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ABSTRACT
We develop a theory of reversible diffusion-controlled reactions with generalized binding/unbinding kinetics. In this framework, a diffus-
ing particle can bind to the reactive substrate after a random number of arrivals onto it, with a given threshold distribution. The particle
remains bound to the substrate for a random waiting time drawn from another given distribution and then resumes its bulk diffusion until
the next binding and so on. When both distributions are exponential, one retrieves the conventional first-order forward and backward reac-
tions whose reversible kinetics is described by generalized Collins–Kimball’s (or back-reaction) boundary condition. In turn, if either of
distributions is not exponential, one deals with generalized (non-Markovian) binding or unbinding kinetics (or both). Combining renewal
technique with the encounter-based approach, we derive spectral expansions for the propagator, the concentration of particles, and the dif-
fusive flux on the substrate. We study their long-time behavior and reveal how anomalous rarity of binding or unbinding events due to
heavy tails of the threshold and waiting time distributions may affect such reversible diffusion-controlled reactions. Distinctions between
time-dependent reactivity, encounter-dependent reactivity, and a convolution-type Robin boundary condition with a memory kernel are
elucidated.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146512

I. INTRODUCTION

The importance of diffusion in chemical reactions was first rec-
ognized by von Smoluchowski1 and then became a broad field of
intensive research in physical chemistry.2–5 In many chemical and
biophysical processes, the involved species (atoms, ions, molecules,
or even whole organisms such as bacteria) have first to encounter
each other or to find a specific target or a substrate to initiate
a reaction event.6–8 Most former works were dedicated to under-
stand the role of this first-passage step in chemical reactions.9,10

In particular, the dependence of the first-passage time (FPT) dis-
tribution on the geometric structure of the environment,11–16 on
the size and shape of the target region,17–32 and on the type of dif-
fusion process33,34 was thoroughly investigated. For instance, the
impact of anomalously long halts or non-Markovian bulk dynam-
ics onto diffusion-controlled reactions (also known as diffusion-
influenced, diffusion-limited, or diffusion-mediated reactions) was
emphasized.35–37 Eventual limitations of the mean FPT and the
importance of knowing whole distribution of FPT for an adequate
description of chemical reactions were discussed.38–42

While the importance of diffusion in the bulk is now fully
acknowledged, the role of surface reactions, occurring after the
arrival of a molecule onto the reactive substrate (or after the
encounter of two molecules) still remains underestimated. Collins
and Kimball realized already in 1949 that the original assumption
by Smoluchowski of a perfect reaction upon the first encounter
of two species was too idealized and limited in practice.43 In fact,
the molecules may need to overcome an activation barrier or be
in appropriate conformational states to be able to react. When the
reaction is understood as escape from a confining domain through
a hole, an entropic barrier has to be overcome.44–47 Moreover, if the
escape region is not simply a “hole” but, e.g., an ion channel, it has to
be in an “open” (or active) state when the ion arrives.48–51 In hetero-
geneous catalysis, the particle may arrive onto the catalytic surface
at a passive (or passivated) location and thus resume its diffusive
search for an active site.52–60 Whatever the microscopic mechanism
of surface reaction is, the arrived particle may either react or be
reflected back to resume its bulk diffusion. As a consequence, the
successful reaction event is generally preceded by a long sequence of
failed reaction attempts and the consequent diffusive explorations
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of the bulk. This stochastic process is known as partially reflected
Brownian motion61,62 or partially reflected diffusion.63

Collins and Kimball suggested to employ the Robin (also
known as radiation) boundary condition to describe the concen-
tration of diffusing particles, c(x, t), on the partially reactive region
∂ΩR,

−D∂nc(x, t) = κ0 c(x, t) (x ∈ ∂ΩR), (1)

where D is the (self-)diffusion coefficient of particles, ∂n is the
normal derivative on the boundary oriented outward the confin-
ing domain, and κ0 is the reactivity of the region. This condition
postulates that the net diffusive flux of particles from the bulk onto
the reactive region (the left-hand side) is proportional to the con-
centration on that surface (the right-hand side). The proportionality
coefficient κ0 can range from 0 for the no reaction setting on an inert
impermeable surface to +∞ for an immediate reaction upon the first
encounter with a perfectly reactive region as formulated by Smolu-
chowski. Such an irreversible process can be schematically described
by either of two reactions,

A + C ÐÐ→
kon

[AC] or A + C ÐÐ→
kon

B + C, (2)

where A denotes the diffusing molecule, C is the immobile reactive
region, [AC] is the formed complex (if the molecule A stuck on C),
and B is the product of chemical transformation of A on C, or the
same particle that has lost its excited state (e.g., a transverse magneti-
zation of a spin-bearing particle can be lost due to surface relaxation
or an excited luminescent state of a nanoparticle can relax). The
role of reactivity onto diffusion-controlled reactions was thoroughly
investigated.64–76 In particular, the bimolecular rate constant kon [in
units (m3/mol)/s or 1/M/s] is proportional to the reactivity κ0 (in
units m/s),

kon = κ0NA∣∂ΩR∣, (3)

where NA is the Avogadro number and ∣∂ΩR∣ is the surface area of
the reactive region. Bearing in mind this relation, we will use the
reactivity κ0 in the following discussions.

The next step consists in accounting for reversible binding. In
fact, the Robin boundary condition describes the reactive region
as a sink or a definitive trap for the reacted particle, as if it was
killed, destroyed, irreversibly transformed into another molecule,
or irreversibly lost its excited state. In many applications, however,
the chemical reaction can be reversed, while the particle that was
adsorbed onto a substrate can desorb from it and resume its bulk
diffusion. In other words, the forward reactions in Eq. (2) have to
be completed by backward reactions, which are typically character-
ized by the backward reaction rate (also known as desorption or
dissociation rate) koff,

(4)

In a broad sense, such bimolecular reversible reactions can also be
understood as an adsorption/desorption process of a molecule A on
a substrate C. While the microscopic physiochemical mechanisms
of these processes are different, their effect onto the concentra-
tion admits the same mathematical description. Note also that

adsorption/desorption processes were usually considered on a flat
surface and thus modeled by one-dimensional diffusion, whereas
bimolecular reactions were most often associated with a spherical
geometry. In general, however, an adsorbing surface of a porous
medium can be non-flat even at nanoscopic scales, while many
proteins and other macromolecules are not spherical. In this light,
one needs to go beyond the conventional settings and to treat
diffusion-controlled reactions in general domains. Despite micro-
scopic differences between reversible bimolecular reactions and
adsorption/desorption processes, we will use interchangeably the
terms “forward reaction,” “binding,” “adsorption,” “association,”
and “recombination” as well as the terms “backward reaction,”
“unbinding,” “desorption,” and “dissociation.”

A theoretical description of reversible reactions and adsorp-
tion/desorption processes in Eq. (4) is well established (see
Refs. 77–97 and references therein). In a nutshell, one introduces the
surface concentration of particles in the bound state, cb(x, t), and
writes the first-order exchange kinetics at each boundary point on
the reactive region,

∂tcb(x, t) = κ0 c(x, t) − koff cb(x, t) (x ∈ ∂ΩR), (5)

which describes both forward reaction (the first term) and backward
reaction (the second term). In adsorption theory, the linear form of
the forward term is known as the Henry’s law89 (see also an overview
in Ref. 97). At the same time, the conservation of mass implies that
any change in the fraction of bound particles is equal to the diffu-
sive flux density of unbound particles from the bulk to the reactive
region,

∂tcb(x, t) = −D∂nc(x, t) (x ∈ ∂ΩR). (6)

Equating the right-hand sides of these equations, one gets the “back-
reaction” boundary condition, also known as “generalized radiation”
or “generalized Collins–Kimball” boundary condition.78,83,91,93,96

Microscopic derivation and interpretation of Eqs. (5) and (6) are
discussed in Appendix A.

These two equations can be reduced to a single Robin-type
boundary condition by taking the Laplace transform (denoted by
tilde) with respect to time t, e.g.,

c̃(x, p) = L{c(x, t)} =
∞

∫
0

dt e−pt c(x, t). (7)

Rewriting Eqs. (5) and (6) in the Laplace domain and eliminating
c̃b(x, p) from them yield

−D∂nc̃(x, p) = κ̃(p) c̃(x, p) (x ∈ ∂ΩR), (8)

with

κ̃(p) = κ0

1 + koff/p
, (9)

where we assumed that there was no bound particle in the initial
state [i.e., cb(x, 0) = 0]. In the Laplace domain, the effect of reversible
binding is thus incorporated through the p-dependent reactivity
κ̃(p). In other words, if one knows the solution for irreversible bind-
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ing, it is enough to replace κ0 by κ̃(p) to incorporate backward
reactions.

In turn, irreversible and reversible settings differ in time
domain; in fact, the inverse Laplace transform of Eq. (8) yields a
convolution-type boundary condition given by

−D∂nc(x, t) =
t

∫
0

dt′K(t − t′) c(x, t′) (x ∈ ∂ΩR), (10)

with a memory kernel given by

K(t) = L −1{κ̃(p)} = κ0(δ(t) − koff e−kofft), (11)

where L −1 denotes the inverse Laplace transform. In contrast to
Eq. (1) for irreversible binding, the boundary condition (10) is non-
local in time: A particle that was adsorbed at an earlier time t′

can desorb at a later time t and thus contribute to the net dif-
fusive flux in the left-hand side. The effect of binding/unbinding
events onto the time evolution of the concentration c(x, t) and on
other first-passage events was investigated. Moreover, simultaneous
binding of multiple independently diffusing particles is known to
control many activation mechanisms in microbiology such as signal-
ing in neurons, synaptic plasticity, cell apoptosis caused by double
strand DNA breaks, and cell differentiation and division.98–101 The
random, asynchronous binding/unbinding events for each particle
bring new statistical challenges to the theoretical description of such
systems.102–105

In summary, most theoretical works on reversible reactions
were limited to the above setting, in which binding events are incor-
porated via Robin boundary condition with a single forward reaction
constant kon (or κ0), while unbinding events are characterized by a
first-order kinetics with a single rate koff. Despite the convolution-
type boundary condition (10) for the concentration c(x, t) alone,
this kinetics is called Markovian because the time evolution of
the particle state, characterized by the pair c(x, t) and cb(x, t), is
governed by the diffusion equation ∂tc(x, t) = DΔc(x, t) and the dif-
ferential Eq. (5) that are both local in time; as a consequence, the
future state depends on the present but not on the past.

In this paper, we aim at extending the current framework to
much more general non-Markovian surface reactions. On the one
hand, each bound state can be characterized by a random waiting
time drawn from a prescribed probability density ϕ(t). The above
first-order kinetics of backward reactions would then correspond to
an exponential distribution, with

ϕ(t) = koff e−kofft. (12)

This extension was introduced by Agmon and Weiss for a pair of
reversibly binding particles whose motion is described by a spher-
ically symmetric diffusion equation.86 We will further extend this
concept to general confining domains.

On the other hand, one can also modify the description of the
forward reaction by using the encounter-based approach.106 This
approach relies on the notion of the boundary local time ℓt , i.e., a
rescaled number of encounters between the diffusing particle and
the reactive region (see Sec. II A for details). As the particle attempts
to bind at each encounter, the successful binding occurs when the

number of failed attempts, characterized by ℓt , exceeds some ran-
dom threshold ℓ̂ described by a probability density ψ(ℓ). If the
random threshold obeys the exponential probability density

ψ(ℓ) = q e−qℓ (q = κ0/D), (13)

one retrieves the standard description of binding events via Robin
boundary condition (1), as detailed below in Sec. II D. In analogy
to Eq. (12), we call the binding kinetics characterized by Eq. (13)
as Markovian. In turn, other probability densities ψ(ℓ) yield non-
Markovian binding kinetics. One of the crucial advantages of the
encounter-based approach is that both binding and unbinding
events can be characterized in a very similar way.

