|
(x ∈ Γ), (A.2b)

∂ng(x,x0) = ∂n
1

4π|x− x0|
(x ∈ ∂Ω0). (A.2c)

Due to the azimuthal symmetry of the problem, the harmonic function g(x,x0) can be
expressed as

g(x,x0) =
∞∑
n=0

n∑
m=−n

Pmn (cosθx)cos(mϕx)P
m
n (cosθx0)cos(mϕx0)

×
(
C1
mnP

m
n (coshαx)+C2

mnQ
m
n (coshαx)

)
,

(A.3)

with coefficients C1
mn and C

2
mn to be determined from boundary conditions, and Pmn (x), Q

m
n (x)

are the associated Legendre functions of the first and second kindwith n andm being the degree
and the order. In particular, Pn(x) = P0

n(x) and Qn(x) = Q0
n(x) are the Legendre functions of

the first and second kind, respectively.
To proceed, we use the prolate spheroidal expansion of 1

|x−x0| given in [39, 40]. One gets

the coefficients C1
mn and C

2
mn as

C1
mn =

Hmn

4πcdetmn
Q

′m
n (coshα2)

[
Pmn (coshα1)Q

m
n (coshαx0)

−Pmn (coshαx0)Q
m
n (coshα1)

]
, (A.4)

C2
mn =

Hmn

4πcdetmn
Pmn (coshα1)

[
Pmn (coshαx0)Q

′m
n (coshα2)

−Qm
n (coshαx0)P

′m
n (coshα2)

]
, (A.5)
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where prime denotes the derivative with respect to the argument and

Hmn = (2n+ 1)(2− δm,0)(i)
m

[
(n−m)!
(n+m)!

]2
, (A.6)

detmn = Pmn (coshα1)Q
′m
n (coshα2)−Qm

n (coshα1)P
′m
n (coshα2). (A.7)

In this way, one has for αx < αx0

G(x,x0) =
∞∑
n=0

n∑
m=−n

Pmn (cosθx)P
m
n (cosθx0)cos(mϕx)cos(mϕx0)

×
[
AmnP

m
n (coshαx)P

m
n (coshαx0)+BmnQ

m
n (coshαx)P

m
n (coshαx0)

+CmnP
m
n (coshαx)Q

m
n (coshαx0)+DmnQ

m
n (coshαx)Q

m
n (coshαx0)

]
,

(A.8)

and for αx > αx0

G(x,x0) =
∞∑
n=0

n∑
m=−n

Pmn (cosθx)P
m
n (cosθx0)cos(mϕx)cos(mϕx0)

×
[
AmnP

m
n (coshαx)P

m
n (coshαx0)+CmnQ

m
n (coshαx)P

m
n (coshαx0)

+BmnP
m
n (coshαx)Q

m
n (coshαx0)+DmnQ

m
n (coshαx)Q

m
n (coshαx0)

]
,

(A.9)

with

Amn =
1

4πcdetmn
HmnQ

′m
n (coshα2)Q

m
n (coshα1),

Bmn =
−1

4πcdetmn
HmnQ

′m
n (coshα2)P

m
n (coshα1),

Cmn =
1

4πc
Hmn−

1
4πcdetmn

HmnQ
′m
n (coshα2)P

m
n (coshα1),

Dmn =
1

4πcdetmn
HmnP

′m
n (coshα2)P

m
n (coshα1).

From these expressions we derive the volume-averaged harmonic measure density and the
mean first-passage time.

Oblate spheroids

The computation is similar for oblate spheroids. Using the oblate spheroidal expansion of
1

|x−x0| given by [40], one has for αx < αx0

G(x,x0) =
∞∑
n=0

n∑
m=−n

Pmn (sinθx)P
m
n (sinθx0)cos(mϕx)cos(mϕx0)

×
[
AmnP

m
n (isinhαx)P

m
n (isinhαx0)+BmnQ

m
n (isinhαx)P

m
n (isinhαx0)

+CmnP
m
n (isinhαx)Q

m
n (isinhαx0)+DmnQ

m
n (isinhαx)Q

m
n (sinhαx0)

]
,

(A.10)
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and for αx > αx0

G(x,x0) =
∞∑
n=0

n∑
m=−n

Pmn (sinθx)P
m
n (sinθx0)cos(mϕx)cos(mϕx0)

×
[
AmnP

m
n (isinhαx)P

m
n (isinhαx0)+CmnQ

m
n (isinhαx)P

m
n (isinhαx0)

+BmnP
m
n (isinhαx)Q

m
n (isinhαx0)+DmnQ

m
n (isinhαx)Q

m
n (isinhαx0)

]
,

(A.11)

with

Amn =
1

4πcdetmn
HmnQ

′m
n (isinhα2)Q

m
n (isinhα1),

Bmn =
−1

4πcdetmn
HmnQ

′m
n (isinhα2)P

m
n (isinhα1),

Cmn =
1

4πc
Hmn−

1
4πcdetmn

HmnQ
′m
n (isinhα2)P

m
n (isinhα1),

Dmn =
1

4πcdetmn
HmnP

′m
n (isinhα2)P

m
n (isinhα1).

and

Hmn = (2n+ 1)(2− δm,0)(i)
m+1

[
(n−m)!
(n+m)!

]2
, (A.12)

detmn = Pmn (isinhα1)Q
′m
n (isinhα2)−Qm

n (isinhα1)P
′m
n (isinhα2). (A.13)
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