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A B S T R A C T

We propose an approximation for the functional form of the slip length for two complementary lattice
configurations of superhydrophobic texture. The first configuration consists of the square lattice of the
superhydrophobic spots employed on the no-slip plane. The second configuration is an ‘inverse’ of the first
one and consists of the same lattice but of the no-slip spots on the superhydrophobic base. We validate our
analytical results by a numerical solution of Stokes equation.
1. Introduction

Shear flows over superhydrophobic (SHP) surfaces (surfaces con-
taining regions of zero viscous stress) have gained increasing attention
in recent years due to the remarkable ability of a hydrophobic coat-
ing to control flow and reduce hydrodynamic drag [1–3], which is
important for the design of microfluidic devices (lab-on-chip) and
numerous biomedical and maritime applications [4,5]. Mathematically,
similar problems (viz., solution of the Laplace-type equations with
mixed boundary conditions) emerge in the context of viscous flow over
perforated membranes, diffusion kinetics, electrostatics, and models
of wetting phenomena [6–10]. There is an extensive literature on
analytical, numerical, and experimental results on this topic, see [4,6–
9,11–23] and references therein. The comprehensive review which is
relevant to the present study is given in Ref. [24].

One of the conventional ways to characterize the effect of SHP
coatings is to introduce a lumped parameter 𝜆 in the effective boundary
condition on the wet surface; this parameter is commonly referred to as
the slip length [6]. In general, the slip length is a 2 × 2 tensor with only
two non-zero diagonal values, 𝜆∥ and 𝜆⟂ [20]. When the SHP texture
has the symmetry of a square lattice these values are equal: 𝜆∥ = 𝜆⟂ = 𝜆.
For a unidirectional flow over a flat boundary with the velocity vector
along the side of the lattice cell (see Fig. 1) the effective boundary
condition takes the form [4,6–9,11–25]

𝜆𝑑𝑣
𝑑𝑧

= 𝑣, (1)

where 𝑣 is the component of velocity parallel to the boundary 𝑧 = 0
(𝑧 is the distance to the boundary), the coordinate axes 𝑥, 𝑦 are on the
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boundary and are aligned with the square lattice, see Fig. 1. The limits
𝜆 = 0 and 𝜆 = ∞ correspond to a no-slip and a no-stress boundary,
respectively.

There are many physical and chemical properties of the interface
that determine the slip length such as liquid–gas interface deformation,
internal gas flow, layer of surfactants, etc. (for further details see
[24,25]). For the purpose of the present study we follow previous
works [12,13] and assume that 𝜆 is completely defined by the surface
fraction 𝜎 of the SHP spots (viz, the fraction of surface where tangential
stress is zero), the shape of the individual spot, and their geometrical
arrangements. As a function of 𝜎, the parameter 𝜆 has two evident
limits

𝜆 → 0, 𝜎 → 0, (2)

𝜆 → ∞, 𝜎 → 1, (3)

corresponding to the perfectly no-slip and no-stress boundaries, respec-
tively.

In general, the function 𝜆(𝜎) depends on the shape of SHP spots and
their geometrical arrangement. To appreciate this dependence one can
compare the available analytical solutions for 𝜆(𝜎). For instance, for
the two-stripe pattern per period (one stripe is no-slip and another is
no-stress), one has
𝜆∥
𝐿

= 1
2𝜋

ln
[

1
sin(𝜋(1 − 𝜎)∕2)

]

, (4)

where 𝐿 is the period of the two-stripe pattern, and 𝜎 is the SHP surface
fraction. The authors of Ref. [12] argue that the relation 𝜆⟂ = 1

2𝜆∥
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Fig. 1. Sketch of the considered problem, Top: Stokes flow in the 𝑦 direction over
the 𝑥𝑦 plane coated by periodically repeated disk-shaped spots. Bottom: Examples of
periodic cells of two complementary structures of SHP spots (dark) on the no-slip plane
(light).

should be approximately valid for any lattice of elongated SHP spots
(i.e., a lattice of ellipses with appreciably unequal axes) with respect to
their orientation towards the flow.

We note that formula (4) is valid for the entire range 0 < 𝜎 < 1 and
has the correct limits for 𝜎 = 0 and 𝜎 = 1. This enables an instructive
estimation of the effect of SHP texture (in this case its orientation with
respect to the flow velocity) for the same surface fraction. Carrying
out the similar analysis for a lattice arrangement to predict the effect
of the shape and surface fraction of SPH spots is more challenging.
The main difficulty is due to the lack of a general formula for 𝜆(𝜎)
that is valid for the entire range of the SHP surface fraction. Many
accurate analytical approximations have been deduced for the sparse
limit (𝜎 ≪ 1) [6–8,12–17,19,22,26] but they offer no clear pathways
for the extension to the entire range of 𝜎. Derivation and numerical
validation of such a formula was the main motivation for the present
study. More specifically, we derive an approximate formula for the
slip length for two complementary patterns of the SHP texture that is
valid for the entire range of 𝜎. We show that, similar to Eq. (4), this
formula can provide some upper and lower bounds for the effect of
geometrical arrangement of the SHP spots inside the lattice cell on the
overall coating performance and thus enables the insightful comparison
of various design textures.