The paper is organized as follows. Section II presents the gen-
eral theory. After a brief introduction of the main ingredients of
the encounter-based approach in Sec. II A, we employ the renewal
technique to derive the propagator in Sec. II B. Section II C is
dedicated to the simpler case when only unbinding events are non-
Markovian, while Sec. II D illustrates the violation of the Robin
boundary condition in the general case of non-Markovian binding.
Different long-time regimes are discussed in Sec. II E. Section III
illustrates the general properties for the case of a spherical reactive
region. In particular, we inspect the probability to be in the unbound
state, the diffusive flux, and the concentration profile. In Sec. IV, we
discuss limitations of the conventional description and its extensions
via different types of variable reactivity. Section V concludes the
paper, with a summary of the main results and further perspectives.

II. THEORY
We consider ordinary diffusion of a point-like particle with a

constant diffusivity D inside a bounded Euclidean domain Ω ⊂ Rd

with a smooth boundary ∂Ω, which is split into two disjoint parts:
a passive (inert) region ∂ΩN , which confines the particle by reflect-
ing it back to the domain, and a reactive region ∂ΩR, to which the
particle can bind reversibly (Fig. 1). The binding mechanism is char-
acterized by a given probability density ψ(ℓ) of a random threshold
ℓ̂, as described explicitly in Sec. II A. After each binding event, the

FIG. 1. Illustration of a confining domain Ω with a smooth boundary ∂Ω, which is
split into two disjoint parts: a reflecting boundary ∂ΩN (in green) and a reactive
region ∂ΩR (the frontier of a gray obstacle). A simulated trajectory, started from
x0 and arrived in x, exhibits multiple failed attempts to react on ∂ΩR before the
successful reaction (binding) at an intermediate point x1 (path in blue). After stay-
ing in the bound state for a random waiting time, the particle was released from x1
and resumed its bulk diffusion toward the arrival point x (path in red).
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particle remains immobile on the reactive region for a random wait-
ing time t̂ drawn from a given probability density ϕ(t). When this
time elapses, the particle unbinds and resumes its bulk diffusion
from the boundary point where it was bound. We assume that all
binding and unbinding events occur independently from each other.

At a single-molecule level, we aim at obtaining the propagator
Q(x, t∣x0), i.e., the probability density that a single particle started
from x0 ∈ Ω at time 0 is found in the unbound state in a vicinity of
point x ∈ Ω at time t. We will also discuss the probability of finding
the particle in the unbound state at time t,

S(t∣x0) = ∫
Ω

dx Q(x, t∣x0), (14)

whereas 1 − S(t∣x0) is the probability to be in the bound state at time
t. For irreversible reactions, S(t∣x0) is called the survival probability.

At a macroscopic level, if there are many independently diffus-
ing particles with a given initial concentration c0(x0), the propagator
determines the concentration of these particles at time t as

c(x, t) = ∫
Ω

dx0 Q(x, t∣x0) c0(x0). (15)

In turn,

J(t) = ∫
∂ΩR

dx (−D∂nc(x, t)) (16)

is the diffusive flux of particles onto the reactive region. We will
derive all these quantities and discuss their behavior.

A. Binding events
The encounter-based approach employs the statistics of

encounters between the diffusing particle and the reactive region
∂ΩR to implement surface reactions.106 As the details of this
approach were presented in earlier publications,106–110 we just sketch
the main steps and “ingredients” needed for our computation.

In addition to the (random) position Xt of the particle at time
t, we introduce its boundary local time ℓt on ∂ΩR as

ℓt = lim
a→0

a N (a)
t , (17)

where N (a)
t is the (random) number of downcrossings of a thin

layer of width a near ∂ΩR up to time t. Each such downcrossing can
be understood as an encounter between the particle and the sub-
strate ∂ΩR at a given spatial resolution a. As a→ 0, N (a)

t diverges
due to the self-similar character of Brownian motion but its rescal-
ing by a yields a nontrivial limit ℓt , which is a nondecreasing process
(with ℓ0 = 0) that increments at each encounter of the particle with
∂ΩR.111–113 The boundary local time should not be confused with
the local time in a bulk point, which was thoroughly studied (see
Refs. 114 and 115 and references therein). Despite its name, ℓt has
units of length. While physical time t is a proxy of the number of
particle’s jumps in the bulk, the boundary local time ℓt characterizes
the number of jumps onto the surface.107 In this light, both quanti-
ties are complementary and tightly related (see Ref. 106 for further
discussion). The diffusive dynamics of the particle is fully described

by the pair (Xt , ℓt), whose probability density is called the full prop-
agator P(x, ℓ, t∣x0). The crucial distinction of the encounter-based
approach from conventional methods is that the full propagator
characterizes purely diffusive dynamics by treating the region ∂ΩR
as reflecting. In turn, surface reactions on ∂ΩR are then introduced
explicitly via an appropriate stopping condition.

In fact, as discussed earlier, the reaction event is preceded by
a sequence of failed reaction attempts at each encounter with ∂ΩR.
In other words, the reaction occurs at the first instance T when the
boundary local time (the proxy of the failed attempts) exceeds some
threshold ℓ̂,

T = inf{t > 0 : ℓt > ℓ̂}. (18)

The choice of this threshold selects the mechanism of surface reac-
tion.106 For instance, if ℓ̂ = 0, the reaction occurs when the boundary
local time ℓt first exceeds 0, i.e., when the particle first encounters
the region ∂ΩR. This is the perfect reaction introduced by Smolu-
chowski.1 In turn, if the particle attempts to react independently on
each encounter with probability ρ ≈ aκ0/D≪ 1, the probability of
no surface reaction up to the n-th encounter is

1 −
n

∑
k=1

ρ(1 − ρ)k−1 = (1 − ρ)n ≈ e−ρn ≈ e−qℓ, (19)

where q = κ0/D, ℓ = na, and the auxiliary parameter a is a small
width of the reactive layer (which is needed here as a sort of reg-
ularization but then eliminated in the limit a→ 0). By introducing
an exponentially distributed random threshold ℓ̂ such that P{ℓ < ℓ̂}
= e−qℓ and associating the n-th reaction attempt to the number of
encounters N (a)

t ≈ ℓt/a up to time t, one sees that the condition
ℓt < ℓ̂ incorporates the survival of the particle in the presence of
surface reactions on ∂ΩR with a constant reactivity κ0. Most impor-
tantly, the encounter-based approach allows one to go far beyond
this classical mechanism and to describe much more general and
sophisticated surface reactions by means of a random threshold
ℓ̂ obeying a general probability density ψ(ℓ), as discussed in this
paper.

Let Gψ(x, t∣x0) denote the generalized propagator in the pres-
ence of irreversible forward reaction on ∂ΩR, i.e., Gψ(x, t∣x0) is the
probability density of diffusion from x0 to x in time t under the
survival condition (no forward reaction on ∂ΩR up to time t). As
the survival condition can be written in terms of the boundary local
time, ℓt < ℓ̂, one gets

Gψ(x, t∣x0) =
∞

∫
0

dℓΨ(ℓ) P(x, ℓ, t∣x0), (20)

where

Ψ(ℓ) = P{ℓ < ℓ̂} =
∞

∫
ℓ

dℓ′ ψ(ℓ′). (21)

In other words, the full propagator P(x, ℓ, t∣x0) that treats ∂ΩR as
reflecting is explicitly complemented by the survival condition ℓt < ℓ̂,
which is fulfilled with probabilityΨ(ℓ) for a given realized value ℓ of
the boundary local time ℓt . The above integral sums up contributions
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from all possible realizations of ℓt . The associated probability flux
density on the reactive region ∂ΩR reads

jψ(x, t∣x0) = −D∂nGψ(x, t∣x0) (x ∈ ∂ΩR). (22)

This quantity characterizes a single binding event (the unbinding
mechanism will be introduced in Sec. II B).

In the case of Markovian binding, Eq. (13) implies Ψ(ℓ) = e−qℓ,
so that one retrieves the conventional propagator,

Gq(x, t∣x0) =
∞

∫
0

dℓ e−qℓ P(x, ℓ, t∣x0), (23)

satisfying the Robin boundary condition on ∂ΩR (see Ref. 106),

− ∂nGq(x, t∣x0) = q Gq(x, t∣x0) (x ∈ ∂ΩR), (24)

and the corresponding probability flux density,

jq(x, t∣x0) = −D∂nGq(x, t∣x0) (x ∈ ∂ΩR). (25)

We will often refer to two particular limits: q =∞ and q = 0.
The quantities Gq(x, t∣x0) and jq(x, t∣x0) can be represented via
spectral expansions over the eigenvalues and eigenfunctions of
the Laplace operator.9,116,117 Unfortunately, these commonly used
eigenfunctions are not suitable to access the generalized propagator
Gψ(x, t∣x0) that does not satisfy the Robin boundary condition (24).

This problem was solved in Ref. 106 by using the Dirichlet-to-
Neumann operator Mp. This operator acts on an appropriate space
of functions on ∂ΩR as follows: For a function f on ∂ΩR, one finds
the solution u of the boundary value problem

(p −DΔ)u = 0 (x ∈ Ω), (26a)

u = f (x ∈ ∂ΩR), (26b)

∂nu = 0 (x ∈ ∂ΩN), (26c)

evaluates its normal derivative on ∂ΩR, (∂nu)∣∂ΩR , and associates it
to f ,

Mp : f → (∂nu)∣∂ΩR or Mp f = (∂nu)∣∂ΩR. (27)

Intuitively, the operator Mp transforms the Dirichlet boundary con-
dition u = f on ∂ΩR to an equivalent Neumann boundary condition
∂nu =Mp f on ∂ΩR. In physical terms, if f is understood as a den-
sity of particles maintained on ∂ΩR, the operator Mp determines
their steady-state diffusive flux density DMp f = D(∂nu)∣∂ΩR into
the reactive bulk (with a bulk reaction rate p). In the particular case
p = 0, a similar problem arises in heat transfer from the boundary
∂ΩR with an imposed temperature profile f , so that M0 f is pro-
portional to the steady-state temperature flux density into the bulk;
moreover, the analogy with electrostatics allows one to interpret f as
a charge density, for which M0 f determines the current density.

The Dirichlet-to-Neumann operator was thoroughly inves-
tigated for the case when ∂ΩR = ∂Ω (i.e., ∂ΩN = ∅).118–124 We

conjecture that the inclusion of the additional boundary condition
(26c) on the reflecting part ∂ΩN does not affect general properties
of this operator; in particular, as the region ∂ΩR is bounded, Mp
remains to be self-adjoint pseudo-differential operator with a dis-
crete spectrum for any p ≥ 0. Its eigenvalues can be enumerated in
an ascending order,

0 ≤ μ(p)0 ≤ μ(p)1 ≤ ⋅ ⋅ ⋅ ≤ μ(p)k ≤ ⋅ ⋅ ⋅↗ +∞, (28)

while the eigenfunctions {v(p)k } form a complete orthonormal basis
in the space L2(∂ΩR) of square integrable functions on ∂ΩR.
While we checked these spectral proprieties numerically for various
domains (see an example in Sec. III), a mathematical proof of this
extension is beyond the scope of this paper.

The following spectral expansion of the generalized propagator
in the Laplace domain was derived in Ref. 106:

G̃ψ(x, p∣x0) = G̃∞(x, p∣x0)

+ 1
D

∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

1 − ψ̄(μ(p)k )
μ(p)k

, (29)

where asterisk denotes complex conjugate,

ψ̄(μ) =
∞

∫
0

dℓ e−μℓ ψ(ℓ) (30)

is the Laplace transform of ψ(ℓ) (we use bar instead of tilde here to
highlight different units),

V(p)k (x0) = ∫
∂ΩR

dx j̃∞(x, p∣x0) v(p)k (x), (31)

and G̃∞(x, p∣x0) and j̃∞(x, p∣x0) are the Laplace transforms of
G∞(x, t∣x0) and j

∞
(x, t∣x0), respectively.

