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ABSTRACT
The escape dynamics of sticky particles from textured surfaces is poorly understood despite importance to various scientific and technological
domains. In this work, we address this challenge by investigating the escape time of adsorbates from prevalent surface topographies, including
holes/pits, pillars, and grooves. Analytical expressions for the probability density function and the mean of the escape time are derived.
A particularly interesting scenario is that of very deep and narrow confining spaces within the surface. In this case, the joint effect of the
entrapment and stickiness prolongs the escape time, resulting in an effective desorption rate that is dramatically lower than that of the
untextured surface. This rate is shown to abide a universal scaling law, which couples the equilibrium constants of adsorption with the relevant
confining length scales. While our results are analytical and exact, we also present an approximation for deep and narrow cavities based on an
effective description of one-dimensional diffusion that is punctuated by motionless adsorption events. This simple and physically motivated
approximation provides high-accuracy predictions within its range of validity and works relatively well even for cavities of intermediate depth.
All theoretical results are corroborated with extensive Monte Carlo simulations.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0196981

I. INTRODUCTION

The fabrication of nanoscale surface topographies has seen
rapid development in the past two decades.1–3 In particular, con-
trolled fabrication of nano-arrays can be achieved, where common
structured surface topographies include nano-arrays of pillars,4–8

arrays of holes/pits,9,10 and grooves.11–13 Alternatively, the surface
can be rugged and possess random roughness.14

The effect of surface topography has proved to be a key aspect
when considering heterogeneous catalysis14,15 and the passivation
of catalytic surfaces.16,17 It also plays a cardinal role when consid-
ering living cell behavior, as protein adsorption to a textured surface
mediates the cell attachment to the surface.1,2,18 Topographical fea-
tures can affect the adsorption properties of a protein by inducing
conformational changes, or by other forms of surface–protein inter-
actions.19 When the length scale of the topographical features is
larger than the protein size, additional effects come into play. Often,
adsorption is increased as a larger number of active sites for protein
adsorption are available. Another crucial effect is the entrapment of
the proteins inside confined spaces.20,21

The entrapment effect was vividly illustrated in a series of on-
chip devices made by the Patolsky group.22–24 These devices utilized
entrapment in sticky confined spaces of textured surfaces for the
purpose of selective separation of required protein analytes from raw
biosamples. The selective stickiness was achieved by attaching spe-
cific antibodies to the surface. The surface was textured by a vertical
array of nanopillars, albeit other topographies, such as grooves, are
expected to exhibit a similar behavior. The Patolsky group demon-
strated that the target proteins are entrapped in the surface for
extremely long times (weeks and even months). This came as a sur-
prise, since the same antibody, if used on a flat surface, would bind
the biomolecules for a few milliseconds only. Similarly, using the
nanopillar vertical array without antibodies leads to fast diffusive
escape. The dramatic effect of prolonged escape times is hence due
to a combination of topography and adsorption/stickiness. A semi-
quantitative explanation of the experimental results was given in
Ref. 22.

Qualitatively, when the confining space is deep and narrow,
the escaping particle is forced to collide with the confining walls a
large number of times before it can escape. Each collision can result
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in an adsorption event, and these add up and eventually culminate
in extremely prolonged escape. Thus, despite the relatively short
dissociation time from the antibody, and due to the multitude of
adsorption events, the textured surface appears as if it has a very high
affinity to the protein. This observation is an important first step,
but a more detailed quantitative understanding is currently missing.
The challenge is thus to determine how exactly does surface topog-
raphy and texture affect the escape from a surface. Specifically, how
does the mean escape time scale with the depth and width of confin-
ing spaces within the surface and how does sticky entrapment affect
the statistics of the escape time, as characterized by its probability
density function (PDF)?

Recently, we have developed an analytical approach that allows
one to provide an exact solution to the aforementioned problems.25

We considered the escape of a diffusing particle from a domain of
arbitrary shape, size, and surface reactivity. The escape time from the
adsorbing confining spaces of a textured surface can be computed
using this formalism. Here, we perform this calculation for three
different topographies of adsorbing surfaces: (i) a surface perforated
with pits/holes is considered in Sec. II, (ii) a surface textured by an
array of pillars is considered in Sec. III, and (iii) a surface textured
by grooves is considered in Sec. IV.

