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Escape of a sticky particle
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Adsorption to a surface, reversible binding, and trapping are all prevalent scenarios where particles exhibit
“stickiness.” Escape and first-passage times are known to be drastically affected, but a detailed understanding of
this phenomenon remains illusive. To tackle this problem, we develop an analytical approach to the escape of
a diffusing particle from a domain of arbitrary shape, size, and surface reactivity. This is used to elucidate the
effect of stickiness on the escape time from a slab domain, revealing how adsorption and desorption rates affect
the mean and variance and providing an approach to infer these rates from measurements. Moreover, as any
smooth boundary is locally flat, slab results are leveraged to devise a numerically efficient scheme for simulating
sticky boundaries in arbitrary domains. Generalizing our analysis to higher dimensions reveals that the mean
escape time abides a general structure that is independent of the dimensionality of the problem. This paper thus
offers a starting point for analytical and numerical studies of stickiness and its role in escape, first-passage, and
diffusion-controlled reactions.
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I. INTRODUCTION

Stickiness can drastically alter the completion time of
random processes. A prominent example is the escape prob-
lem, also known as the exit problem, where one considers a
particle searching for a hole or another way out of a com-
partment with otherwise impenetrable boundaries [1–13]. The
need to account for stickiness in such scenarios was already
recognized for receptors diffusing in and out of the postsy-
naptic density while reversibly binding to scaffold proteins
there [14–16]. Similar issues arise when considering trans-
port through the nuclear pore complex [17,18], the partially
reversible trapping of receptors trafficking in dendrites [19],
and the reversible binding of calcium ions to sensors and
buffer molecules within nerve terminals [20]. An explicit ac-
counting for stickiness was also required in order to explain
the extremely prolonged survival times of target proteins in
a nanostructured on-chip device that was recently fabricated
for selective protein separation using antibody-photoacid-
modified Si nanopillars [21,22]. As escape and first-passage
times are conceptually equivalent [23–25], stickiness is also
expected to affect diffusion-controlled reactions, e.g., the
time it takes a sticky ligand to find its receptor on the cell
membrane.
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Whether the origin of stickiness is physical, chemical, or
otherwise, it can be described by the adsorption-desorption ki-
netics framework, which was developed over an entire century
of intense research. However, the vast majority of theoreti-
cal works in this context were conducted on a macroscopic
one-dimensional (1D) model of a flat surface immersed in an
infinite bulk of adsorbates [26–44]. Recently, a single-particle
description of adsorption kinetics was introduced [45], and a
relation to reversible binding and association-recombination
reactions [20,46–55] was made. Some authors have also ven-
tured beyond the 1D semi-infinite case considering different
geometries and higher dimensions [20,45,53–58]. Yet, re-
search and results were always focused on scenarios where
all boundaries involved were assumed to be adsorbing, thus
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FIG. 1. A schematic illustration of a general domain � with an
adsorbing (sticky) surface ∂�ad (green), a reflecting surface ∂�ref

(black), and an absorbing surface ∂�ab (red), through which the
particle (blue) can escape the domain.
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completely ignoring the problem of escape via an absorb-
ing boundary. Moreover, in many real-life scenarios, domain
boundaries comprise a mixture of reflecting, absorbing, ad-
sorbing, partially reactive [59–66] and/or gated [67–72] parts,
which highlights the need for adequate methods of analysis.

In this paper, we develop a general formalism to treat the
escape problem of a sticky particle diffusing in a domain of
arbitrary dimension, geometry, and surface reactivity (Fig. 1).
We derive the partial differential equation that governs the es-
cape time distribution for this general problem and exemplify
its solution for a particle confined to a slab with one absorbing
wall and one adsorbing wall. In this prototypical example,
we show that the mean escape time is only sensitive to the
ratio of adsorption and desorption rates, while its variance
is sensitive to both rates, thus allowing their inference from
experimental data of escape time statistics. To gain physical
intuition into the sticky escape problem, we further present
a renewal approach in the slab case, which we then leverage
to construct an accurate simulation scheme for the diffusion
of a sticky particle in general domains. Finally, we solve the
problems of escape from a sticky annulus and spherical shell,
emphasizing the universal manner in which stickiness affects
the mean escape time.

II. THE GENERAL CASE

We consider normal diffusion with diffusion coefficient D
in a d-dimensional domain � ⊂ Rd (Fig. 1), whose bound-
ary ∂� = ∂�ab ∪ ∂�ad ∪ ∂�ref is composed of three disjoint
parts: an absorbing part ∂�ab through which the particle can
escape, a reflecting part ∂�ref , and an adsorbing part ∂�ad,
allowing for reversible trapping of the particle (see below).
The propagator p(r, t |r0), namely the probability density to
find a particle at point r ∈ � at time t given the initial position
r0, satisfies the diffusion equation

∂t p(r, t |r0) = D�r p(r, t |r0), (1)

subject to the initial condition p(r, 0|r0) = δ(r − r0), and
the Dirichlet boundary conditions p(r, t |r0) = 0 for every
r ∈ ∂�ab. Here, �r is the Laplace operator with respect to
r. The propagator determines the probability flux density
jab(r, t |r0) = −D∂n p(r, t |r0) through a point r ∈ ∂�ab at time
t , where ∂n is the outward-drawn normal derivative. This,
in turn, yields the probability density function (PDF) of the
escape time, Jab(t |r0) = ∫

∂�ab
jab(rs, t |r0)drs, which is also

equal to the probability flux out of the compartment.
The adsorption condition on ∂�ad can be formulated by

introducing an auxiliary probability density �(r, t |r0) of the
particle being adsorbed to point r ∈ ∂�ad at time t . We im-
pose the following two equations for every r ∈ ∂�ad on the
adsorbing surface [45,54]:

jad(r, t |r0) = ka(r)p(r, t |r0) − kd (r)�(r, t |r0), (2a)

∂t�(r, t |r0) = jad(r, t |r0), (2b)

where jad(r, t |r0) = −D∂n p(r, t |r0). Here, ka(r) is the reac-
tivity of the surface at point r (characterizing the rate of
adsorption from a thin reactive layer near the surface), and
kd (r) is the desorption rate at that point. Note that the re-
flecting part of the boundary can be viewed as part of the

adsorbing surface with zero reactivity, i.e., we can consistently
define ∂�ref ⊂ ∂�ad, such that ka(r) = 0 for every r ∈ ∂�ref .
Equation (2a) states that the diffusive flux of particles from the
bulk at each point r ∈ ∂�ad is equal to the reactive flux on the
surface, ka(r)p(r, t |r0), minus the flux of particles that desorb
from the surface. In turn, Eq. (2b) is a mass balance equation
that simply states that the uptake of adsorbed particles is
given by the diffusive flux. Note that �(r, 0|r0) = 0, since the
particle starts in the bulk.