For the conventional case of a constant reactivity, ψ(ℓ) is
given by Eq. (13) and thus ψ̄(μ) = 1/(1 + μ/q), so that Eq. (29) is
reduced to

G̃q(x, p∣x0) = G̃∞(x, p∣x0) +
1
D

∞

∑
k=0

[V(p)k (x0)]∗V(p)k (x)
q + μ(p)k

. (32)

Setting q = 0, one also gets the identity

G̃0(x, p∣x0) = G̃∞(x, p∣x0) +
∞

∑
k=0

[V(p)k (x0)]∗V(p)k (x)
Dμ(p)k

, (33)

which allows one to write alternative representations

G̃q(x, p∣x0) = G̃0(x, p∣x0) −
1
D

∞

∑
k=0

[V(p)k (x0)]∗V(p)k (x)
μ(p)k (1 + μ

(p)
k /q)

(34)

and

G̃ψ(x, p∣x0) = G̃0(x, p∣x0)

− 1
D

∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

ψ̄(μ(p)k )
μ(p)k

. (35)

As a consequence, we find
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j̃ψ(x, p∣x0) = −D∂nG̃ψ(x, p∣x0)∣∂ΩR

=
∞

∑
k=0
[V(p)k (x0)]∗v(p)k (x) ψ̄(μ

(p)
k ), (36)

where we used the property (∂nV(p)k )∣∂ΩR = μ
(p)
k v

(p)
k , given that v(p)k

is an eigenfunction of the Dirichlet-to-Neumann operator Mp.
In summary, the generalized propagator Gψ(x, t∣x0) and related

quantities fully characterize diffusion-controlled reactions with irre-
versible binding described by the probability density ψ(ℓ). The next
step consists in implementing unbinding events.

B. Unbinding events
Let us now merge the general mechanism of binding events

with a general waiting time distribution for unbinding events. Using
the renewal technique, one can compute the propagator Q(x, t∣x0)
of reversible diffusion-controlled reactions as

Q(x, t∣x0) = Gψ(x, t∣x0) + ∫
∂ΩR

dx1

t

∫
0

dt1

t

∫
t1

dt′1

× jψ(x1, t1∣x0)ϕ(t′1 − t1)Gψ(x, t − t′1∣x1) + ⋅ ⋅ ⋅ . (37)

The first term accounts for the random trajectories from x0 to x with-
out any binding, whose fraction is precisely given by Gψ(x, t∣x0). In
the second term, the particle binds at time t1 on the point x1 ∈ ∂ΩR
[with probability jψ(x1, t1∣x0)dx1dt1], stays in the bound state for
the time t′1 − t1 [with probability ϕ(t′1 − t1)dt′1], unbinds and diffuses
from x1 to x within the remaining time t − t′1 [with probability den-
sity Gψ(x, t − t′1∣x1)]. As the binding position and time as well as the
duration of the bound state are random, one integrates over all their
possible realizations. The next terms in this expression account for
two, three, etc., binding events.

With the help of the Laplace transform, one can turn convolu-
tions in time into products, yielding

Q̃(x, p∣x0) = G̃ψ(x, p∣x0) +∫
∂ΩR

dx1 j̃ψ(x1, p∣x0)ϕ̃(p)G̃ψ(x, p∣x1) + ⋅ ⋅ ⋅ .

(38)

Using the spectral expansions (29) and ((36), one can evaluate
the integrals over the intermediate binding positions x1, x2, . . . in
Eq. (38) due to the orthogonality of eigenfunctions {v(p)k } and then
sum up all contributions as a geometric series to get

Q̃(x, p∣x0) = G̃∞(x, p∣x0) +
1
D

∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

×
1 − ψ̄(μ(p)k )

μ(p)k [1 − ϕ̃(p)ψ̄(μ
(p)
k )]

. (39)

Using the identity (33), one can rewrite Eq. (39) as

Q̃(x, p∣x0) = G̃0(x, p∣x0) −
1
D

∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

×
(1 − ϕ̃(p)) ψ̄(μ(p)k )

μ(p)k [1 − ϕ̃(p)ψ̄(μ
(p)
k )]

. (40)

This spectral expansion is one of the main general results of the
paper. It shows how the geometric structure of the confining domain
Ω, expressed in terms of the spectral quantities μ(p)k and V(p)k (x), is
coupled to the binding and unbinding kinetics expressed in terms of
ψ̄(μ) and ϕ̃(p), respectively. This expansion holds for any p ≥ 0 and
any confining domainΩwith a smooth boundary ∂Ω and a bounded
region ∂ΩR.

In the same way, one can also compute the propagator
Qb(x, t∣x0) to be in the bound state at x ∈ ∂ΩR at time t. The renewal
technique yields

Qb(x, t∣x0) =
t

∫
0

dt′ jψ(x, t′∣x0)Φ(t − t′)

+ ∫
∂ΩR

dx1

t

∫
0

dt1

t

∫
t1

dt′1
t

∫
t′1

dt′ jψ(x, t1∣x0) ϕ(t′1 − t1)

× jψ(x, t′ − t′1∣x1)Φ(t − t′) + ⋅ ⋅ ⋅ ,

where Φ(t) = ∫ ∞t dt′ ϕ(t′) is the probability of no desorption up
to time t. The first term describes the first binding at x at time t′

and staying there until t, while the second and other terms account
for multiple unbinding–rebinding events. Applying the Laplace
transform and using the spectral expansions, we get

Q̃b(x, p∣x0) =
∞

∑
k=0
[V(p)k (x0)]∗ vk(x)

(1 − ϕ̃(p))ψ̄(μ(p)k )
p[1 − ϕ̃(p)ψ̄(μ(p)k )]

, (41)

where we used that Φ̃(p) = (1 − ϕ̃(p))/p. Evaluating the normal
derivative of the propagator Q̃(x, p∣x0) from Eq. (40) on ∂ΩR, we
deduce

p Q̃b(x, p∣x0) = −D∂nQ̃(x, p∣x0) (x ∈ ∂ΩR), (42)

which reads in time domain as

∂tQb(x, t∣x0) = −D∂nQ(x, t∣x0) (x ∈ ∂ΩR). (43)

In other words, the back-reaction boundary condition (6) remains
valid in the general case of non-Markovian binding/unbinding
kinetics. In turn, Eq. (5) representing the first-order kinetics, is only
retrieved when both ψ(ℓ) and ϕ(t) are exponential (see Sec. II C).

Note that if the particle was initially in the bound state
(at a boundary point x0 ∈ ∂ΩR), one has to include an addi-
tional waiting step until its first desorption. As a consequence,
the Laplace transform of the associated propagator that we denote
Q(x, t∣x0, b) is

Q̃(x, p∣x0, b) = ϕ̃(p)Q̃(x, p∣x0)

= 1
D

∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

(1 − ψ̄(μ(p)k )) ϕ̃(p)
μ(p)k [1 − ϕ̃(p)ψ̄(μ

(p)
k )]

,

(44)

where we used Eq. (39).
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The integral of Eq. (40) over x ∈ Ω determines the Laplace
transform of the probability S(t∣x0) that the particle is unbound at
time t,

S̃(p∣x0) = ∫
Ω

dx Q̃(x, p∣x0)

= 1
p
−
∞

∑
k=0
[V(p)k (x0)]∗

ψ̄(μ(p)k )(1 − ϕ̃(p))
p[1 − ϕ̃(p)ψ̄(μ(p)k )]

∫
∂ΩR

dx v(p)k (x),

(45)

where we used the following identity from Ref. 125:

∫
Ω

dx V(p)k (x) =
D
p
μ(p)k ∫

∂ΩR

dx v(p)k (x). (46)

If there was a uniform concentration c0 of particles at time 0,
their concentration c(x, t) at time t is given by Eq. (15). According
to Eq. (40), the propagator is symmetric with respect to the exchange
of x and x0, Q(x, t∣x0) = Q(x0, t∣x), so that

c(x, t) = ∫
Ω

dx0 c0 Q(x, t∣x0) = c0 S(t∣x), (47)

and the latter is given by Eq. (45) in the Laplace domain. The dif-
fusive flux of particles on the reactive region is then given in the
Laplace domain as

J̃(p) = ∫
∂ΩR

dx (−D∂nc̃(x, p))

= c0D
∞

∑
k=0

μ(p)k ψ̄(μ(p)k )(1 − ϕ̃(p))
p[1 − ϕ̃(p)ψ̄(μ(p)k )]

∣∫
∂ΩR

dx v(p)k (x)∣
2
. (48)

In summary, we developed a general mathematical formal-
ism to describe a very broad class of reversible diffusion-controlled
reactions. At a microscopic level, one can think of a particle dif-
fusing inside a confining domain Ω toward a reactive region ∂ΩR.
When the particle approached ∂ΩR close enough, a local short-range
interaction attempts to bind it (e.g., due to attractive electrostatic
potential, formation of covalent or ionic bonds, mutual affinity, con-
formational change, local minimum of a potential energy, entropic
barrier, adsorption, transfer through a channel, etc.). If the bind-
ing attempt fails, the particle continues its bulk diffusion until
the next encounter with ∂ΩR, and so on. The random number of
failed attempts until the successful binding is represented by the
threshold ℓ̂ drawn from the probability density ψ(ℓ) that char-
acterizes binding kinetics. After staying in the bound state for a
random waiting time t̂ drawn from the probability density ϕ(t)
that characterizes unbinding kinetics, the particle is released into the
bulk to resume its diffusion. As the binding event is preceded by
multiple diffusive excursions in the bulk, the generating function
ψ̄(μ) = ∫ ∞0 dℓ e−μℓψ(ℓ) of the random threshold ℓ̂ is tightly cou-
pled to the geometric structure of the confining domain Ω that are
captured via the eigenmodes of the Dirichlet-to-Neumann operator.

In turn, the unbinding event is simply a halt at the binding point
for a random waiting time, which is described by ϕ(t) or ϕ̃(p) =
∫ ∞0 dt e−ptϕ(t), independently of the confinement. For more sophis-
ticated unbinding events (such as, e.g., surface diffusion), ϕ̃(p) is
expected to become coupled to the geometric structure of the reac-
tive region ∂ΩR. In this way, one can potentially retrieve and further
generalize the description of intermittent diffusions,126 in particu-
lar, those with alternating tours of bulk and surface diffusion.127–136

However, such an extension is beyond the scope of this paper.

C. Markovian binding kinetics
Let us first inspect the Markovian binding kinetics determined

by the exponential distribution in Eq. (13). In this case, Eq. (40) reads

Q̃(x, p∣x0) = G̃0(x, p∣x0) −
1
D

∞

∑
k=0

[V(p)k (x0)]∗V(p)k (x)
μ(p)k (1 + μ

(p)
k /qp)

, (49)

with

qp = q(1 − ϕ̃(p)) = κ̃(p)/D, (50)

or, equivalently,

Q̃(x, p∣x0) = G̃∞(x, p∣x0) +
1
D

∞

∑
k=0

[V(p)k (x0)]∗V(p)k (x)
μ(p)k + qp

. (51)

In line with the former description of reversible reactions in Sec. I,
we retrieved the spectral expansion (34), in which the constant reac-
tivity parameter q is replaced by the p-dependent function qp from
Eq. (50). In other words, the propagator Q̃(x, p∣x0) satisfies the
Robin boundary condition

−D∂nQ̃(x, p∣x0) = κ̃(p)Q̃(x, p∣x0) (x ∈ ∂ΩR), (52)

with κ̃(p) = qpD (see Sec. II D for further discussions). One also
sees that the results for irreversible binding are retrieved by formally
setting ϕ̃(p) ≡ 0.