It is worth noting that a similar approach capturing the effect of
heterogeneity of a surface via a phenomenological parameter intro-
duced in a Robin-type boundary condition (1) is also well-known in
electrostatics [27], chemical physics [26,28–32], acoustics, and water
wave dynamics [6,33,34] where this parameter is referred to as grid
parameter, trapping rate, and blockage coefficient. The similarity in
90
this approach is due to the overarching analytical framework of the
Laplace equation that describes these phenomena.

2. Theory

We deduce the functional form of 𝜆(𝜎) for two complementary
(or ‘inverse’) configurations of the SHP texture, see Fig. 1. The first
configuration is the square lattice of the SHP spots (with boundary
condition 𝑑𝑣∕𝑑𝑧 = 0) on the no-slip base (with boundary condition
𝑣 = 0). The second configuration is an ‘inverse’ of the first one: it
consists of the same lattice but of the no-slip spots (𝑣 = 0) employed
on the SHP base (𝑑𝑣∕𝑑𝑧 = 0).

Similar to Eq. (4) the dimensional arguments imply
𝜆
𝐿

= 𝐹1(𝜎), (5)

𝜆
𝐿

= 𝐹2(𝜎), (6)

for the first and the second case, respectively. Here 𝐿 is the side length
(period) of the lattice, 𝐹1(𝜎) and 𝐹2(𝜎) are dimensionless functions that
obey the limits given by Eqs. (2) and (3).

The asymptotic behavior of the functions 𝐹1(𝜎) and 𝐹2(𝜎) as 𝜎 → 0
and 𝜎 → 1 has been established analytically and numerically [7,8,12–
14,17]. In particular,

𝐹1(𝜎) ≈
𝐴

√

1 − 𝜎
− 𝐵, 𝜎 → 1, (7)

𝐹1(𝜎) ≈ 𝐶𝜎2, 𝜎 → 0, (8)

𝐹2(𝜎) ≈ 𝐻 ln
[ 1
1 − 𝜎

]

, 𝜎 → 1, (9)

𝐹2(𝜎) ≈ 𝑃𝜎3∕2, 𝜎 → 0, (10)

where 𝐴 = 3
√

𝜋∕16, 𝐵 = 3∕(2𝜋) ln(1 +
√

2), 𝐶 = 3𝜋∕64, 𝐻 = 1∕(3𝜋),
𝑃 = 8∕(9𝜋3∕2).

The values of 𝐴 and 𝐵 are given in Ref. [13] as a part of the solution
for the Stokes flow over a square lattice of small no-slip disks lying on
the no-stress base. The value of 𝐶 can be easily derived from Eq. (2.7)
of Ref. [7] for the solution for a square lattice of large no-slip square
plates with small no-stress gaps between them.

The value of 𝑃 is given in Refs. [7,8] for the inverse configuration.
The value of 𝐻 is established in Refs. [12,19] for the so-called narrow
stripe limit, which corresponds to a lattice of the narrow no-stress flat
rings on the no-stress plane as 𝜎 → 1, see Fig. 1. The logarithmic
singularity in Eq. (9) agrees with the same singularity in Eq. (4).

Our aim is to provide interpolation formulas for 𝐹1(𝜎) and 𝐹2(𝜎) that
smoothly match these asymptotics and are valid over the entire range
of the surface fraction of SHP spots, 0 ≤ 𝜎 ≤ 1. Motivated by the similar
studies for the Laplace equation reported in Refs. [28–30] we propose
the following expressions

𝐹1(𝜎) =
𝛾𝜎2

√

1 − 𝜎[1 + 𝛼
√

1 − 𝜎 + 𝛽(1 − 𝜎)2]
, (11)

𝐹2(𝜎) = 𝜁𝜎3∕2 ln[𝛿 + 1∕(1 − 𝜎)], (12)

where 𝛾, 𝛼, 𝛽, 𝜁 , 𝛿 are constants to be determined. Matching with Eqs.
(7)–(10) leads to the explicit formulas

𝛾 = 𝐴, 𝛼 = 𝐵∕𝐴, (13)

𝛽 = 𝐴∕𝐶 − 𝐵∕𝐴 − 1, (14)

for constants in 𝐹1(𝜎), and

𝜁 = 𝐻, (15)