The Laplace transform of these two equations allows one
to eliminate �(r, t |r0) and to reduce these equations to a sin-
gle Robin-like boundary condition. Summarizing, the original
problem reads in the Laplace domain as

(s − D�r) p̃(r, s|r0) = δ(r − r0), r ∈ �, (3a)

p̃(r, s|r0) = 0, r ∈ ∂�ab, (3b)

∂n p̃(r, s|r0) + qs(r) p̃(r, s|r0) = 0, r ∈ ∂�ad, (3c)

where the tilde denotes the Laplace transform, p̃(r, s|r0) =∫ ∞
0 dt e−ts p(r, t |r0), and

qs(r) = ka(r)

D(1 + kd (r)/s)
(4)

is an s-dependent reactivity parameter.
Conventionally, the survival probability for the escape of a

particle from a compartment is defined to be the spatial inte-
gral of the propagator over the entire compartment, Sb(t |r0) =∫
�

p(r, t |r0)dr. Here we added the subscript “b,” standing for
bulk, since survival must also include the probability of being
adsorbed (hence being neither in the bulk nor escaped). The
survival probability is thus given by

Sab(t |r0) := Sb(t |r0) + �(t |r0), (5)

where the subscript “ab” stands for the escape through ∂�ab

and �(t |r0) = ∫
∂�ad

�(r, t |r0)dr is the overall probability to
be adsorbed at time t . Taking the time derivative of Eq. (5),
one can rewrite it in terms of conservation of the probability
fluxes: Jb := −∂t Sb = Jab + Jad, where we used Eq. (2b). Note
that this relation could also be obtained by integrating the
diffusion equation (1). In Appendix A we derive the par-
tial differential equations governing the Laplace-transformed
probability fluxes J̃ad(s|r0) and J̃ab(s|r0). The latter is given by

(s − D�r0 )J̃ab(s|r0) = 0, r0 ∈ �, (6a)

J̃ab(s|r0) = 1, r0 ∈ ∂�ab, (6b)

∂n0 J̃ab(s|r0) + qs(r0)J̃ab(s|r0) = 0, r0 ∈ ∂�ad, (6c)

where ∂n0 is the outward-drawn normal derivative with respect
to the starting point r0.

Solving this boundary value problem for a given compart-
ment � and reactivity parameter qs(r) yields the moment-
generating function of the escape time T :

J̃ab(s|r0) = 〈e−sT 〉 =
∫ ∞

0
dte−tsJab(t |r0). (7)

Its derivatives give the positive integer order moments,
〈T n〉 = (−1)n(∂n

s J̃ab(s|r0))s=0, while an inverse Laplace trans-
form yields the PDF of the escape time, Jab(t |r0). Hence we
have provided a general framework for studying the statistics
of the escape time.
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FIG. 2. A schematic illustration of a slab domain � = R2 ×
(0, H ) ⊂ R3 with absorbing wall at z = H and adsorbing wall at
z = 0. The particle starts its motion at z = z0.

III. ESCAPE FROM A SLAB

We now exemplify the application of the general formalism
to the case of a particle diffusing in a slab domain between two
parallel planes separated by distance H (Fig. 2). The boundary
at z = H is absorbing, while the boundary at z = 0 is adsorb-
ing with ka and kd . For the slab domain, Eq. (4) simplifies to

qs = ka/[D(1 + kd/s)]. This setting is equivalent to diffusion
on the interval (0, H ) with adsorbing and absorbing endpoints
at 0 and H , and we are interested in getting the PDF Jab(t |z0)
of the escape time from the slab, i.e., the first-passage time to
H .

In this case, Eqs. (3a)–(3c) for the propagator simplify as
r = z, qs(r) = qs, and ∂n = −∂z at z = 0. One separates the
solution into two restrictions z > z0 and z < z0 and further
imposes continuity of the densities and the fluxes at z = z0.
This yields

p̃(z, s|z0) =
{ g(z0,s)

g(H,s)
sinh (α(H−z))

Dα
, z > z0

sinh (α(H−z0 ))
Dα

g(z,s)
g(H,s) , z < z0,

(8)

where g(x, s) := α cosh(αx) + qs sinh(αx) and α =√
s/D. Since in the one-dimensional case J̃ab(s|z0) =

−D∂z p̃(z, s|z0)z=H , we have

J̃ab(s|z0) = g(z0, s)

g(H, s)
(9)

for the escape time probability density in the Laplace domain.
Note that J̃ab(s|z0) is a solution of Eq. (6a) under the boundary
conditions in Eqs. (6b) and (6c) and we could have bypassed
the calculation of the propagator and obtained it directly.

The escape time PDF is obtained by inverse-Laplace-
transforming Eq. (9) (see details in Appendix B):

Jab(t |z0) =
∞∑

n=0

e−β2
n Dt/H2 2Dβn

H2

[
βn cos(βnz0/H ) + κaβ

2
n

β2
n − κd

sin(βnz0/H )

]

×
[(

1 + 2κaκd

(β2
n − κd )2

)
βn sin βn −

(
1 + κaβ

2
n

β2
n − κd

)
cos βn

]−1

, (10)

where βn are the positive solutions of the transcendental equa-
tion β tan(β ) = (κd − β2)/κa, with κa = kaH/D and κd =
kd H2/D standing for the dimensionless adsorption and des-
orption rate constants.

Figure 3 shows the behavior of Jab(t |z0) for different val-
ues of ka, kd , and z0. Markedly, the rates change the shape
of the PDF at intermediate timescales. The short-time be-
havior is determined by “direct trajectories” going to the
absorbing wall (the escape region). As a result, in this limit
one gets the typical Lévy-Smirnov short-time asymptotics
Jab(t |z0) 	 (H − z0)e−(H−z0 )2/(4Dt )/

√
4πDt3, which does not

depend on the adsorption or desorption rates. Conversely, the
long-time decay is exponential and controlled by the small-
est eigenvalue Dβ2

0/H2. To see that this strongly depends
on adsorption kinetics, consider the asymptotic behavior of
the transcendental equation as β → 0, from which one gets
β2

0 ≈ κd/(1 + κa). This approximation is valid whenever β0
is small, i.e., when κd is small or/and κa is large. Indeed,
the adsorbing wall plays the role of a temporal trap for the
particle: When the particle reaches this wall, it can be easily
trapped but requires a long time for release. As a consequence,
the survival probability decays exponentially, with the decay
time T = H2/(Dβ2

0 ), which can be very large. In Appendix B,
the dependence of β0 on the adsorption-desorption rates is
further discussed.

As the Laplace transform J̃ab(s|z0) is the moment-
generating function of the escape time, we deduce its mean

〈T 〉 = H2 − z2
0

2D
+ K (H − z0)

D
, (11)

where K := ka/kd is the equilibrium constant. The first term in
Eq. (11) corresponds to the mean escape time from an interval
(0, H ) with reflecting endpoint 0 and absorbing endpoint H .
In turn, the second term accounts for adsorption-desorption
kinetics.

A common experimental initial condition is that of uniform
distribution. Averaging over the initial position in Eq. (9) and
calculating the first moment yields

〈Tu〉 = H2

3D
+ KH

2D
, (12)

where the subscript “u” denotes the uniform distribution of
the initial position.

IV. RENEWAL APPROACH

To gain a deeper understanding of the relation in Eq. (11),
we stress that the escape time T is the sum of the (ran-
dom) diffusion time Td on the interval (0, H ) with reflecting

043196-3



SCHER, REUVENI, AND GREBENKOV PHYSICAL REVIEW RESEARCH 5, 043196 (2023)

10-4 10-3 10-2 10-1 100 101 102
10-6

10-4

10-2

100

102

FIG. 3. PDF Jab(t |z0) of the escape time from the slab domain
illustrated in Fig. 2. Here, we fix the units of length and time by
setting H = 1 and D = 1, and the values for ka and kd are given in
the legend. Solid curves (dashed curves) are the PDFs for z0 = 0.1
(z0 = 0.9). Symbols come from Monte Carlo simulations with 106

particles and a simulation time step �t = 10−6 (see Appendix D for
details).

endpoint 0, and the total waiting time in the adsorbed state.
Denoting the random number of adsorption events N and
their independent, identically distributed random durations as
T 1

w , . . . , T N
w , we write

T = Td +
N∑
i=1

T i
w. (13)