The inverse Laplace transform of Eq. (52) yields a convolution-
type boundary condition on ∂ΩR,

−D∂nQ(x, t∣x0) =
t

∫
0

dt′K(t − t′)Q(x, t′∣x0), (53)

with

K(t) = κ0(δ(t) − ϕ(t)), κ0 = qD. (54)

This is a generalization of Eqs. (10) and (11). This is also an exten-
sion of the results by Agmon and Weiss86 to arbitrary confining
domains. Whatever the distribution of waiting times is, the memory
kernel induces a sort of delayed feedback from the particles that are
“stored” in the bound state and progressively released at later times.
We inspect the consequences of these memory effects for general
binding/unbinding kinetics in Sec. II E.
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D. Robin boundary condition
Let us return to the general setting. It is easy to check that

the Laplace-transformed propagator Q̃(x, p∣x0) given by Eq. (40)
satisfies the modified Helmholtz equation, as the conventional
propagators do,

(p −DΔ)Q̃(x, p∣x0) = δ(x − x0) (x ∈ Ω), (55)

where δ(x − x0) is the Dirac distribution. As expected, its inverse
Laplace transform yields the diffusion equation in time domain,

∂tQ(x, t∣x0) = DΔQ(x, t∣x0) (x ∈ Ω), (56)

with the standard initial condition Q(x, 0∣x0) = δ(x − x0) affirming
that x0 is the starting point at time 0. As there is no surface reaction
on the reflecting boundary ∂ΩN , the Neumann boundary condition
applies,

∂nQ̃(x, p∣x0) = 0 (x ∈ ∂ΩN) (57)

(and the same holds in the time domain). Let us now inspect the
boundary condition on the reactive part ∂ΩR.

As we discussed earlier, the Markovian binding kinetics is
tightly related to the Robin boundary condition for the Laplace-
transformed propagator Q̃(x, p∣x0). However, this boundary con-
dition does not hold in general for non-Markovian binding. Using
Eqs. (39) and (40), one can easily check that

−D∂nQ̃(x, p∣x0)∣x∈∂ΩR
=
∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

×
ψ̄(μ(p)k )(1 − ϕ̃(p))

1 − ϕ̃(p)ψ̄(μ(p)k )
,

DQ̃(x, p∣x0)∣x∈∂ΩR
=
∞

∑
k=0
[V(p)k (x0)]∗V(p)k (x)

×
1 − ψ̄(μ(p)k )

μ(p)k [1 − ϕ̃(p)ψ̄(μ
(p)
k )]

.

These two functions can satisfy the Robin boundary condition (52)
only if each term in one series is proportional to the corresponding
term in the other, i.e., if

ψ̄(μ(p)k )(1 − ϕ̃(p))
1 − ϕ̃(p)ψ̄(μ(p)k )

= qp
1 − ψ̄(μ(p)k )

μ(p)k [1 − ϕ̃(p)ψ̄(μ
(p)
k )]

for some proportionality coefficient qp, from which

qp = (1 − ϕ̃(p))
μ(p)k ψ̄(μ(p)k )
1 − ψ̄(μ(p)k )

. (58)

As the left-hand side does not depend on k, the right-hand side
should not as well, i.e., one should have

μ(p)k ψ̄(μ(p)k )
1 − ψ̄(μ(p)k )

= q

for some constant q, and thus ψ̄(μ(p)k ) = 1/(1 + μ(p)k /q), i.e., the ran-
dom threshold should obey an exponential distribution with the rate
q. In other words, if the distribution of ℓ̂ is exponential, the propaga-
tor Q̃(x, p∣x0) satisfies the Robing boundary condition (52). In turn,
any non-exponential density ψ(ℓ) would in general invalidate the
Robin boundary condition.

Despite this general statement, the Robin boundary condition
can still reappear in some situations. For instance, let us look at
the concentration c(x, t) with the uniform initial condition c0(x0)
= c0, which is proportional to S(t∣x) according to Eq. (47). In some
symmetric domains, the integral over x ∈ ∂ΩR may cancel all con-
tributions in Eq. (45) except for k = 0. In this specific case, c̃(x, p)
would satisfy the Robin boundary condition given by

− ∂nc̃(x, p) = qp c̃(x, p) (x ∈ ∂ΩR), (59)

with qp given by Eq. (58) for k = 0. Indeed, if both c̃(x, p) and
∂nc̃(x, p) (restricted on ∂ΩR) are determined by a single eigenmode,
they are necessarily proportional to each other. In Sec. III, we discuss
an explicit example of a spherical target, whose rotational symmetry
leads to this situation.

The inverse Laplace transform of Eq. (59) yields again a
convolution-type Robin boundary condition (10) in time domain,
with the memory kernel K(t) obtained by the inverse Laplace
transform of κ̃(p) = qpD,

K(t) = L −1
⎧⎪⎪⎨⎪⎪⎩

D(1 − ϕ̃(p))μ
(p)
0 ψ̄(μ(p)0 )

1 − ψ̄(μ(p)0 )

⎫⎪⎪⎬⎪⎪⎭
. (60)

In this case, the statistics of both binding and unbinding events,
incorporated through ψ̄(μ(p)0 ) and ϕ̃(p), as well as the geomet-
ric structure of the domain, represented by μ(p)0 , all determine the
memory kernel. This point was first mentioned in Ref. 106. More-
over, Bressloff showed for simple one-dimensional settings that such
memory kernels can be heavy-tailed.109,137,138 We return to this point
in Sec. III for the case of a spherical reactive region.

E. Long-time behavior
To conclude this section, we investigate the long-time behav-

ior of the propagator Q(x, t∣x0). We consider general asymptotic
expressions given by

ψ̄(μ) ≈ 1 − μαℓα0 + ⋅ ⋅ ⋅ (μ→ 0), (61)

ϕ̃(p) ≈ 1 − pβtβd + ⋅ ⋅ ⋅ (p→ 0), (62)

with some exponents 0 < α ≤ 1 and 0 < β ≤ 1 and length and time
scales ℓ0 and td that characterize binding and unbinding events,
respectively. When β = 1, the mean waiting time is finite and equal
to td. Similarly, when α = 1, the mean threshold is finite and equal to
ℓ0. Using the asymptotic expansion139
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μ(p)0 ≈ ∣Ω∣
D∣∂ΩR∣

p + ⋅ ⋅ ⋅ (p→ 0), (63)

where ∣Ω∣ is the volume of Ω, we can write

ψ̄(μ(p)0 ) ≈ 1 − pαtαa + ⋅ ⋅ ⋅ (p→ 0), (64)

where

ta =
ℓ0∣Ω∣

D∣∂ΩR∣
(65)

is a time scale associated with binding events (see Appendix B).
Finally, we note that v(0)0 = 1/

√
∣∂ΩR∣, and thus

V(0)0 (x0) = ∫
∂ΩR

dx j̃∞(x, 0∣x0)v(0)0 (x) =
1√
∣∂ΩR∣

(66)

due to the normalization of the probability flux density j
∞
(x, t∣x0).

The first term in Eq. (40) behaves as G̃0(x, p∣x0) ≈ 1/(p∣Ω∣)
in the limit p→ 0, ensuring that the conventional propagator
G0(x, t∣x0) approaches the uniform distribution in the bounded
domain Ω with reflecting boundary ∂Ω,

G0(x, t∣x0) ≈
1
∣Ω∣ +O(exp) (t →∞), (67)

where O(exp) denotes an exponentially decaying correction. In the
second term of Eq. (40), let us denote the contributions as

Q̃k(p) =
1
D
[V(p)k (x0)]∗V(p)k (x)

ψ̄(μ(p)k )(1 − ϕ̃(p))
μ(p)k [1 − ϕ̃(p)ψ̄(μ

(p)
k )]

. (68)

For the ground eigenmode k = 0, the substitution of the above small-
p expansions yields

Q̃0(p) ≈
pβ−1tβd

∣Ω∣(pαtαa + pβtβd)
(p→ 0). (69)

As expected, it does not depend on the starting point x0 nor on the
arrival point x. In turn, for other eigenmodes with k > 0, one has
μ(p)k → μ(0)k > 0 as p→ 0 and, therefore,

Q̃k(p) ≈
[V(0)k (x0)]∗V(0)k (x)t

β
dψ̄(μ

(0)
k )

Dμ(0)k (1 − ψ̄(μ
(0)
k ))

pβ (p→ 0). (70)

For any combination of the exponents α and β, the inverse Laplace
transform of this term yields a subleading contribution as compared
to Q0(t). As a consequence, we focus on the leading-order term
Q0(t).

We distinguish four regimes as follows:

(i) If α = β = 1, one has in the leading order

Q̃0(p) ≈
td

∣Ω∣(td + ta)p
(p→ 0), (71)

so that

Q(x, t∣x0) ≈
1

∣Ω∣(1 + td/ta)
+O(exp) (t →∞). (72)

As expected, when both binding and unbinding events
are characterized by finite means, the system evolves toward
an equilibrium distribution, which is uniform inside the
confining domain. The probability to be in the unbound state
is 1/(1 + td/ta). An exponential relaxation to the equilibrium
is the reminiscent feature of restricted diffusion in a bounded
confining domain. It is drastically different from diffusion
in unbounded domains for which the particle can diffuse
arbitrarily far away from the reactive region so that the dura-
tion of each bulk exploration between consecutive bindings
can be very long; in particular, the survival probability for
irreversible reactions and the probability to be in the bound
state for reversible reactions are known to exhibit power-law
decays in time.9,83,86,140–143

(ii) If α < β ≤ 1, one has in the leading order

Q̃0(p) ≈
tβd
∣Ω∣tαa

p−(1+α−β) (p→ 0), (73)

so that

Q(x, t∣x0) ≈
1
∣Ω∣
⎛
⎝

1 −
tβd tα−β

tαaΓ(1 + α − β)
⎞
⎠
(t →∞). (74)

As the binding events are characterized by the smaller expo-
nent α, unbinding events are more probable at long times.
As a consequence, the particle is asymptotically unbound
but the approach to this regime is controlled by a slow
power-law decay, with the exponent α − β (much faster decay-
ing exponential corrections are not relevant here and thus
omitted).

(iii) If β < α ≤ 1, one has in the leading order

Q̃0(p) ≈
1
∣Ω∣p
⎛
⎝

1 − tαa
tβd

pα−β
⎞
⎠
(p→ 0), (75)

so that

Q(x, t∣x0) ≈
tαa tβ−α

∣Ω∣tβdΓ(1 + β − α)
(t →∞). (76)

In this case, binding events are characterized by the larger
exponent α and thus more probable than the unbinding events
so that the particle tends to be asymptotically in the bound
state. In particular, the probability to be in the unbound state
slowly vanishes as tβ−α, with the exponent β − α.

(iv) If α = β < 1, we have

Q̃0(p) ≈
1

∣Ω∣p(1 + (ta/td)α)
(1 − t2α

a pα

tαa + tαd
) (p→ 0), (77)

so that

Q(x, t∣x0) ≈
1

∣Ω∣(1 + (td/ta)α)

× (1 + tαd t−α

(1 + (td/ta)α)Γ(1 − α)
) (t →∞). (78)
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In this subtle setting, the occurrence of binding and
unbinding events is equally rare at long times so that the
system approaches an equilibrium uniform distribution, but
this power-law approach is much slower than in the case
α = β = 1. The asymptotic probability of the unbound state is
1/(1 + (td/ta)α).

The integral over x ∈ Ω of the above relations removes the
factor 1/∣Ω∣ and yields the long-time asymptotic behavior of the
probability S(t∣x0), while its multiplication by c0 determines the
asymptotic behavior of the concentration c(x, t).