𝛿 = exp(𝑃∕𝐻) − 1, (16)

for constants in 𝐹 (𝜎).
2
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Fig. 2. Top: solid blue line shows Eq. (11), dashed red lines indicate the asymptotes
(7), (8). Bottom: solid blue line shows Eq. (12), dashed red lines indicate the asymptotes
(9), (10). The inset shows a zoom of the region of small 𝜎. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Formulas (13)–(16) determine explicitly all the coefficients in Eqs.
(11), (12) for 𝐹1(𝜎) and 𝐹2(𝜎). Indeed, they eliminate any ‘free’ param-
eters as all parameters in 𝐹1(𝜎) and 𝐹2(𝜎) are expressed in terms of the
values of the constants that were previously derived analytically. These
formulas and their excellent agreement with numerical simulations
present the main result of the paper. The plots of 𝐹1(𝜎) and 𝐹2(𝜎)
are shown in Fig. 2 where the asymptotes of Eqs. (7)–(10) are also
presented.

3. Numerical simulations

To validate the proposed expressions for 𝐹1(𝜎) and 𝐹2(𝜎) we per-
formed the numerical simulations of the Couette flow ( the flow of a
viscous fluid in the space between two planes, one of which is moving
parallel to the other with a constant velocity 𝑣0). An open-source, high-
order spectral element solver, NEK5000 [35] was used. The Stokes
equation with the mixed boundary conditions (no-slip and no-stress)
imposed at the 𝑧 = 0 plane was solved to simulate the viscous flow
over the SHP surface. The Reynolds number of the flow at 𝑧 = ℎ is
𝑅𝑒ℎ = 𝑣0ℎ∕𝜈, where 𝜈 = 𝜇∕𝜌 is the kinematic viscosity of the fluid and 𝜌
is the fluid density. Parameters 𝑣0 and ℎ were used as the natural scales
of velocity and length, respectively, so the Reynolds number 𝑅𝑒ℎ < 1
was the only parameter defining the dimensionless numerical model.
The convergence tolerance for velocity was set to 10−8.

The total number of hexahedral spectral elements in the range 185 <
 < 305 was used to resolve the flow above the SHP surface. The
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Fig. 3. Plot of the spatially averaged velocity profile for different numbers of spectral
elements  and polynomial orders  . An inaccuracy of slope estimation leads to an
error in estimating 𝜆. The SHP surface is at 𝑧∕ℎ = 0. The gray area corresponds to
𝑧 < 0 or area below the stationary plane.

Lagrange polynomials of order  = 5 were applied as interpolating
functions within a spectral element [35]. The slip length 𝜆 was esti-
mated by extrapolating the linear velocity profile from far above the
SHP surface (𝑧 > 0.4ℎ) to its intercept on axis 𝑣 = 0 (see Fig. 3). For the
lattice of SHP disks in the square cells the maximum of the SHP surface
fraction is 𝜋∕4 ≈ 0.785, so in order to reach the range of higher SHP
surface fraction (or no-slip spots for the SHP base) we also ran several
configurations with square central spots as shown in Fig. 1. This also
allowed us to estimate the effect of the shape of the central spot on the
performance of the SHP lattice texture.

To estimate the error of the numerical results we conducted a
number of sensitivity studies. These included a grid independence study
and a sensitivity study with respect to the Reynolds number value. In
particular, we ran the simulations for 𝑅𝑒ℎ = 1 and 𝑅𝑒ℎ = 0.001 and
found that for these Reynolds numbers the slip length is independent
of 𝑅𝑒ℎ (the results are not shown), which is in agreement with the
theoretical predictions.

Careful refinement of parameters  and  was conducted to check
the potential issues that might arise from the stress singularities at the
edges of the SHP domains. Our study revealed that the profile of the
spatially averaged velocity remained the same when the lower-order
polynomials  = 3 and  = 4 were applied for interpolation. In turn,
an increase in the order of polynomials ( > 11) deteriorated the
iterative convergence of the simulations. When more spectral elements
 were used, the required convergence was also more challenging,
giving raise to a significantly increased number of iterations. This
led to an overestimation of the slip velocity, as shown in Fig. 3. We
emphasize that the results presented in this paper correspond to the
fully converged simulations.

It is worth noting that the slower convergence of our simulations
was not revealed for the conventional no-slip boundary condition on
the planes. This is another indication that the slower convergence, and
associated numerical errors, seem to be related to the stress singulari-
ties at the edges of the SHP domains, as was suggested by one of the
reviewers.