Taking the mean of both sides, we have 〈T 〉 = 〈Td〉 +
〈N 〉〈Tw〉, where 〈Tw〉 denotes the mean of T i

w. Comparing this
result with Eq. (11), we can identify 〈Td〉 = (H2 − z2

0 )/2D
and 〈Tw〉 = k−1

d , which gives 〈N 〉 = ka(H − z0)/D.
In fact, Eq. (13) suggests that the slab case can be readily

analyzed using a renewal approach, where the distribution
of N is given in terms of the splitting probability EH (z0),
namely the probability of escaping the compartment with-
out any adsorption event, given the starting position z0. It
is thus enough to solve the corresponding problem of dif-
fusion in the slab, but without desorption. For example, we
can generally write 〈N 〉 = (1 − EH (z0))/EH (0), which ad-
mits the following interpretation: Starting from z0, there is a
probability 1 − EH (z0) that the particle was adsorbed before
escaping such that N > 0. If so, the particle will desorb to
position z = 0, from which the probability of escaping be-
fore readsorbing is given by EH (0). Essentially, adsorption
at the lower boundary is a renewal moment that will repeat
again and again until the particle finally escapes. We have
a sequence of trails geometrically distributed with success
probability EH (0), and so the mean number of trials, each
corresponding to a readsorption event, is simply 1/EH (0). In-
deed, by plugging in EH (z0) = (D + kaz0)/(D + kaH ), which
is the splitting probability of the problem considered above,
we retrieve 〈N 〉 = ka(H − z0)/D.

For a more detailed discussion of the renewal approach,
see Appendix C; therein, we generalize the model by al-
lowing for an arbitrary waiting time distribution ψ (t ) in the
adsorbed state, and different spatial dynamics with general Td

and EH (z0). We derive generalized formulas for the PDF, the
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FIG. 4. Variance of the escape time vs the equilibrium constant
K = ka/kd for different values of kd , with H and D set to 1. Here,
we mimic common experimental conditions by taking the initial
position distribution to be uniform. The solid curves are plotted
using Eq. (15). Symbols come from Monte Carlo simulations with
107 particles. The black curve represents the fast-desorption limit
(kd → ∞), for which the fourth term in Var{Tu} vanishes. The
inset shows a successful implementation of the suggested infer-
ence scheme. To come closer to experimental conditions, we only
simulated 104 particles (here again �t = 10−6). The relative error
of the inferred kd values is plotted vs the true kd ’s that were fed into
the simulations. All kd values share the same K = 0.43, marked by
the red strip. Error bars were calculated by repeating this procedure
102 times. A detailed analysis of the statistical error can be found in
Appendix E.

mean, and the variance of the escape time, and the correlation
between the diffusion time and the total waiting time.

V. INFERENCE OF THE ADSORPTION-DESORPTION
RATES

While the mean escape time in Eq. (11) is only sensitive to
the equilibrium constant K , we find that the variance carries
information on the adsorption-desorption rates themselves:

Var{T } = H4 − z4
0

6D2
+ 2

3

K
(
H3 − z3

0

)
D2

+ K2
(
H2 − z2

0

)
D2

+ 2K (H − z0)

kd D︸ ︷︷ ︸
kd sensitive

. (14)

Similarly,

Var{Tu} = 7H4

45D2
+ 7KH3

12D2
+ 3H2K2

4D2
+ HK

kd D
, (15)

where the subscript “u” denotes rederivation of Eq. (14) ac-
cording to a uniform distribution of the initial position. As a
consequence, one can infer K = ka/kd by measuring the mean
in Eq. (11) and then extract ka and kd from the measured
variance. In Fig. 4, we plot Var{Tu} vs K for three different
values of kd . It can be appreciated that, for a wide range of K
values, the variance changes considerably with different val-
ues of kd , thus allowing its inference. The inset demonstrates
an application of this inference scheme on simulated data.
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VI. SIMULATING AN ADSORBING BOUNDARY

When thinking of an adsorbing boundary, one usually
imagines a surface layer of width ε � 1, from which the
particle is adsorbed with rate ka/ε. A standard Monte Carlo
simulation would thus implement such an adsorption event,
wait for a random time, and then reinject the particle into
a distanced point in the bulk to resume diffusion. However,
this basic scheme misses multiple adsorption events that may
occur between the first desorption moment and the escape
from the layer of width ε. Indeed, the fractal self-similar
character of Brownian motion implies that a Brownian path
released on a smooth boundary bounces on this boundary
infinitely many times before escaping, and accurate modeling
of this dynamics would require extremely small simulation
time steps. If the waiting time in the adsorbed state was
comparable to the simulation time step, such missed multiple
adsorptions would not matter. However, in many applications,
these waiting times are macroscopically large, and omission
of even a single adsorption event can result in considerable
errors.

For this reason, an accurate modeling of the diffusive
dynamics in the presence of an adsorbing boundary is a chal-
lenging problem. We solve it by applying our result for the
escape time from an adsorbing slab where we set H = ε. In
other words, as any smooth boundary is locally flat, the escape
time from a thin layer of width ε can be accurately approxi-
mated by the escape time from a slab of the same width. We
can thus account for multiple adsorption events by drawing
random times according to the distribution in Eq. (10), with
H = ε. In Appendix D we exploit insight from the renewal ap-
proach to show how this can be done efficiently via a simpler
algorithm that is approximate yet highly accurate. This opens
the door for accurate simulations of diffusion with adsorbing
boundaries in general domains and arbitrary smoothly varying
adsorption-desorption rates.

VII. OUTLOOK

When coming to solve the escape problem for a sticky
particle, researchers have so far resorted to simplifying
assumptions [15–17,21]. Here, we tackled this problem rig-
orously, providing a general framework and demonstrating its
applicability using the paradigmatic problem of escape from
a sticky slab domain.

The importance of studying this fundamental example re-
veals itself in the ease with which we can translate its solution
into general insights on the effect of stickiness. For example,
dividing the mean escape time in Eq. (11) by the mean diffu-
sion time 〈Td〉, we observe that

〈T 〉
〈Td〉 = 1 + K

ξ
, (16)

where ξ = (H + z0)/2 is an effective length scale and K is the
adsorption-desorption equilibrium constant. Equation (16),
which describes the ratio between the mean escape times with
and without stickiness, generalizes to higher dimensions and
other geometries.

In Appendix F, we solve the two-dimensional (escape from
a sticky annulus) and three-dimensional (escape from a sticky

spherical shell) versions of the problem illustrated in Fig. 2. In
both cases we find that the mean escape time follows the form
in Eq. (16), with an effective length scale ξ determined by the
geometry. From an analytical perspective, this is clearly just
the tip of the iceberg: Detailed analysis of other cases of inter-
est is provided elsewhere [73], and we show that the second
term in Eq. (16) generalizes to

∑
n Kn/ξn, which accounts for

the presence of multiple sticky surfaces. We conclude that this
relation for the mean escape time of a sticky particle is rather
general.