III. SPHERICAL TARGET
To illustrate the above general results, we consider restricted

diffusion between two concentric spheres of radii R and L: Ω = {x
∈ R3 : R < ∣x∣ < L}. The inner sphere represents the reactive region
∂ΩR, while the outer sphere is the reflecting boundary ∂ΩN . This
emblematic model for diffusion-controlled reactions was thoroughly
investigated (see Refs. 40 and 101 and references therein). In a simi-
lar way, one can obtain the exact results for restricted diffusion on an
interval, a half-line, a circular annulus, and the exterior of the cylin-
der (see Ref. 107 and Appendix C). For the sake of clarity, we focus
on the probability S(t∣x0) [or, equivalently, on the concentration
c(x, t)] and on the diffusive flux J(t).

The eigenbasis of the Dirichlet-to-Neumann operator in this
domain is known.107 In fact, the eigenfunctions v

(p)
k are given by

the normalized spherical harmonics so that the integral over ∂ΩR in
Eq. (45) cancels all terms except the ground eigenmode, for which
v
(p)
0 (x) = 1/

√
∣∂ΩR∣. We then get

S̃(p∣x0) =
1
p
− g(p)0 (r0)

ψ̄(μ(p)0 )(1 − ϕ̃(p))
p[1 − ϕ̃(p)ψ̄(μ(p)0 )]

, (79)

where r0 = ∣x0∣,

g(p)0 (r) =
R
r

w(L
√

p/D, r
√

p/D)
w(L
√

p/D, R
√

p/D)
, (80a)

w(x, y) = sinh (x − y) − x cosh (x − y), (80b)

and

μ(p)0 = 1
R
+
√

p/D L
√

p/D tanh ((L − R)
√

p/D) − 1
L
√

p/D − tanh ((L − R)
√

p/D)
. (81)

The diffusive flux (48) reads in the Laplace domain as

J̃(p) = 4πR2c0D
μ(p)0 (1 − ϕ̃(p))ψ̄(μ

(p)
0 )

p[1 − ϕ̃(p)ψ̄(μ(p)0 )]
. (82)

If the particle was initially in the bound state, the inclusion of an
additional waiting step yields

S̃(p∣b) = ϕ̃(p) S̃(p∣x0)∣∂ΩR =
ϕ̃(p)(1 − ψ̄(μ(p)0 ))
p[1 − ϕ̃(p)ψ̄(μ(p)0 )]

, (83)

which is independent of the starting point x0 due to the rotational
invariance of the domain.

For Markovian binding kinetics with ψ(ℓ) from Eq. (13),
one has ψ̄(μ) = 1/(1 + μ/q), so that the above expressions are
reduced to

S̃(p∣x0) =
1
p
− g(p)0 (r0)[1 − ϕ̃(p)]

p[1 − ϕ̃(p) + μ(p)0 /q]
, (84)

S̃(p∣b) = ϕ̃(p)
p[1 + q(1 − ϕ̃(p))/μ(p)0 ]

, (85)

and

J̃(p) = 4πR2c0D
μ(p)0 (1 − ϕ̃(p))

p(1 − ϕ̃(p) + μ(p)0 /q)
. (86)

To show the behavior of these quantities in time domain, we
will compute their inverse Laplace transforms numerically by using
the Talbot algorithm.144

A. Mittag-Leffler model
In order to illustrate various features of non-Markovian bind-

ing/unbinding kinetics, we introduce the Mittag-Leffler model, in
which both binding and unbinding events are characterized by
Mittag-Leffler distributions as follows:

ψ(ℓ) = −Eα,0(−(ℓ/ℓ0)α)/ℓ (87)

for the threshold ℓ̂ determining each binding event and

ϕ(t) = −Eβ,0(−(t/td)β)/t (88)

for the waiting time t̂ in each bound state, where

Eγ,δ(z) =
∞

∑
k=0

zk

Γ(γk + δ) (89)

is the Mittag-Leffler function. The associated generating functions
are particularly simple: ψ̄(μ) = 1/(1 + (μℓ0)α) and ϕ̃(p) = 1/(1
+ (ptd)β). Since E1,0(z) = zez , the above distributions become expo-
nential (with q = 1/ℓ0 and koff = 1/td) when α = 1 or β = 1. When
the exponent is smaller than 1, the probability density exhibits a
power-law behavior in both limits, e.g.,

ψ(ℓ) ≈ ℓα−1

ℓα0Γ(α)
(ℓ→ 0), (90a)

ψ(ℓ) ≈ ℓα0 ℓ
−α−1

∣Γ(−α)∣ (ℓ→∞). (90b)

Note that if α or β is equal to 1/2, the above Mittag-Leffler func-
tion can be expressed in terms of the error function erf(z), e.g., one
has for α = 1/2,

ψ(ℓ) = 1√
πℓ0ℓ

− 1
ℓ0

erfcx(
√
ℓ/ℓ0), (91)

where erfcx(z) = ez2
(1 − erf(z)) is the scaled complementary error

function [see Fig. 2(a)].
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FIG. 2. (a) The Mittag-Leffler probability density ψ(ℓ) from Eq. (87), with ℓ0 = 1
and two exponents: α = 1 and α = 0.5. Thin lines indicate the asymptotic relations
(90). (b) The associated encounter-dependent reactivity κ(ℓ) given by Eq. (108).
Thin lines indicate the asymptotic relations (109).

B. Diffusion toward a sphere in R3

Before dwelling on restricted diffusion in the bounded spher-
ical domain, it is instructive to have a look at the limit L→∞
when the outer reflecting boundary is moved away. This limit cor-
responds to the most well-studied setting of a particle diffusing in
R3 toward a reactive sphere of radius R. This is the problem that
was addressed in the seminal works by Smoluchowski, Collins and
Kimball, and many others. Even though we focused on bounded
domains in Sec. II, the derived spectral expansions generally remain
valid for unbounded domains as well, provided that the reactive
region ∂ΩR is bounded. While the mathematical treatment of gen-
eral unbounded domains goes beyond the scope of the paper, taking
the limit L→∞ in the considered example of concentric spheres is
straightforward. For instance, one immediately gets

S̃(p∣x0) =
1
p
− R

r0
e−(r0−R)

√

p/D (1 − ϕ̃(p))ψ̄(1/R +
√

p/D)
p[1 − ϕ̃(p)ψ̄(1/R +

√
p/D)]

(92)

and

S̃(p∣b) = ϕ̃(p)(1 − ψ̄(1/R +
√

p/D))
p[1 − ϕ̃(p)ψ̄(1/R +

√
p/D)]

. (93)

For the Markovian binding, these expressions are reduced to

1 − pS̃(p∣x0) =
R
r0

e−(r0−R)
√

p/D(1 − ϕ̃(p))
1 − ϕ̃(p) + 1/R+

√

p/D
q

(94)

and

pS̃(p∣b) = ϕ̃(p)
1 + (1 − ϕ̃(p)) κ0R

D(1+R
√

p/D)

. (95)

An equation similar to Eq. (94) was earlier reported in Refs. 91
and 97 for the conventional case of Markovian unbinding, with
ϕ̃(p) = 1/(1 + p/koff). In this particular case, the inverse Laplace
transform can be explicitly inverted to express S(t∣x0) in terms of
error functions.91 Equation (94) turns out to be a generalization
to the non-Markovian setting. In turn, Eq. (95) is identical to the
expression (2.12) derived by Agmon and Weiss for this particular
setting,86 with their notation ka = 4πR2κ0.

For Markovian binding/unbinding kinetics, Eq. (86) yields

J̃(p) = 4πRc0D
1 + R

√
p/D

p[1 + 1
qR(1 + R

√
p/D)(1 + koff/p)]

. (96)

This Laplace transform can be inverted explicitly by finding the
roots of a cubic polynomial in powers of

√
p/D in the denominator,

expanding it into partial fractions and inverting them (see details in
Ref. 91). If there is no unbinding kinetics (i.e., koff = 0), the inverse
Laplace transform of this expression yields the diffusive flux found
by Collins and Kimball,43

J(t) = 4πR2c0qD
1 + qR

(1 + qR erfcx(
√

Dt(1/R + q))). (97)

In the limit q→∞ (perfect reactions), one retrieves the Smolu-
chowski formula,

J(t) = JS(1 + R√
πDt
), (98)

where

JS = 4πRc0D (99)

is the Smoluchowski steady-state flux in the long-time limit.
The crucial difference from the bounded case is the possibility

of an escape to infinity in three dimensions. From the mathemati-
cal point of view, this possibility is reflected in the strictly positive
limit of the smallest eigenvalue: μ(p)0 → 1/R as p→ 0, whereas for
bounded domains, one had μ(0)0 = 0. As discussed in Ref. 139, the
mean boundary local time approaches a finite limit so that the parti-
cle undertakes a finite number of binding events before escaping to
infinity. If the mean waiting time in each bound state is finite, the
mean value of the overall duration of binding events is also finite,
and this mean determines the characteristic time scale T, above
which the probability S(t∣x0) approaches 1 exponentially fast, i.e.,
1 − S(t∣x0)∝ e−t/T . In turn, if the mean waiting time is infinite, one
can insert Eq. (62) with β < 1 into Eq. (92) to get in the leading order
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S̃(p∣x0) ≈
1
p
−

Rtβd pβ−1

r0(1/ψ̄(1/R) − 1) (p→ 0), (100)

which yields

S(t∣x0) ≈ 1 − R (t/td)−β
r0(1/ψ̄(1/R) − 1)Γ(1 − β) (t →∞). (101)

As expected, the slow, power-law approach of the probability S(t∣x0)
to 1 is controlled by long halts in the bound states. The role of
ψ̄(1/R) that determines the amplitude in front of the power law was
revealed in Ref. 106. For instance, in the case of conventional binding
in Eq. (13), one has ψ̄(1/R) = 1/(1 + 1/(qR)) so that

S(t∣x0) ≈ 1 − qR2 (t/td)−β
r0Γ(1 − β)

(t →∞). (102)

One sees that a highly reactive region (large q) ensures rapid binding
events and therefore a larger amplitude of the correction term, i.e., a
slower approach to 1.

C. Probability to be in the unbound state
From now on, we return to restricted diffusion between con-

centric spheres. In the following, we fix the units of length and time
by setting R = 1 and D = 1.

Figure 3 illustrates the behavior of the probability S(t∣x0) of
finding a particle in the unbound state in four different regimes
discussed in Sec. II E. Two panels correspond to strong and weak
confinements, with L = 2 and L = 10, respectively. In both cases,
the asymptotic relations derived in Sec. II E accurately capture the
long-time behavior of S(t∣x0). For the regimes (i), (iii), and (iv),
S(t∣x0) exhibits a monotonous decrease in panel (a); in contrast,
this function achieves a minimum in the regime (ii). This mini-
mum is necessarily present for any setting because S(t∣x0) starts
from 1 at t = 0 and returns to 1 in the limit t →∞. In turn, the
monotonous decrease of S(t∣x0) in other regimes is specific to the
chosen set of parameters. For instance, the panel (b) illustrates the
case L = 10, for which S(t∣x0) is not monotonous in all regimes.
Moreover, a local maximum is observed for the case (iv). Chang-
ing the parameters ℓ0 and td (as well as L and ∣x0∣), one can achieve
other situations (not shown), in which this local maximum is either
enhanced or removed. To rationalize its origin, let us revise the
short-time and long-time behaviors of the probability S(t∣x0). At
short times, the binding kinetics is the limiting factor so that S(t∣x0)
is almost independent of the unbinding kinetics (see Appendix D
for technical details). In particular, a rapid decrease of S(t∣x0) can
be achieved either by increasing the “reactivity” of ∂ΩR (i.e., tak-
ing smaller ℓ0 or ta) or by choosing the starting position x0 closer
to ∂ΩR. After this initial drop, unbinding events come in play and
start to “compete” with binding events to slowly reach an equilib-
rium limit S(∞∣x0) = 1/(1 + (td/ta)α). Changing the time scale td
of unbinding events allows one to control the value of this limit,
independently of the short-time behavior. Moreover, as the second
term in Eq. (78) is positive, the limit S(∞∣x0) is approached from
above. As a consequence, if the initial drop led to intermediate val-
ues of S(t∣x0) that are below S(∞∣x0), a local maximum should be
present. In a similar way, one can rationalize the presence of a local
maximum for the case (iii) that we observed for a different set of
parameters (not shown).