4. Results and discussion

Overall, we observed excellent agreement between analytical pre-
dictions and the results of numerical simulations (the absolute error
of the proposed interpolation was less than 1.5% for 𝐹1 and less than
1.2% for 𝐹2, see Fig. 4). For different configurations the quality of the
interpolation formulas is given in Table 1.
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Fig. 4. Plots of 𝐹1(𝜎) and 𝐹2(𝜎) (solid blue lines) validated with numerical simulations
(markers). Different markers are used for different shapes of the central spot (◦ - circle,
× - square).

Table 1
Quality of interpolation (coefficient of determination) for the different shapes of central
spots in the SHP lattice texture (see Fig. 1).

Shape 𝐹1 𝐹2

Circle 99.9% 98.8%
Square 98.7% 99.2%

The similarity of the results for the circle and square shapes of the
central spot can be explained by the finding reported in Ref. [16], viz.,
that the drag force acting on a square zero-thickness plate translated
longitudinally is close to that of a circular disk of the same surface area,
so for the limit of small 𝜎 these plots should be almost identical.

Although not shown here, the accuracy of the interpolation could
be further improved (up to 0.5% for 𝐹1 and 0.3% for 𝐹2) if one of the
constants in Eqs. (11), (12) was deemed as a free parameter, whose
value was evaluated from fitting the numerical data. However, we
did not pursue this option. First, it is beyond the scope of the present
study, which aims at validating formulas for the slip length deduced
from asymptotic expressions; in this light, any free fitting parameter
would impose a valid question of the universality of its value. Second,
the error of less than 1% of our fully explicit approximation without
extra fitting is sufficiently high for most applications.

As the deduced formulas for 𝐹1 and 𝐹2 are interpolation, the values
of some parameters in these formulas may vary slightly with the
shape of the central spot and the lattice topology. In particular, for a
central spot that obeys the symmetry of square (i.e., hexagon) these
formulas remain unchanged. Moreover, we expect that variations in
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Fig. 5. Comparison of 𝐹1(𝜎) given by Eq. (11) (solid line) and 𝐹2(𝜎) given by Eq. (12)
(dashed line). Inset shows a zoom of the region of small 𝜎.

the parameters should be relatively weak since the limiting values of
𝐹1(𝜎) and 𝐹2(𝜎) are primarily determined by the functional form of the
universal scaling laws (7)–(10). According to the study of the Laplace
equation with mixed boundary conditions in Refs. [28–30], the analysis
given here can be extended to include the refined values of parameters
in 𝐹1 and 𝐹2 for a different lattice topology and shape of the central
spot.

For comparison, the plots of functions 𝐹1 and 𝐹2 are depicted
together in Fig. 5. In our view these functions can provide important
insights in the optimal design of the SHP coatings which is important
for applications. We briefly elaborate on this point.

For our setting of Couette flow the reduction of drag 𝜏 can be
deduced from a reduction of the effective distance between planes and
thus be completely defined in terms of the slip length:
𝜏𝑐𝑜𝑎𝑡 − 𝜏𝑓𝑙𝑎𝑡

𝜏𝑓𝑙𝑎𝑡
= 𝜆

ℎ − 𝜆
, (17)

so the effect of a SHP texture can be reduced to the analysis of Eqs. (11)
and (12). Assume that a SHP coating consists of a lattice of structural
elements (e.g., pits or pillars). Within a single lattice cell the structural
elements can be distributed with two ‘vastly’ different arrangements:
cell-centric (when structural elements are clumped at the center of
the cell) and cell-peripheral (when the elements are distributed along
the cell perimeter). Then for a given surface fraction 𝜎 and all other
parameters being fixed the difference in performance between two
arrangements reduces to the vertical difference between two lines in
Fig. 5 for a given value of 𝜎. Similarly, a horizontal difference between
two curves for a prescribed value of 𝜆 (i.e., reduction in drag) gives
a margin in the required value of 𝜎. If for two similar SHP textures
we keep 𝜎 the same but change only the period of the lattice 𝐿 the
performance of the new coating is still given by Eqs. (11), (12) but
with the different parameter 𝐿. Finally, for a given surface fraction 𝜎
the parameter 𝜆 (i.e. coating performance) is the same provided the
products 𝐿𝐹1(𝜎) and 𝐿𝐹2(𝜎) are equal. These arguments enable a simple
estimation of the minimum surface fraction of the SHP spots for a given
coating performance.

5. Conclusions

In summary, we proposed and validated an interpolation formula
for the effective boundary condition (1) with the lumped parameter
𝜆(𝜎) given by Eqs. (5) and (6). This formula is valid for the entire
range of the SHP surface fraction and allows us to estimate the effect of
morphology of the SHP spots on coating performance. We believe that
the presented approach can be useful for the rapid ‘what-if’ estimations
before proceeding with more comprehensive numerical simulations and
prototyping.
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