Our analysis reveals that adsorption and desorption rates,
which may be very hard to measure directly, can instead be
inferred from the mean and variance of the escape time. This
opens the door for the design of experimental setups for this
purpose. For example, in a spin-off on fluorescence recovery
after photobleaching, one can imagine fluorescent particles in
a virtual slab, where a strong laser photobleaches fluorescence
above height H . The normalized signal from the remaining
particles amounts to the survival probability and can thus be
used to extract the mean and variance of the escape time.
Similarly, one can think of nuclear magnetic resonance exper-
iments in which a surface at height H causes strong relaxation
that kills the transverse magnetization of the nuclei. These
and other methods, e.g., single-particle tracking, can now be
coupled with the results reported herein to offer promising
ways for probing molecular interactions.
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APPENDIX A: DERIVATION OF THE PARTIAL
DIFFERENTIAL EQUATION AND BOUNDARY

CONDITIONS GOVERNING J̃ab(s|r0)

We can write the backward diffusion equation correspond-
ing to Eq. (3a) and further note that it implies a time-reversal
symmetry that allows us to rewrite the boundary conditions
accordingly:

(s − D�r0 ) p̃(r, s|r0) = δ(r− r0), r0 ∈ �, (A1a)

p̃(r, s|r0) = 0, r0 ∈ �ab, (A1b)

∂n0 p̃(r, s|r0) + qs(r0) p̃(r, s|r0) = 0, r0 ∈ �ad, (A1c)

where ∂n0 is the normal derivative with respect to the starting
point r0. Integrating over r ∈ �, we obtain

(s − D�r0 )S̃b(s|r0) = 1, r0 ∈ �, (A2a)

S̃b(s|r0) = 0, r0 ∈ �ab, (A2b)

∂n0 S̃b(s|r0) + qs(r0)S̃b(s|r0) = 0, r0 ∈ �ad. (A2c)

043196-5



SCHER, REUVENI, AND GREBENKOV PHYSICAL REVIEW RESEARCH 5, 043196 (2023)

It is convenient to search the solution in the form J̃b(s|r0) =
1 − sS̃b(s|r0), where the new function satisfies the homoge-
neous modified Helmholtz equation:

(s − D�r0 )J̃b(s|r0) = 0, r0 ∈ �, (A3a)

J̃b(s|r0) = 1, r0 ∈ �ab, (A3b)

∂n0 J̃b(s|r0) + qs(r0)J̃b(s|r0) = qs(r0), r0 ∈ �ad. (A3c)

Note that by defining J̃ab(s|r0) = 1 − sS̃ab(s|r0) and using
the definition in Eq. (5) we obtain J̃b = J̃ab + s�̃ = J̃ab + J̃ad.
This relation simply asserts that the overall probability flux in
the compartment is the sum of the probability flux to the ad-
sorbing boundary �ad and the probability flux to the absorbing
boundary �ab. From the linearity of Eq. (A3a) it is clear that
Jb can be written as a sum of two functions, each obeying
the same system of equations, but with one of the boundary
conditions replaced with a homogeneous boundary condition.
It turns out that these functions are exactly J̃ad and J̃ab:

(s − D�r0 )J̃ad(s|r0) = 0, r0 ∈ �, (A4a)

J̃ad(s|r0) = 0, r0 ∈ �ab, (A4b)

∂n0 J̃ad(s|r0) + qs(r0)J̃ad(s|r0) = qs(r0), r0 ∈ �ad, (A4c)

and

(s − D�r0 )J̃ab(s|r0) = 0, r0 ∈ �, (A5a)

J̃ab(s|r0) = 1, r0 ∈ �ab, (A5b)

∂n0 J̃ab(s|r0) + qs(r0)J̃ab(s|r0) = 0, r0 ∈ �ad. (A5c)

Let us now supply a more rigorous proof that J̃ab(s|r0) is
governed by Eqs. (A5a)–(A5c). From the definition of the
probability density function of the escape time as the integral
of the probability flux density over the absorbing part, one gets
in the Laplace domain

J̃ab(s|r0) =
∫

�ab

dr (−D∂n p̃)︸ ︷︷ ︸
= j̃ab(r,s|r0 )

. (A6)

The backward equation (A1a) implies that

(s − D�r0 )J̃ab(s|r0) = 0, r0 ∈ �, (A7)

because the arrival point r belongs to the absorbing boundary,
and thus δ(r − r0) = 0. In addition, Eq. (A1c) immediately
implies Eq. (A5c). Finally, Eq. (A5b) simply states that any
particle that starts from the escape region immediately es-
capes the domain so that the escape time T is zero, and thus
J̃ab(s|r0) = 〈e−sT 〉 = 1.

One can also give a formal but rather technical proof. For
this purpose, one can multiply Eq. (A7) by p̃(r, s|r0), multi-
ply Eq. (A1a) by J̃ab(s|r0), subtract them, and integrate over
r0 ∈ �:

J̃ab(s|r) =
∫

�

dr0 δ(r − r0)J̃ab(s|r0) =
∫

�

dr0[J̃ab(s|r0)(s − D�r0 ) p̃(r, s|r0) − p̃(r, s|r0)(s − D�r0 )J̃ab(s|r0)]

=
∫

∂�

dr0[ p̃(r, s|r0)D∂n0 J̃ab(s|r0) − J̃ab(s|r0)D∂n0 p̃(r, s|r0)]

=
∫

�ab

dr0[ p̃(r, s|r0)︸ ︷︷ ︸
=0

D∂n0 J̃ab(s|r0) − J̃ab(s|r0)D∂n0 p̃(r, s|r0)], (A8)

where we used the Green’s second identity and boundary
conditions. As a consequence, we get

J̃ab(s|r) =
∫

�ab

dr0 J̃ab(s|r0) ( − D∂n0 p̃(r, s|r0))︸ ︷︷ ︸
= j̃ab(r0,s|r)

. (A9)

The time-reversal symmetry of ordinary diffusion implies that
the expression in parentheses is the probability flux density
j̃ab(r0, s|r). Exchanging notations r ↔ r0, one gets

J̃ab(s|r0) =
∫

�ab

dr J̃ab(s|r) j̃ab(r, s|r0). (A10)

Comparing this expression with Eq. (A6), one sees that
J̃ab(s|r) must be 1 for all r ∈ �ab (more rigorously, it follows
from the uniqueness of the solution of the modified Helmholtz
equation).

APPENDIX B: DERIVATION OF EQUATION (10)
IN THE MAIN TEXT

We now proceed to invert the Laplace transform of the
escape time PDF in Eq. (9). The poles of this function are
determined by zeros of the denominator. Setting β = iαH ,
such that s = −β2D/H2, we get the following equation for
β (and thus for the poles):

β tan(β ) = κd − β2

κa
, (B1)

where we introduced dimensionless adsorption and desorption
constants κa = kaH/D and κd = kd H2/D.

The left-hand side is a piecewise monotonously increasing
function on the intervals (0, π/2), (π/2, 3π/2), etc., whereas
the right-hand side is monotonously decreasing. There is thus
an infinite set of solutions of this equation that we denote as
βn. The first solution β0 lies on the interval (0, π/2), while
each of the other βn’s lies on (π/2 + π (n − 1), π/2 + πn). In
the limit ka = 0 (no adsorption), the first solution is β0 = π/2,
while the other solutions are βn = π/2 + πn; they correspond
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to an interval (0, H ) with reflecting endpoint 0 and absorb-
ing endpoint H . Clearly, the adsorption mechanism yields β0

lying between 0 and π/2. One sees that both the adsorption
and desorption rates affect β0 and thus the decay rate in a
nontrivial way. In turn, in the limit kd = 0 (no desorption)
and ka → ∞, the first solution β0 = 0 should be excluded,
while the others have a simple form βn = πn; they correspond
to an interval (0, H ) with two absorbing endpoints. If we
keep kd = 0 but now set a finite 0 < ka < ∞, the solution
corresponds to the case of one partially absorbing endpoint
(Robin boundary condition) and one absorbing endpoint.

Figure 5 illustrates the behavior of β2
0 as a function of

the rescaled adsorption and desorption rates κa and κd . When
κa → 0 and/or κd → ∞, the left endpoint becomes reflecting,
such that β2

0 ≈ π2/4, as discussed earlier. In the limit κd → 0,
the left endpoint becomes partially reactive, with the reactivity
given by ka. In this case, β2

0 → 0, but 0 is not the pole of
J̃ab(s|z0), so that the limiting value should be excluded, and
the smallest eigenvalue is actually given by β2

1 , which is equal
to π2 in the limit κa → ∞, as expected.