FIG. 3. The probability S(t∣x0) of finding the particle in the unbound state at time
t, for diffusion between concentric spheres, with D = 1, R = 1, ∣x0∣ = 1.5, L = 2
(a) and L = 10 (b). The random threshold and waiting time obey Mittag-Leffler dis-
tributions (87) and (88), with ℓ0 = 1 and td = 1 (a) and ℓ0 = 0.1 and td = 10 (b),
and four combinations of the exponents α and β as indicated in the legend. Sym-
bols present the inverse Laplace transform of the exact expression (79) obtained
by the Talbot algorithm, whereas lines indicate the long-time asymptotic relations
discussed in Sec. II E. The values of ℓ0 and td were changed for the panel (b) for
a better visualization.

D. Diffusive flux
In order to quantify the uptake on the reactive region, we

consider the diffusive flux J(t), which is obtained via a numeri-
cal inversion of the Laplace transform in Eq. (82). To grasp the
main features of this quantity, we start with the conventional case
of Markovian binding and unbinding kinetics (i.e., α = β = 1).

Figure 4(a) shows the diffusive flux J(t) as a function of time t
for four values of the mean waiting time td. Let us first look at the
particular case td =∞ corresponding to irreversible binding. Com-
paring this curve with the explicit Collins–Kimball formula (97) for
L =∞ (shown by thin black line), one can clearly see the effect of
confinement. At short times, two curves are almost indistinguish-
able because the flux is formed by particles near the reactive region
and thus there is no influence of the outer reflecting boundary. How-
ever, as time goes on, two curves split and start to behave differently.
Indeed, when there is no outer boundary, the confining domain is
unbounded, and there is an infinite, inexhaustible amount of parti-
cles that diffuse toward the sphere to react on it. The flux reaches a
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FIG. 4. (a) The diffusive flux J(t) divided by the Smoluchowski steady-state flux JS
from Eq. (99), for diffusion between concentric spheres, with D = 1, R = 1, L = 10,
and c0 = 1. Conventional Markovian binding/unbinding kinetics (α = β = 1), with
ℓ0 = 1 (and thus q = 1) and four values of the mean waiting time td as indicated in
the legend. The classical Collins–Kimball formula (97) is compared to the inverse
Laplace transform of the exact expression (86) obtained numerically by the Talbot
algorithm. (b) The same diffusive fluxes are presented on the log-log scale, for
L = 10 [shown by lines, as on panel (a)] and L = 100 (shown by symbols).

strictly positive steady-state limit JS
qR

1+qR , which depends on the reac-
tivity parameter q. In contrast, if the domain is bounded, the amount
of particles is limited, and they all irreversibly bind to the sphere so
that the flux drops to 0 as t →∞.

The presence of unbinding events (i.e., a finite value of td)
does not fundamentally change the behavior but shifts the curves to
shorter times as td decreases. At first thought, this may sound coun-
terintuitive because unbinding events ensure that some particles are
present in the confining domain; in particular, we saw earlier that
the fraction of particles in the bulk reaches a constant. In this case,
vanishing of the flux simply reflects that the equilibrium is reached
at long times.

The remarkable effect of unbinding events is that the diffusive
flux does not almost depend on the size L of the confinement if the
size is large enough. This is illustrated on Fig. 4(b), which compares
the fluxes in two domains, with L = 10 (lines) and L = 100 (symbols).
For irreversible binding, an enlargement of the domain to L = 100
extends the validity of the Collins–Kimball formula to longer times,
implying the deviation between two curves for L = 10 and L = 100.

In contrast, when binding is reversible, the curves for L = 10 and
L = 100 are almost indistinguishable. Actually, to see their difference
at long times, we had to show the vertical axis in panel (b) on log-
arithmic scale. From the mathematical point of view, the similarity
between these curves comes from the fact that the smallest eigen-
value μ(p)0 , given by Eq. (81), is exponentially close to its limiting
value 1/R +

√
p/D when L is large enough and p is not too small

[indeed, tanh ((L − R)
√

p/D) = 1 +O(exp) when (L − R)
√

p/D
≫ 1]. As a consequence, the effect of confinement can only be seen
at very small p or, equivalently, at very long times. From the physical
point of view, if L is large enough, the system starts to equilibrate
near the reactive sphere (on a time scale of td), and then the equi-
librated layer extends further into the bulk due to diffusion. As a
consequence, the initial drop of the diffusive flux J(t) on the reactive
sphere does not depend on the confinement size.

Figure 5 illustrates the effects of non-Markovian binding and
unbinding kinetics. To highlight these effects, we consider the
aforementioned Markovian kinetics as a reference case (shown by
symbols). We also fix the threshold scale ℓ0 = 1 and use the same
set of time scales td as in Fig. 4. Panel (a) presents the effect of
non-Markovian unbinding kinetics (α = 1,β = 0.5). When td =∞
(irreversible binding), the unbinding kinetics has no influence, and
two curves (for β = 0.5 and β = 1) are identical. In turn, there is a
drastic difference between the cases β = 0.5 and β = 1 for any finite
td. In fact, anomalously long sojourns in the bound state consider-
ably delay the decay of the diffusive flux and thus the equilibration of
the system. In line with the long-time asymptotic analysis of Sec. II E,
one can easily show that the exponential decay for β = 1 switches to
a power-law decay for β = 0.5. These qualitative conclusions agree
with the earlier results by Agmon and Weiss for the unbounded case
L =∞.86

In turn, panel (b) of Fig. 5 presents the new effect of non-
Markovian binding kinetics, while keeping the unbinding events
to be Markovian (α = 0.5,β = 1). Let us first examine the short-
time behavior. As the mean threshold is infinite in the case α = 0.5,
binding events are expected to be rarer, as compared to the case
of Markovian binding with α = 1, and therefore it would be more
difficult for a particle to adsorb on the substrate. One might thus
expect that the diffusive flux would be smaller for α = 0.5 than for
α = 1. This is not the case. In contrast, while the diffusive flux con-
verged to a constant as t → 0 for the Markovian binding kinetics
(in agreement with the Collins–Kimball formula), it diverges for
the considered non-Markovian setting. In fact, substituting μ(p)0

≈
√

p/D and ψ̄(μ) ≈ (μℓ0)−α for large p and μ into Eq. (82), one gets

J̃(p) ≈ JS
RD(α−1)/2

ℓα0
p−(α+1)/2 (p→∞), (103)

from which

J(t) ≈ JS
R (Dt/ℓ2

0)(α−1)/2

ℓ0 Γ( α+1
2 )

(t → 0), (104)

in agreement with the power-law divergence seen in Fig. 5(b). As
expected, the short-time behavior does not depend on the unbinding
kinetics so that four curves for different td fall onto each other.

What is the reason of this enhanced flux? We recall that the
encounter-based description identifies the binding event with the
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FIG. 5. The diffusive flux J(t) divided by the Smoluchowski steady-state flux JS
from Eq. (99), for diffusion between concentric spheres, with D = 1, R = 1, L = 10,
and c0 = 1, and Mittag-Leffler binding/unbinding kinetics determined by (87) and
(88), with ℓ0 = 1 and four values of the time scale td as indicated in the leg-
end. Symbols present the reference case of Markovian binding/unbinding kinetics
(α = β = 1). Lines show non-Markovian cases: (a) α = 1, β = 0.5; (b) α = 0.5,
β = 1; and (c) α = 0.5, β = 0.5. Black straight line on panel (b) presents the
long-time asymptotic relation (106) for td = 10.

first crossing of the random threshold ℓ̂ by the boundary local time.
According to Eq. (90a), small values of the threshold ℓ̂ are more
likely than in the Markovian model. As a consequence, the parti-
cle can more easily bind the reactive region at short times within the

Mittag-Leffler model. Evidently, this peculiar result is specific to the
small-ℓ behavior of the probability density ψ(ℓ). In Ref. 106, other
models were discussed, for which the diffusive flux may tend zero
as t → 0. We finally note that the strongest divergence J(t)∝ t−1/2

corresponds to the formal limit α = 0, which corresponds to the
Smoluchowski setting of a perfect adsorption, see Eq. (98).

The long-time behavior of the diffusive flux on Fig. 5(b) reveals
another interesting feature. At intermediate times, the curves for
α = 0.5 are close to those for α = 1, suggesting that the distinction
between Markovian and non-Markovian binding kinetics is progres-
sively reduced due to several binding/unbinding events. However, at
longer times, the curves separate again and become drastically differ-
ent. In particular, one can notice a spike-like feature, which actually
means that the diffusive flux becomes negative (note also that the
absolute value of the diffusive flux is plotted on this panel, to be able
to employ the logarithmic scale on the vertical axis). The negative
values of the diffusive flux can be also deduced from the long-time
asymptotic analysis from Sec. II E. Repeating it for the diffusive flux,
one gets

J̃(p) ≈ JS
Rt1−α

a td

ℓ0
p1−α (p→ 0), (105)

so that

J(t) ≈ JS
Rt1−α

a td

ℓ0Γ(α − 1) tα−2 (t →∞). (106)

Since 0 < α < 1, Γ(α − 1) is negative, and so is the flux at long times.
This behavior can be intuitively expected. At the beginning, there
is no particle in the bound state, and eventual binding events are
responsible for the positive flux at short and intermediate times.
However, the power-law decay in Eq. (90b) allows for anomalously
large values of the random threshold ℓ̂ so that binding events are
getting rarer and rarer in the course of time. As a consequence, the
bound particles start to be released more often than the new ones
are getting bound, implying the negative flux. The power-law decay
(106) implies that the equilibration of the system is anomalously
long. We stress that the negative flux can be also found in the Marko-
vian setting; it is actually related to the non-monotonous behavior of
the probability S(t∣x0) [see, e.g., the curve shown by blue circles on
Fig. 3(b)].

The last panel (c) of Fig. 5 illustrates the combined effect of
both non-Markovian binding and unbinding kinetics (α = β = 0.5).
As expected, the short-time behavior has not changed as being unaf-
fected by unbinding kinetics. In turn, the long-time behavior is again
modified. In this particular example, the diffusive flux remains posi-
tive for all times but still exhibits a slow power-law decay. Its positive
character simply reflects a sort of balance between anomalously
rare binding events and anomalously long durations of unbinding
events.

E. Concentration evolution
Yet another insight into reversible diffusion-controlled reac-

tions can be achieved by looking at the temporal evolution of the
concentration profile c(x, t) from the uniform initial concentration
c0. We recall that this quantity is proportional to the probability
S(t∣x) and is a function of the radial distance r = ∣x∣ for the con-
sidered spherical domain. Figure 6 illustrates how the concentration
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FIG. 6. The concentration profile c(x, t)
(rescaled by c0) as a function of r = ∣x∣,
for diffusion between concentric spheres,
with D = 1, R = 1, L = 2, c0 = 1, and the
Mittag-Leffler binding/unbinding kinetics
determined by (87) and (88), with ℓ0 = 1
and td = 1. The concentration was eval-
uated at 64 times ranging uniformly on
the logarithmic scale from 0.01 to 100
and represented by colors, from dark
blue (t = 0.01) to dark red (t = 100).
(a) α = 1, β = 1; (b) α = 1, β = 0.5; (c)
α = 0.5, β = 1; and (d) α = 0.5, β = 0.5.

evolves with time for four combinations of the exponents α and β
(all other parameters being kept fixed to ease the comparison). In
the conventional setting α = β = 1 [panel (a)], one observes an expo-
nential approach to the equilibrium concentration, c0/(1 + td/ta)
= 0.7, as discussed in Sec. II E. When the unbinding kinetics is non-
Markovian [panel (b)], the particles stay longer and longer in the
bound state so that the concentration of unbound particles slowly
vanishes. In turn, if the binding kinetics is non-Markovian [panel
(c)], binding events are rare at long times, and the concentration
is slowly restored to the initial level c0. Finally, when both kinetics
are non-Markovian [panel (d)], the rarity of binding and unbind-
ing events is compensated and leads to a slow relaxation to a new
equilibrium concentration, c0/(1 + (td/ta)α) ≈ 0.60.

IV. DISCUSSION
Despite successful applications of the conventional (Marko-

vian) binding/unbinding kinetics, its numerous limitations have
been identified long ago. For instance, Agmon and Weiss introduced
a general waiting time distribution to account for anomalously long
sojourns in the bound states.86 Similarly, the simple form of the for-
ward reaction term in Eq. (5) cannot fully account for microscopic
heterogeneity of the reactive region, its temporal variations, satura-
tion effects in adsorption processes and passivation of catalysts as
well as various regulation and control mechanisms of biochemical
reactions in living cells. Quite naturally, different extensions of the
forward term have been proposed. Here, we briefly discuss a large
class of extensions that impact reactivity but do not alter the linearity
of the forward term with respect to c(x, t).

There are at least three basic ways to render reactivity non-
constant (and thus to go beyond the classical setting): (i) a space-
dependent reactivity κ(x) that allows one to model microscopic
heterogeneity of the reactive region; (ii) a time-dependent reactiv-
ity κ(t) that implements a temporal evolution of that region; and

(iii) a p-dependent reactivity κ̃(p) in the Laplace domain that incor-
porates memory effects via a convolution-type boundary condition
(10) in time domain (one can also consider their combinations).
The first extension is in general challenging because the diffusive
dynamics is intrinsically coupled here to surface reactions: The par-
ticle encounters the reactive region in different locations and thus
realizes a sequence of reaction attempts with different reaction prob-
abilities that depend on the whole random trajectory of the particle.
A general spectral approach for this extension was proposed in
Ref. 125 (see further discussions and references therein). The sec-
ond extension is also difficult for analytical treatments because the
Laplace transform, which is usually performed to reduce the diffu-
sion equation to the modified Helmholtz equation, would lead to a
convolution-type Robin boundary condition in the Laplace domain.
In contrast, the third extension, which we discussed in Sec. II C, does
not change the solution in the Laplace domain, except that the con-
stant reactivity κ0 is replaced by the reactivity κ̃(p) that depends on p
as a fixed parameter. In turn, the asymptotic behavior of the solution
and its form in time domain are modified.

The general binding mechanism discussed in this paper can be
associated with the fourth extension of a constant reactivity. As first
suggested in Ref. 106, the probability density ψ(ℓ) of the threshold ℓ̂
can be related to the so-called encounter-dependent reactivity as

κ(ℓ) = D
ψ(ℓ)

∫ ∞ℓ dℓ′ ψ(ℓ′) . (107)

In the conventional setting, the particle attempts to react at each
arrival onto ∂ΩR with the constant probability ρ ≈ aκ0/D (see
Sec. II A). In turn, Eq. (107) allows one to implement an arbitrary
dependence of the reaction probability on the number of encoun-
ters, i.e., on the number of failed attempts represented by ℓ. The
encounter-dependent reactivity can be interpreted in a similar way
to the time-dependent diffusivity D(t).145–147 In fact, if the bulk
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properties change with time, their effect onto diffusive displace-
ments can be modeled via a prescribed dependence D(t). Likewise,
if the reactive properties of the substrate depend on the number
of encounters with the particle, it can be modeled via a prescribed
dependence κ(ℓ). This is yet another manifestation of the funda-
mental similarity between the physical time as a proxy of the number
of bulk jumps and the boundary local time as a proxy of the number
of jumps onto the boundary.

To illustrate the concept of the encounter-dependent reactivity,
let us inspect again the Mittag-Leffler model. Inserting Eq. (87) for
the probability density ψ(ℓ) in Eq. (107), one gets

κ(ℓ) = κ0(ℓ/ℓ0)α−1 Eα,α(−(ℓ/ℓ0)α)
Eα,1(−(ℓ/ℓ0)α)

, (108)

with κ0 = D/ℓ0. This function is shown on Fig. 2(b). In the Marko-
vian case α = 1, one simply retrieves a constant reactivity κ(ℓ) = κ0,
which stands in the Robin boundary condition (1). In turn, if
0 < α < 1, the above encounter-dependent reactivity exhibits two
asymptotic power-law behaviors as follows:

κ(ℓ) ≈ κ0

Γ(α)(ℓ/ℓ0)α−1 (ℓ→ 0), (109a)

κ(ℓ) ≈ κ0α(ℓ/ℓ0)−1 (ℓ→∞). (109b)

In the limit ℓ→ 0, the encounter-dependent reactivity diverges, indi-
cating that ∂ΩR is highly reactive. This is consistent with the earlier
discussion that small values of the threshold ℓ̂ are more likely to
occur than for the Markovian setting with α = 1. The higher reac-
tivity can thus explain the larger diffusive flux observed in Fig. 5(b).
In the opposite limit ℓ→∞, the reactivity slowly decays, resulting
in rarer and rarer binding events. While we focused on the Mittag-
Leffler model for illustrative purposes, one can easily implement any
function κ(ℓ), which is suitable to represent the reactivity evolution
of the substrate, by using the random threshold with the probability
density

ψ(ℓ) = κ(ℓ)
D

exp
⎛
⎜
⎝
− 1

D

ℓ

∫
0

dℓ′ κ(ℓ′)
⎞
⎟
⎠

. (110)

In other words, there is a mapping between κ(ℓ) and ψ(ℓ). In
Ref. 106, several other models and their consequences for irre-
versible surface reactions were discussed.

We emphasize that κ(ℓ) depends on the number of encounters
(represented by ℓ) and not on the physical time t. In other words,
we model here the dynamical situation when the reactivity of the
target ∂ΩR changes due to its “interactions” with the particle and
not because of external actions. We also stress that the effect of the
encounter-dependent reactivity κ(ℓ) onto diffusion-controlled reac-
tions is not in general reduced to a p-dependent reactivity κ̃(p) or to
a convolution-type boundary condition (10) with a memory kernel
K(t), discussed in Sec. II C. This reduction is only possible for some
quantities and some specific geometric settings such as the spherical
target considered in Sec. III.

In order to improve the intuitive comprehension of the gen-
eral binding mechanism, let us further highlight its similarity with
the description of unbinding events. In fact, the long history of
continuous-time random walks gets us used to the concept of

waiting times with heavy-tailed distributions and the consequent
anomalous features.148–150 One can formally say that an unbinding
event occurs at the first instance τ when the time spent by the parti-
cle in the bound state exceeds a random threshold τ̂ obeying a given
probability density ϕ(t),

τ = inf{t > 0 : t > τ̂}. (111)

However, this is a tautology because τ = τ̂. At the same time, this for-
mal definition provides a direct analogy to the introduction of the
first instance of a binding event via Eq. (18). As the boundary local
time ℓt is the proxy of the number of encounters between the parti-
cle and the reactive region, the sequence of failed reaction attempts
is stopped when ℓt exceeds an appropriate random threshold ℓ̂ with
a given probability density ψ(ℓ). In this light, both binding and
unbinding events are implemented in the same way, with the only
difference that the “counter” of failed unbinding attempts is the
physical time t, whereas the “counter” of failed binding attempts is
the boundary local time ℓt . While the impact of the waiting time and
thus of a “threshold” τ̂ onto diffusive processes has been studied for
many decades, the very similar threshold ℓ̂ for binding events, which
was introduced in Refs. 61, 62, 106, and 139, has not yet got a proper
attention.

V. CONCLUSION
In this paper, we developed a general theory of reversible

diffusion-controlled reactions with general, non-Markovian bind-
ing and unbinding kinetics. In this theory, surface reactions are
described by two functions: the probability density ϕ(t) that char-
acterizes the random waiting time of a particle in the bound state
and the probability density ψ(ℓ) of the random number of failed
reaction attempts prior to the successful binding. While an exten-
sion of the classical theory of reversible reactions to unbinding
events with a general waiting time distribution was proposed by
Agmon and Weiss more than thirty years ago,86 an implementa-
tion of non-Markovian binding events required recent advances on
the encounter-based approach.106 Combining this approach with the
renewal technique, we managed to derive the spectral expansion (40)
for the Laplace-transformed propagator Q̃(x, p∣x0). When both ϕ(t)
and ψ(ℓ) are exponential, one retrieves the Markovian setting with
conventional forward rate constant kon (or κ0) and backward rate
koff. From the propagator, we deduced other quantities such as the
concentration of particles and the diffusive flux onto the reactive
region. While spectral expansions are very common for describing
diffusion-controlled reactions in bounded domains, they are usually
based on the eigenmodes of the Laplace operator (or the Fokker-
Planck operator).9,116,117 In turn, Eq. (40) employs the eigenmodes
of the Dirichlet-to-Neumann operator Mp, which is most suitable
for describing diffusive exploration of the bulk between consecu-
tive binding events. Being less known than the Laplace operator,
the operator Mp offers flexible complementary tools for studying
diffusion-controlled reactions.

As most formulas were derived in the Laplace domain, a
numerical inversion of the Laplace transform was needed to present
the results in time domain. Even without this inversion, the Laplace-
transformed quantities allow one to determine the asymptotic
behavior at short and long times. Moreover, if the diffusing particle
has a random lifetime δ (so-called “mortal” random walker151–154),
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the Laplace-transformed quantities admit additional probabilistic
interpretations. For instance,

pQ̃(x, p∣x0) =
∞

∫
0

dt pe−pt Q(x, t∣x0) = E{Q(x, δ∣x0)} (112)

is the probability density of finding the particle in a vicinity of a bulk
point x at the death time δ, where pe−pt is the probability density
of δ with the rate p. In other words, one does not need to perform
the inverse Laplace transform in the framework of mortal random
walkers.

When the binding kinetics is Markovian, the effect of non-
Markovian unbinding events is captured in the Laplace domain
via a p-dependent reactivity κ̃(p), which is related by Eq. (50) to
the probability density ϕ(t). In time domain, one retrieves thus a
convolution-type boundary condition (10) with a memory kernel
K(t) = κ0(δ(t) − ϕ(t)). This result was already reported by Agmon
and Weiss for the specific case of a spherical target.86 Our approach
permitted to generalize it to arbitrary bounded domains. In turn,
when the binding kinetics is non-Markovian, the natural description
of binding events involves the encounter-dependent reactivity κ(ℓ).
In general, its effects are not reducible to an effective κ̃(p) or to a
memory kernel K(t). Further exploration of its effects and poten-
tials for describing realistic surface reactions presents an important
perspective for the future.

We also investigated the long-time behavior of the propagator
Q(x, t∣x0) and related quantities. Depending on the exponents α and
β that characterize the asymptotic behavior of the densities ψ(ℓ) and
ϕ(t), four regimes were distinguished. When α = β = 1, one retrieves
the classical exponential relaxation toward the uniform equilibrium
state. If α < β, binding events occur more rarely than unbinding
ones at long times so that the particle will be asymptotically in the
unbound state; in turn, the opposite inequality α > β makes binding
events more frequent so that the particle will be mostly in the bound
state. Finally, if α = β < 1, a subtle balance between anomalously
rare binding and unbinding events is settled, and a new uniform
equilibrium state is approached anomalously slowly.