To get the inverse Laplace transform of J̃ab(s|z0), we pro-
ceed to compute its residues at the poles. For this purpose, we
first evaluate

g′(H, s) = ∂g(H, s)

∂s
= ∂g

∂α

dα

ds

= H

2iDβ

[
cos β

(
1 + κaβ

2

β2 − κd

)

− β sin β

(
1 + 2κaκd

(β2 − κd )2

)]
. (B2)

Then, the residues are given by g(z0, sn)/g′(H, sn), where
sn = −β2

n D/H2. Hence, applying the residue theorem to the
Bromwich integral representation of the inverse Laplace trans-
form, we get

Jab(t |z0) = 1

2π i

∫
γ

est J̃ab(s|z0)ds =
∑

n

esnt Ressn{J̃ab(s|z0)}

=
∞∑

n=0

e−β2
n Dt/H2 i

Hg′(H, sn)

×
(

βn cos(βnz0/H ) + κaβ
2
n

β2
n − κd

sin(βnz0/H )

)
,

(B3)

which is equivalent to Eq. (10).

APPENDIX C: RENEWAL APPROACH

For an interval, one can implement a renewal approach. In
fact, the PDF of the escape time can be written as

Jab(t |z0) = jH (t |z0) +
∫ t

0
dt1 j0(t1|z0)

∫ t

t1

dt ′
1ψ (t ′

1 − t1) jH (t − t ′
1|0)

+
∫ t

0
dt1 j0(t1|z0)

∫ t

t1

dt ′
1ψ (t ′

1 − t1)
∫ t

t ′
1

dt2 j0(t2 − t ′
1|0)

∫ t

t2

dt ′
2ψ (t ′

2 − t2) jH (t − t ′
2|0) + · · · , (C1)

where jH (t |z0) and j0(t |z0) are the probability fluxes from the
bulk at z = H and z = 0, and ψ (t ) is the probability density
of the waiting time in the adsorbed state. We emphasize that
these are the fluxes from the bulk, i.e., j0(t |z0) here does
not contain the contribution from desorption [unlike jad(t |z0)
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100

100
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FIG. 5. The first solution β0 of Eq. (B1) that determines the
smallest eigenvalue β2

0 /H 2 of the Laplace operator on the interval
(0, H ).

defined in the main text]: This contribution is taken care of
by ψ (t ). Thus the fluxes from the bulk can be equivalently
defined as the fluxes out of an interval (0, H ) with absorbing
endpoint at H and partially reactive (ka > 0, kd = 0) endpoint
at 0. The first term in Eq. (C1) represents trajectories that
escaped the domain without any adsorption, the second term
accounts for a single adsorption, the third term accounts for
two adsorptions, and so on. In the Laplace domain, one gets

J̃ab(s|z0) = j̃H (s|z0) + j̃0(s|z0)ψ̃ (s) j̃H (s|0) + · · ·

= j̃H (s|z0) + j̃0(s|z0)ψ̃ (s) j̃H (s|0)

1 − j̃H (s|0)ψ̃ (s)
, (C2)

where we summed the geometric series.
For the interval (0, H ) with an absorbing endpoint at H and

a partially reactive (note again, no desorption) endpoint at 0,
one has

j̃H (s|z0) = α cosh(αz0) + q sinh(αz0)

α cosh(αH ) + q sinh(αH )
, (C3)

j̃0(s|z0) = q sinh (α(H − z0))
α cosh(αH ) + q sinh(αH )

, (C4)

where α = √
s/D and q = ka/D.

Let us now consider an adsorbing boundary at 0 with
exponentially distributed waiting time, ψ (t ) = kd e−kd t so
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that ψ̃ (s) = 1/(1 + s/kd ). Substituting these expressions in
Eq. (C2), we retrieve Eq. (9).

1. Mean and variance of the escape time

In the limit s → 0, we get

j̃H (s|z0) = EH (z0)[1 − s〈TH (z0)〉 + O(s2)], (C5)

j̃0(s|z0) = E0(z0)[1 − s〈T0(z0)〉 + O(s2)], (C6)

where

EH (z0) = 1 + qz0

1 + qH
, E0(z0) = q(H − z0)

1 + qH
(C7)

are the splitting probabilities on the endpoints H and 0 [e.g.,
EH (z0) is the probability of absorption on the endpoint H ;
evidently, EH (z0) + E0(z0) = 1] and

〈TH (z0)〉 = H − z0

6D(1 + qH )(1 + qz0)
[3(H + z0) + q(H + z0)2

+ 2qHz0 + q2Hz0(H + z0)], (C8)

〈T0(z0)〉 = 2H2 + 2Hz0 + 2H2qz0 − z2
0 − z2

0qH

6D(1 + qH )
(C9)

are the conditional mean absorption times to the endpoints 0
and H , respectively [e.g., 〈TH (z0)〉 is the mean first-passage
time (MFPT) to the endpoint H , which is conditioned by the
arrival at this endpoint]. Note that the conditional form is
necessary here because jH (t |z0) is not normalized to 1 since
the particle may be absorbed on the endpoint 0. Substituting

these expansions into Eq. (C2), we get

J̃ab(s|z0) ≈ EH (z0)(1 − 〈TH (z0)〉s)

+ E0(z0)(1 − 〈T0(z0)〉s)EH (0)(1 − 〈TH (0)〉s)
(1 + 〈Tw〉s) − E0(0)(1 − 〈T0(0)〉s)

,

(C10)

where we used ψ̃ (s) = 1 − s〈Tw〉 + O(s2), and 〈Tw〉 is the
mean waiting time in the adsorbed state. Using 1 − E0(0) =
EH (0), we then get J̃ab(s|z0) = 1 − 〈T (z0)〉s + O(s2), with

〈T (z0)〉 = (EH (z0)〈TH (z0)〉 + E0(z0)〈T0(z0)〉)

+ E0(z0)

[
〈TH (0)〉 + 〈Tw〉 + E0(0)〈T0(0)〉

EH (0)

]
.

(C11)

The first term is the (unconditional) mean escape time from
an interval (0, H ) with absorbing endpoint at H and partially
reactive (ka > 0, kd = 0) endpoint at 0. This is equal to

EH (z0)〈TH (z0)〉 + E0(z0)〈T0(z0)〉

= (H + z0(1 + qH ))(H − z0)

2D(1 + qH )
= H2 − z2

0

2D
− E0(z0)

H2

2D
,

(C12)

and note that one recovers the results for fully reflecting and
fully absorbing boundaries at z = 0 by setting E0(z0) = 0 and
E0(z0) = H−z0

H , respectively. As a consequence, we have

〈T (z0)〉 = H2 − z2
0

2D
+ E0(z0)

[
〈TH (0)〉 − H2

2D
+ 〈Tw〉 + E0(0)〈T0(0)〉

EH (0)

]

= H2 − z2
0

2D
+ E0(z0)

[ 〈Tw〉
EH (0)

+EH (0)〈TH (0)〉 + E0(0)〈T0(0)〉
EH (0)

− H2

2D︸ ︷︷ ︸
=0

]

= H2 − z2
0

2D
+ E0(z0)

〈Tw〉
EH (0)︸ ︷︷ ︸

=q(H−z0 )〈Tw〉

, (C13)

where in going from the first to the second line we used
Eq. (C12). Thus, despite the complexity of the general relation
(C11), most contributions compensate each other, yielding a
remarkably simple expression:

〈T 〉 := 〈T (z0)〉 = H2 − z2
0

2D
+ q(H − z0)〈Tw〉, (C14)

where q = ka/D. The first term is the MFPT from an interval
(0, H ) with absorbing endpoint at H and reflecting endpoint at
0. In turn, the second term incorporates all contributions from
the adsorption and desorption events. The proportionality of
this term to 〈Tw〉 suggests that it can be interpreted as the
mean cumulative waiting time in the adsorbed state, whereas
the first term is the mean cumulative diffusion time in the
bulk.

To justify this interpretation, let us examine a random
trajectory of a particle that started from z0 and arrived at the

endpoint H . As previously, one can distinguish two cases by
whether the diffusing particle has or has not been adsorbed on
the endpoint 0 before the escape. In the second case, there is
no waiting time, and the only contribution comes from the
diffusion time. We therefore focus on the first case, where
the particle has been adsorbed (at least once) on 0 before
escaping the interval. Between the first adsorption on 0 and the
escape from the interval through the endpoint H , the particle
experienced multiple reflections from the endpoint 0. After
a number of reflections, it may be readsorbed, spend some
time on 0, be desorbed, and so on. However, if we cut off
all the waiting periods in the adsorbed state (we treat them
below), the adsorption-desorption mechanism does not affect
the diffusive dynamics of the particle, as if the endpoint 0
was purely reflecting. In other words, if 〈Tw〉 = 0 (or, in the
Markovian setting, for kd = ∞), there is no effect coming
from adsorption or desorption, and one retrieves the results for
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a reflecting boundary. As a consequence, the diffusion time in
the free state is given by the first term in Eq. (C14).

For 〈Tw〉 �= 0, the diffusion time should be complemented
by the total waiting time that the particle has spent in the
adsorbed state. According to our derivation, the mean total
waiting time is E0(z0)〈Tw〉/EH (0). How can one interpret this
relation? First of all, if the particle has escaped without any
adsorption, there is no such contribution. This explains the
presence of the splitting probability E0(z0), i.e., the probability
that at least one adsorption occurred before escaping. After
each desorption, the particle starts from 0 and can escape the
interval with the probability EH (0). Let χi denote a Bernoulli
random variable, which takes the value 0 (readsorption at the

ith trial, i.e., failure to escape) with probability 1 − EH (0)
and the value 1 (successful escape) with probability EH (0).
As all escape trials are independent, the number of Bernoulli
trials before escape has a geometric distribution, with the
mean 1/EH (0). As the particle spends in each adsorbed state
on average 〈Tw〉 units of time, the total mean waiting time
is E0(z)〈Tw〉/EH (0), in agreement with the second term in
Eq. (C14).

Let us extend the above rationale to represent the escape
time T as the sum of the (random) diffusion time Td on the
interval (0, H ) with reflecting endpoint 0, and the (random)
total waiting time Tad in the adsorbed state: T = Td + Tad.
The latter can be formally defined as

Tad =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, with probability EH (z0)

τ1, with probability E0(z0)EH (0)ψ (t )

τ2, with probability E0(z0)(1 − EH (0))EH (0)ψ2(t )

· · ·
τk, with probability E0(z0)(1 − EH (0))k−1EH (0)ψk (t )

· · · ,

(C15)

where ψk (t ) = (ψ ◦ ψ ◦ · · · ◦ ψ )(t ) is the probability density
function of τk , which is defined as a sum of k independent
waiting times (note that τ1 = Tw). This time is obtained as the
k-order convolution of the PDF ψ (t ). In other words, if N is
the (random) number of trials before escape, governed by the
geometric law with EH (0), Tad is equal to τN [apart from the
value 0, which corresponds to no adsorption with probability
EH (z)].

It is important to emphasize that the random variables Td

and N (and thus Tad) are not independent. In fact, one can
intuitively expect that large values of N would correspond
to large values of Td (i.e., more escape trials imply longer
diffusion times). The mean values 〈Td〉 and 〈Tad〉, whose sum
yields the mean escape time, can be computed independently,
despite correlations between Td and Tad, as we did above.
In contrast, correlations affect higher-order moments and the
whole distribution. In particular, the variance of the escape
time has three contributions:

Var{T } = Var{Td} + Var{Tad} + 2(〈TdTad〉 − 〈Td〉〈Tad〉).
(C16)

The first term is well-known:

Var{Td} = H4 − z4
0

6D2
. (C17)

We compute the mean by direct computation

〈Tad〉 =
∫ ∞

0
dt t pdf(t ) = E0(z0)EH (0)

∞∑
n=1

(1 − EH (0))n−1

×
∫ ∞

0
dt t ψn(t )︸ ︷︷ ︸
=n〈Tw〉

= 〈Tw〉E0(z0)/EH (0). (C18)

To compute the variance, we use the law of total variance and
obtain

Var{Tad} = 〈N 〉Var{Tw} + Var{N }〈Tw〉2

= q(H − z0)Var{Tw} + q(H − z0)

× [1 + q(H + z0)]〈Tw〉2

= q(H − z0)〈T 2
w 〉 + q2

(
H2 − z2

0

)〈Tw〉2, (C19)

where in moving to the second line we have plugged in the
first two moments of N , which are derived in detail in Ap-
pendix D 1 [see Eq. (D6)].

Comparing Eqs. (C16), (C17), and (C19) with the variance
of T , which we obtain directly from the small-s expansion of
J̃ab(s|z0),

Var{T } = H4 − z4
0

6D2
+ 2q

(
H3 − z3

0

)
3D

〈Tw〉+ q2
(
H2 − z2

0

)〈Tw〉2

+ q(H − z0)〈T 2
w 〉, (C20)

we conclude that

〈TdTad〉 − 〈Td〉〈Tad〉 = 2q
(
H3 − z3

0

)
3D

〈Tw〉. (C21)

In this way, we managed to characterize correlations between
the diffusion time Td and the total waiting time Tad.

While the mean escape time in Eq. (C14) depends only
on q〈Tw〉, the variance of the escape time in Eq. (C20) de-
pends on both q〈Tw〉 and q〈T 2

w 〉. For the Markovian case, the
distribution of the adsorption time is exponential, and one
has 〈Tw〉 = 1/kd and 〈T 2

w 〉 = 2/k2
d , which implies that the

variance separately depends on both ka and kd

Var{T } = H4 − z4
0

6D2
+ K2

(
H2 − z2

0

)
D2

+ 2K
(
H3 − z3

0

)
3D2

+ 2K (H − z0)

kd D
, (C22)

where K = ka/kd .
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2. Splitting probabilities in terms of the Laplace
transforms of the fluxes from the bulk

The splitting probability EH (z0) is the probability that a
diffusing particle, initially at z0, is absorbed at H , without
adsorbing to the surface at 0 beforehand. The complemen-
tary splitting probability E0(z0) is the probability that the
particle is adsorbed at 0 before it manages to escape. Note
that E0(z0) accounts for at least one adsorption. Thus, for the
purpose of the calculation of the splitting probabilities, the
adsorbing boundary can be safely replaced with a partially
absorbing boundary with reactivity ka (and no desorption).
In other words, one only needs the fluxes from the bulk
to get EH (z0) = ∫ ∞

0 JH (t |z0)dt = J̃H (s = 0|z0) and E0(z0) =∫ ∞
0 J0(t |z0)dt = J̃0(s = 0|z0). Note that this result was al-

ready used in Eqs. (C5) and (C6). We thus see that all the
previously derived expressions that contained splitting prob-
abilities can be written in terms of the Laplace transform
J̃0(s = 0|z0) and/or J̃H (s = 0|z0). In fact, the renewal ap-
proach allows one to express the solution for the problem in a
compartment with an adsorbing boundary in terms of the solu-
tion for the simpler problem where the adsorbing boundaries
are replaced with partially reactive boundaries of reactivity
ka and a waiting time distribution, ψ (t ), in the adsorbed
state.