In order to highlight the effects of non-Markovian bind-
ing/unbinding kinetics, we considered the most basic setting of a
single particle undergoing ordinary diffusion in the bulk. This study
can be extended in several directions. (i) The ordinary bulk dif-
fusion can be replaced by more general stochastic processes such
as continuous-time random walks,148–150 processes with diffusing
diffusivity,34,155,156 diffusion with a drift or in an external poten-
tial,157 diffusion with stochastic resetting,158–160 or in the presence of
escape regions.161 (ii) The collective effect of multiple independently
diffusing particles can be implemented by defining binding events
through the total boundary local time that these particles spent on
the reactive region.162 (iii) When the reactive region is bounded,
the encounter-based approach can be used even for unbounded
domains (see Ref. 143); however, as briefly discussed in Sec. III B,
the long-time behavior can be considerably altered. (iv) In the case
of a small reactive region, one can employ matched asymptotic tech-
niques and other approximations163,164 to capture more explicitly
the effects of non-Markovian binding/unbinding kinetics. (v) The
majority of former contributions to reversible diffusion-controlled
reactions dealt either with one-dimensional setting (diffusion on a

half-line or, equivalently, diffusion in the half-space) or with dif-
fusion outside a reactive sphere. The symmetry of these domains
helped to implement adsorption/desorption kinetics rather explic-
itly (e.g., see Sec. III) but did not allow one to fully explore new
features related to the encounter-dependent reactivity. In the future,
it would be interesting to investigate how non-Markovian binding
kinetics may affect diffusion-controlled reactions in more general
confining domains.
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APPENDIX A: A MICROSCOPIC DERIVATION
OF ROBIN BOUNDARY CONDITIONS

In this appendix, we provide a simple derivation of Robin-type
boundary conditions for reversible binding in the conventional case
of Markovian binding and unbinding kinetics. While the origins of
Robin boundary condition and its microscopic interpretations for
irreversible reactions have been thoroughly discussed,50,52,62,63,165–169

we propose here a simple derivation that may be instructive for
nonexpert readers.

To get an intuitive picture of Robin boundary conditions, let
us approximate Brownian motion by a symmetric random walk on

FIG. 7. (a) A confining domain Ω ⊂ Rd in two dimensions (d = 2) is discretized
by a square lattice. (b) A zoom of the vicinity of a boundary point xb, which is
connected to a single bulk point x i in the interior and to a storage site xs. Some
transition rates W between connected sites are shown.
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a d-dimensional (hyper)cubic lattice with a step a that discretizes
the confining domain Ω [Fig. 7(a)]. As surface reactions are local in
space, it is sufficient to consider a vicinity of a boundary point xb on
∂ΩR [Fig. 7(b)]. For the sake of simplicity, we assume that this point
is connected to a single bulk point xi in the interior of the domain
(at distance a from xb). As the binding event consists in a temporal
“storage” of the particle on the boundary, the surface point xb is also
connected to a storage site xs behind it. The diffusive dynamics of
this random walk can be described by the master equation for the
probability q(xk, t) of finding the particle in a state xk at time t. For
three aforementioned sites, the master equation reads

dq(xs, t)
dt

= −q(xs, t)Ws,b + q(xb, t)Wb,s, (A1a)

dq(xb, t)
dt

= −q(xb, t)[Wb,s +Wb,i]

+ q(xi, t)Wi,b + q(xs, t)Ws,b, (A1b)
dq(xi, t)

dt
= −q(xi, t)∑

j
Wi, j +∑

j
q(x j , t)W j,i, (A1c)

where the sums in the last relation are taken over all 2d neighbors xj
of the bulk site xi, and W i,j denotes the transition rate from site i to
site j. For bulk diffusion, one has

W j,i =Wi, j =
1

2dδ
, (A2)

where δ is a time step of one jump. The last master Eq. (A1c) is the
discrete version of the diffusion equation with

D = a2

2dδ
. (A3)

Using this relation, the second master Eq. (A1b) can be written as

dq(xb, t)
dt

= −D
a
(∂nq(x, t))x=xb

− q(xb, t)Wb,s + q(xs, t)Ws,b,

where we replaced the discretized form of the normal derivative,
(q(xi, t) − q(xb, t))/a, by its continuous form. Substituting Ws,b =
koff and dividing by ad−1, we get

a
dc(xb, t)

dt
= −D(∂nc(x, t))x=xb

− κ0c(xb, t) + koffcb(xb, t), (A4)

where we set

κ0 = aWb,s (A5)

and introduced the bulk and surface concentrations as

c(x, t) = N0
q(x, t)

ad , cb(xb, t) = N0
q(xs, t)

ad−1 . (A6)

Here, we included the number N0 of independent diffusing parti-
cles to pass from a single-molecule description to the macroscopic
one (expectedly, the surface concentration has the units 1/md−1 or
mol/md−1). Note also that the storage site xs was identified with the

associated boundary site xb. In the limit a→ 0, the left-hand side of
Eq. (A4) vanishes, and one gets the boundary condition

−D∂nc(x, t) = κ0 c(x, t) − koff cb(x, t) (x ∈ ∂ΩR). (A7)

Finally, the division of the first master Eq. (A1a) by ad−1 yields

dcb(xb, t)
dt

= −koff cb(xb, t) + κ0 c(xb, t), (A8)

which is identical to Eq. (5). In turn, the combination of Eqs. (A7)
and (A8) yields Eq. (6).

When there is no unbinding event (i.e., koff = 0), the particle
stays in the bound state forever, and Eq. (A7) is reduced to the con-
ventional Robin boundary condition. Here, the left-hand side is the
diffusive flux from the bulk to the boundary (i.e., from xi to xb in the
discrete picture), whereas the right-hand side is the “reactive flux”
into the bound state (i.e., from xb to xs in the discrete picture).

The implicit assumption in the above derivation of the Robin-
type boundary condition is that the transition rate Wb,s to the bound
state scales as 1/a in the limit a→ 0, in order to get a finite reactivity
κ0 in Eq. (A5). A more general scaling given by

Wb,s ∼ a−γ (a→ 0) (A9)

with γ > 1 would yield an infinite reactivity and thus the Dirichlet
boundary condition c(x, t) = 0 at x ∈ ∂ΩR. Once the particle hits
such a point, it is immediately adsorbed. Moreover, as the des-
orption occurs at the same boundary point, the unbound particle
rebinds immediately. In other words, this scaling leads to a per-
fect irreversible binding, regardless of the unbinding kinetics. In
turn, scaling (A9) with γ < 1 yields κ0 = 0, i.e., an inert reflecting
boundary. As the particle started from the unbound state, one has
cb(x, 0) = 0 and, thus, the diffusive flux remains zero at all times. We
stress that the scaling relation (A5) is indeed an assumption, in the
same way as the scaling relation (A3) for the diffusion coefficient:
If Eq. (A3) does not hold, the master equation does not converge
to the macroscopic diffusion equation; similarly, if Eq. (A5) is not
valid, the macroscopic limit does not represent a partially reactive
boundary.

APPENDIX B: DISTRIBUTION OF BINDING TIMES

The probability flux density jψ(x, t∣x0) can be interpreted as the
joint probability density of the binding position X T and the binding
time T defined by Eq. (18). In particular, the integral of this quantity
over x ∈ ∂ΩR determines the (marginal) probability density of the
binding time

Jψ(t∣x0) = ∫
∂ΩR

dx jψ(x, t∣x0). (B1)

As a consequence, the spectral expansion (36) implies

J̃ψ(p∣x0) = Ex0{e−p T }

=
∞

∑
k=0
[V(p)k (x0)]∗ψ̄(μ(p)k )∫

∂ΩR

dx v(p)k (x). (B2)
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This quantity determines all positive integer-order moments of the
binding time T (if they exist),

Ex0{T n} = (−1)n lim
p→0

∂n

∂pn J̃ψ(p∣x0), (B3)

while its inverse Laplace transform yields the probability density
J(t∣x0).

Let us examine the small-p asymptotic behavior of Eq. (B2) by
treating separately the contributions from the ground eigenmode
k = 0 and other eigenmodes with k > 0. In fact, as v(p)0 approaches
a constant in the limit p→ 0, the integral in Eq. (B2) vanishes for
any k > 0. Substituting the small-p expansion (64) for k = 0, we get

J̃ψ(p∣x0) ≈ 1 − pαtαa +O(p) (p→ 0). (B4)

If 0 < α < 1, the correction O(p) from all other terms is subleading,
and the mean binding time is infinite. In this case, binding events
are characterized by the time scale ta from Eq. (65). In contrast, if
α = 1, both contributions in Eq. (B4) are comparable and sum up to
determine the mean binding time.

APPENDIX C: DIFFUSION ON AN INTERVAL

In this appendix, we summarize the formulas in the case of dif-
fusion on an interval (0, L), with the reactive endpoint x = 0 and
the reflecting endpoint x = L.107 In this case, Eqs. (80a) and (81) are
replaced by

g(p)0 (x) =
cosh ((L − x)

√
p/D)

cosh (L
√

p/D)
, (C1)

μ(p)0 =
√

p/D tanh (L
√

p/D), (C2)

while other relations in the beginning of Sec. III remain unchanged,
except for the diffusive flux, which reads

J̃(p) = (−D∂nc̃(x, p))x=0 = c0D
μ(p)0 (1 − ϕ̃(p))ψ̄(μ

(p)
0 )

p[1 − ϕ̃(p)ψ̄(μ(p)0 )]
(C3)

and differs from Eq. (82) by the factor 4πR2 (the surface area of
the reactive region). The major difference between these two set-
tings arises in the limit L→∞ when the outer reflecting boundary
is moved to infinity so that μ(p)0 =

√
p/D on the half-line. As p→ 0,

this eigenvalue vanishes, whereas the eigenvalue μ(p)0 from Eq. (81)
approached a strictly positive constant 1/R (see Sec. III). This dis-
tinction is related to the transient (resp. recurrent) character of
three-dimensional (resp. one-dimensional) Brownian motions, see
Ref. 143 for further discussions.

APPENDIX D: SHORT-TIME BEHAVIOR

We briefly discuss the short-time asymptotic behavior of
S(t∣x0) for the case of diffusion between concentric spheres. Accord-
ing to Eqs. (80a) and (81), one has g(p)0 (r0) ≈ e−(r0−R)

√

p/DR/r0 and
μ(p)0 ≈

√
p/D in the limit p→∞. For the Mittag-Leffler model, one

gets

ψ̄(μ) ≈ (ℓ0μ)−α (μ→∞), (D1)

and so Eq. (79) implies

S̃(p∣x0) ≈
1
p
− e−(r0−R)

√

p/D RDα/2

r0ℓ
α
0p1+α/2 (p→∞). (D2)

As expected, this behavior does not depend on the waiting time dis-
tribution. In fact, the particle does not have enough time to unbind
in this limit, and the probability S(t∣x0) at short times is mainly
affected by the first binding event.

The inverse Laplace transform yields

S(t∣x0) ≈ 1 − RDα/2

r0ℓ
α
0

t

∫
0

dt1
(r0 − R)e−(r0−R)2

/(4Dt1)

√
4πDt3

1

× (t − t1)α/2
Γ(α/2 + 1) (t → 0).

After simplifications, we get

S(t∣x0) ≈ 1 − 21+αR e−(r0−R)2
/(4Dt)

√
π r0 ℓ

α
0 (r0 − R)α+1 (Dt)α+1/2 (t → 0). (D3)

One sees that the short-time behavior is controlled by the first arrival
onto the reactive region [the typical exponential factor e−(r0−R)2

/(4Dt)

from the Lévy–Smirnov probability density of the first-passage time]
and by small random thresholds, i.e., by the behavior of ψ(ℓ) as
ℓ→ 0. The chosen Mittag-Leffler distribution is responsible for the
corrective power-law factor tα+1/2. We stress that if ψ̄(μ) does not
exhibit a power-law decay (D1), the result will be different.
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