APPENDIX D: SIMULATING AN ADSORBING
BOUNDARY CONDITION

1. Explanation

Recall the general adsorbing boundary condition given in
Eqs. (2a) and (2b). For the one-dimensional case, we have

jad(0, t |z0) = ka p(0, t |z0) − kd�(t |z0), (D1a)

∂t�(t |z0) = jad(0, t |z0). (D1b)

We show here how a numerical simulation of such a boundary
condition can be performed efficiently using insights from the
renewal technique presented in Appendix C.

As discussed in Appendix C 2, the splitting probability
EH (z0) is the probability that a diffusing particle, initially at
z0, will be absorbed at H , without adsorbing to the surface at 0
beforehand. The complementary splitting probability E0(z0) is
the probability that the particle is adsorbed at least once before
it manages to escape. Let N denote the number of adsorption
events before escape. We thus have

P {N = 0 | z0} = EH (z0) = 1 + qz0

1 + qH
(D2)

and

P {N > 0 | z0} = 1 − P {N = 0 | z0}

= E0(z0) = q(H − z0)

1 + qH
. (D3)

Markedly, when starting from the adsorbing surface we have

P {N = 0 | z0 = 0} = EH (0) = 1

1 + qH
. (D4)

We now aim to compute P {N = n | z0}, namely the prob-
ability of n > 0 adsorption events prior to the escape, given

the initial position z0. First, the particle has to be adsorbed
once, the probability of which is given by E0(z0). Immedi-
ately after that adsorption event, the particle starts diffusing
again, from z0 = 0, and has the probability P {N = 0 | z0 =
0} of escaping without adsorbing for the second time. With
the complementary probability, the particle will adsorb again
before escape, and from this point onward the process is re-
newed. We thus have a geometrically distributed process with
“success” probability P {N = 0 | z0 = 0}. Overall, we obtain

P {N = n | z0} = E0(z0)E0(0)n−1EH (0). (D5)

In particular, we have

〈N 〉 = q(H − z0), 〈N 2〉 = q(H − z0)(1 + 2qH ). (D6)

Let us now describe the simulation procedure of an adsorb-
ing boundary located at z = 0. We introduce a thin boundary
layer of width ε near the endpoint 0. The width should be
larger than a typical one-step displacement σ (say, ε = 5σ ).
When the particle position z is at a distance smaller than ε/2
from the boundary, we consider that they start to “interact.”
As a result of this interaction, the particle may be adsorbed a
number of times, before it escapes the layer of width ε (we
thus consider the escape problem with H = ε).

The escape time distribution is given exactly in Eq. (10),
but drawing random times from this bulky expression can
prove numerically taxing. Instead, we suggest an alternative
algorithm that reproduces the results with excellent precision
and can be easily generalized. This alternative algorithm is
based on the realization that in the limit ε � 1 fluctuations
in the escape time from the boundary layer are mostly due to
fluctuations in the time spent in the adsorbed state. Thus it is
enough to retain only the effect of fluctuations in the waiting
times T 1

w , . . . , T N
w . Indeed, by setting H = ε in Eq. (C20) and

taking this limit we are left only with the last two terms, which
are equal to Var{Tad}.

First, one performs a Bernoulli trial to decide whether N =
0 [with probability Eε (z) = (1 + qz)/(1 + qε)] or N > 0. In
the former case, the particle is relocated to a new position z =
ε, while the time counter is incremented by (ε2 − z2)/(2D),
i.e., the mean time needed to escape the interval (0, ε) with
reflecting endpoint 0 and absorbing endpoint ε. In turn, in
the latter case, we generate the random number N = n of
adsorptions from the geometric distribution E0(0)n−1Eε (0) for
n = 1, 2, . . .. The particle is again relocated at z = ε, while
the time counter is incremented by

ε2 − z2

2D
+

N∑
i=1

T i
w, (D7)

where T 1
w , . . . , T N

w are independent waiting times generated
from the exponential law with the rate kd in accordance
with the first-order desorption kinetics described by the last
term in Eq. (2a). Since a geometric sum of independent and
identically distributed exponential random variables is itself
exponentially distributed, one can replace the sum in Eq. (D7)
by a single exponential variable with the rate Eε (0)kd . Note
that Eq. (D7) captures the mean escape time from the bound-
ary layer exactly. It also captures the variance of the escape
time to second order in the layer’s width ε, with errors being
O(ε3) as we have neglected both fluctuations in the diffusion
time and correlations between this time and the number of
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adsorption events. A generalization for nonexponential wait-
ing times is trivial: One has to generate T i

w according to the
given probability density ψ (t ).

As any smooth boundary is locally flat, we can use the
above procedure when simulating higher-dimensional do-
mains (Fig. 6). All we have to do is make sure that the
simulation step size is small enough such that the surface
can be locally approximated as a flat surface. Then, a thin
subsurface layer of width ε can be approximated by a slab
of height ε.

2. An example MATLAB code

Below we supply an example MATLAB code for simulating
the escape of a diffusing particle from an interval with an
adsorbing boundary at 0 and an absorbing boundary at H (see
Fig. 2). The simulation output is the escape time. In fact, we
have used this code to simulate data shown in Figs. 3 and
4. Text preceded by a “%” symbol denotes commentary, as
we supply a short explanation of each simulation step. Note
that we do not claim that the following code is of optimal
performance.

function escape = ExampleFunction(ka, kd, H, D, z0, epsilon, dt, tmax)

escape=0; %Define escape time.

z=z0; %The location is set to the initial location.

counter=0; %Define counter.

while 1 %Endless loop unless break command is performed.

dz=sqrt(2*D*dt)*randn(); z=z+dz; %Random step of a free diffusing particle.

if z < epsilon/2 %When the particle position z is closer to the boundary than ε/2.

B1=rand(); %Generate a random number between 0 and 1.

pesc = (1 + ka*z/D)/(1 + ka*epsilon/D); %The splitting probability Eε (z).

B=(B1 < pesc); %Boolean: 1 if the particle first crosses ε and 0 if the particle first adsorbs.

teps = (epsilon∧2 - z∧2)/(2*D); %Time that is added to the counter later in both cases.

z=epsilon; %The particle is relocated to ε.

if B==0 %If the particle adsorbed before crossing ε.

Nads = 1 + geornd(1/(1+ka*epsilon/D),1); %Number of adsorption events.

counter = counter + teps + sum(exprnd(1/kd,1,Nads)); %Update the time counter by the adsorbed

%time+time needed to diffuse a distance ε.

else %If crossed ε without first adsorbing.

counter = counter + teps; %Update the time counter by the time needed to diffuse a distance ε.

end

end

if counter>tmax

escape=tmax; %In case simulation power is limited. It is best to set tmax = inf.

break;

elseif z>H

escape=counter; %Save escape time and break.

break;

end

counter=counter+dt; %Move time step forward.

end

end

APPENDIX E: ESTIMATION OF THE STATISTICAL
ERROR IN THE INFERENCE OF THE DESORPTION RATE

We can write our expressions for the mean and variance of
the escape time T as

μ := 〈T 〉 = A + BK, (E1)

σ 2 := Var{T } = a + bK + cK2 + dK/kd , (E2)

where A, B, a, b, c, and d are explicitly known constants; see
Eqs. (11) and (14) for the delta-function initial condition and
the expressions given in Eqs. (12) and (15) for the uniform ini-
tial condition. Importantly, for both the fixed and the uniform
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ε

FIG. 6. Simulation of an adsorbing surface of a higher-
dimensional domain and of complex morphology: As any smooth
boundary is locally flat, the escape time from a thin layer of width ε

can be accurately approximated by the escape time from a slab of the
same width.

initial conditions the mean and variance follow the general
form in Eqs. (E1) and (E2).

For the inference procedure, we replace the exact mean and
variance by its empirical estimates from N measured escape
times T1, . . . , TN :

T1 = 1

N

N∑
n=1

Tn, T2 = 1

N

N∑
n=1

(Tn − T1)2. (E3)

In other words, we express

K = T1 − A

B
, kd = dK

T2 − a − bK − cK2
, (E4)

which are now random variables due to fluctuations (statis-
tical noise) in the empirical estimates T1 and T2. Since the
fluctuations of the empirical mean T1 are characterized by the
standard deviation, �T1 = σ/

√
N , one has

�K = �T1

B
= σ

B
√

N
. (E5)

The fluctuations of T2 are given by the standard formula from
statistics,

�T2 =
√

μ4

N
− σ 4(N − 3)

N (N − 1)
≈

√
μ4 − σ 4

√
N

, (E6)

where μ4 = 〈(T − μ)4〉 is the fourth central moment of the
escape time T .

Using the standard formulas for estimating the errors of
measured quantities, we have

�kd = d�K

T2 − a − bK − cK2
+ dK (�T2 + b�K + 2cK�K )

(T2 − a − bK − cK2)2
,

(E7)
from which

�kd

kd
= �K

K
+ �T2 + (b + 2cK )�K

dK
kd

= 1√
N

(
σ

KB
+

√
μ4 − σ 4 + (b + 2cK )σ/B

dK
kd

)
.

(E8)
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FIG. 7. A contour plot of the estimated relative statistical error
in the inference of kd vs the imposed values of K and kd , according
to Eq. (E8). H and D were set to 1, and a uniform initial distribution
was used. This plot presents the case where the mean and variance
are calculated from a sample of 104 escape times. The fourth central
moment μ4 of the escape time was found for the parameters at
hand, using the fact that the Laplace transform in Eq. (9) is the
moment-generating function. A general expression is computable,
but it is very cumbersome and is thus not given here explicitly [it
is numerically advantageous to plug the values of D and H into
Eq. (9) before computing the moments, to avoid extremely long
expressions].

First, we note that the relative error in the estimation of the
desorption rate kd decreases as 1/

√
N , as expected. Let us

now inspect the coefficient in front of this factor. For fixed
K , in the limit kd → 0 the first term diverges according to
Eq. (E2) as σ ∝ 1/

√
kd , yielding large relative error in the

estimation of kd (note that the absolute error �kd vanishes as√
kd in the limit kd → 0). Finding the behavior of the second

term in Eq. (E8) requires the computation of μ4 to know its
dependence on K and kd . This computation is feasible but
rather tedious and is actually unnecessary. In fact, this term
can only degrade the quality of the estimation, and thus it
does not alter the above conclusion: The relative error of kd

increases in the limit kd → 0.
Away from this limit, the relative error exhibits non-

monotonous behavior. To show this, we present a contour plot
of the relative error as function of K and kd ; see Fig. 7. For
instance, if K is fixed, the ratio �kd/kd increases in both
limits kd → 0 and kd → ∞ but reaches a minimum at an
intermediate value of kd . Figure 7 can thus be used as a
guide for designing inference techniques, as it gives a theo-
retical estimation for the accuracy of the results in different
regimes of the parameter space. Note that in creating this
figure we have assumed a uniform initial distribution and
set H and D to 1. It can be thus seen as complementary
to Fig. 4.
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APPENDIX F: ESCAPE OF A STICKY PARTICLE
IN HIGHER DIMENSIONS FOR AN ANNULUS

AND A SPHERICAL SHELL

To give another example of an explicit computation of the
probability density of the escape time, we also consider dif-
fusion between concentric circles or spheres of radii R1 < R2,
such that one of them is absorbing and the other is adsorbing.
The spherical symmetry renders this problem effectively one
dimensional, and it can thus be solved in a very similar way
to the escape problem from the interval, i.e., by solving the
corresponding version of Eqs. (6a)–(6c). For instance, let us
consider a three-dimensional setting and assume that the inner
boundary is adsorbing and the outer is absorbing. In this case,
one still has

J̃ab(s|r0) = g(r0, s)

g(R2, s)
, (F1)

with

g(r, s) =
√

s/D cosh[
√

s/D(r − R1)]

r

+ (qs + 1/R1) sinh[
√

s/D(r − R1)]

r
. (F2)

The poles are determined by the condition g(R2, s) = 0. Set-
ting s = −Dβ2/(R2 − R1)2, the equation g(R2, s) = 0 reads

0 = (R2 − R1)R2

i
g(R2, s)

= β cos(β ) +
(

κa

1 − κd/β2
+ R2 − R1

R1

)
sin(β ),

with κa = ka(R2 − R1)/D and κd = kd (R2 − R1)2/D. This
can also be written as

β

tan(β )
= −

(
κa

1 − κd/β2
+ R2 − R1

R1

)
. (F3)

The left-hand side decreases piecewise monotonously on
the intervals (0, π ), (π, 2π ), etc., whereas the right-hand
side increases piecewise monotonously on (0,

√
κd ) and

(
√

κd ,+∞). One can therefore check that there is a sin-
gle solution on each interval (πn, π (n + 1)) denoted as βn.
Note, that an exception to this rule is the interval containing√

κd . This interval has two solutions, before and after
√

κd ,
except if

√
κd = πk. These solutions determine the poles

sn = −Dβ2
n/(R2 − R1)2. For evaluating the residues, one

finds

dg(R2, s)

ds

∣∣∣∣
s=sn

= R2 − R1

2DR2iβn

{(
1 + R2 − R1

R1
+ κa

1 − κd/β2
n

)
cos βn −

(
1 + 2κaκd(

κd − β2
n

)2

)
βn sin βn

}
.

As a consequence, one gets

J (t |r) =
∞∑

n=0

g
(
r,−Dβ2

n

/
(R2 − R1)2

)

dg(R2,s)
ds

∣∣
s=sn

e−Dtβ2
n /(R2−R1 )2

, (F4)

where

g
(
r,−Dβ2

n

/
(R2 − R1)2) = iβn cos[βn(r − R1)/(R2 − R1)]

r(R2 − R1)
+

[
κa

/(
1 − κd/β

2
n

) + (R2 − R1)/R1
]
i sin[βn(r − R1)/(R2 − R1)]

r(R2 − R1)
.

(F5)

In two dimensions, one has

g(r, s) = [
qsK0(R1

√
s/D) +

√
s/DK1(R1

√
s/D)

]
I0(r

√
s/D) − [

qsI0(R1

√
s/D) −

√
s/DI1(R1

√
s/D)

]
K0(r

√
s/D), (F6)

where and I0(·) and K0(·) are the modified Bessel functions of
the first and second kind of order 0. Similar computations can
be performed.

To obtain the mean escape time, we recall that J̃ab(s|r0) =
1 − s〈T (r0)〉 + O(s2). Taking the small-s expansion of
Eq. (F1), we obtain for the three-dimensional case

〈T (r0)〉 = (R2 − r0)
[
6KR2

1 − 2R3
1 + r0R2(r0 + R2)

]
6Dr0R2

. (F7)

Letting 〈Td〉 stand for the mean escape time with K = 0,
namely the case of no stickiness, we observe that

〈T (r0)〉
〈Td〉 = 1 + K

ξ
, (F8)

where we identified the effective length

ξ = r0R2(r0 + R2) − 2R3
1

6R2
1

. (F9)

Similarly, for the two-dimensional case we find

〈T (r0)〉 =
R2

2 − r2
0 + 2R1(R1 − 2K ) ln

(
r0
R2

)
4D

, (F10)

which also satisfies Eq. (F8), with

ξ = r2
0 − 2 ln

( r0
R2

)
R2

1 − R2
2

4R1 ln
( r0

R2

) . (F11)
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