For each of the above-mentioned cases, we aim to find the
escape time of a particle initially entrapped in the confining spaces
of the textured surface. We assume that the surface is effectively infi-
nite and homogeneously textured, i.e., all the confining spaces are of
the same size and repeated periodically. Thus, the escape time out of
the periodic cell, in fact, is equal to the escape time from the textured
surface. Note that in some cases, e.g., a surface perforated with holes,
the assumption of periodicity can be easily relaxed—it is the homo-
geneity which is important. Finally, while in this work we consider
homogeneously textured surfaces, the same formalism can be used
when dealing with heterogeneous textured surfaces with a known
size distribution of the confining spaces: The escape time from the
textured surface will then be the appropriately weighted sum of the
escape times from cells of different sizes.

As mentioned, we assume that the surface is effectively infinite,
namely, large in comparison to the unit cells that comprise it. For
example, the area of the on-chip devices that motivated our study
is ∼1 cm2, while their unit cells are only ∼0.5 μm2, i.e., orders of
magnitude smaller.22 In this limit, one can safely neglect the finite-
ness of the device, and identify the escape time from the surface with
the escape time from a single unit cell with periodic boundary con-
ditions. Note that this approach provides excellent approximations
even for small finite textured patches, given, e.g., reflecting boundary
conditions at the lateral edges of the surface. Corrections to the
results derived below should be introduced only when dealing with
small textured patches in which lateral escape through the surface
edges is possible. These are not included in the analysis below.

Alongside exact results, we also present an insightful approx-
imation. In Sec. II C, we introduce a two-state switching diffusion
approximation for the diffusive escape from sticky nanocavities.
This approximation is appropriate for deep and narrow cavities,
where diffusion is effectively one-dimensional. The adsorption to
the surface is then effectively accounted for by the introduction of an
immobile state for which the diffusion coefficient vanishes. We illus-
trate that this approximation is very accurate and works well even
for cavities of intermediate depth. We utilize this approximation yet

again in Sec. IV E, where we calculate the asymptotic decay rate of
the escape time PDF. Indeed, the approximation is expected to work
in the limit of very deep cavities regardless of the lateral geometry.
Thus, a central benefit of the two-state switching diffusion approxi-
mation is that it captures the essential physics of the problem at hand
and simplifies the analysis without losing much in accuracy.

The three problems solved here abide similar laws and show a
similar characteristic behavior. In Sec. V, we discuss a general form
of the equation for the mean escape time and for its inverse, which is
the effective desorption rate from the textured surface. This suggests
that the results presented here are universal in nature and can be
applied, even if approximately, when considering more complicated
scenarios.

II. ADSORBING PERFORATED SURFACE
We consider a perforated surface with cylindrical holes, illus-

trated in Fig. 1. We aim to find the escape time of a particle initially
entrapped inside one hole of the surface. Our task is thus calculat-
ing the escape time from the periodic cell. For the example under
consideration here, the periodic cell is a cylindrical hole. A represen-
tative hole is enlarged in Fig. 1. Escaping from the textured surface
is thus equivalent to the escape problem in three dimensions when
the particle diffuses inside a cylinder of radius L capped by paral-
lel planes at z = 0 and z = H. The top disk is absorbing, whereas the
remaining boundary of the domain is adsorbing. We assume that
the adsorption kinetics is linear and homogeneous on each surface,

FIG. 1. A perforated surface with cylindrical holes. A small part of the surface is
shown, in which one of the holes is enlarged: A cylinder of radius L capped by par-
allel planes at z = 0 and z = H. The top disk at z = H is absorbing (escape region
in red), whereas the bottom disk at z = 0 and the cylindrical wall are adsorbing
(green), with reversible binding kinetics. Here, ka and kd are the adsorption and
desorption constants for the bottom disk, and k′a and k′d are the adsorption and
desorption constants for the cylindrical surface.
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but we allow for heterogeneity in the sense that the adsorption and
desorption rates on the bottom disk and on the curved cylindri-
cal surface can differ. We are interested in finding the PDF of the
first-passage time to the top disk, which can also be thought of as
the escape time from the cylindrical compartment. We denote this
PDF as Jab(t∣r, z), where (r, z) ∈ Ω is the initial location of the par-
ticle inside the cylindrical domain Ω. In Ref. 25, we have derived,
for the general case, the partial differential equation and boundary
conditions governing the Laplace transform of this PDF, J̃ab(s∣r, z)
= ∫

∞
0 dt e−tsJab(t∣r, z). For the specific geometry considered here,

these equations simplify to

(s −DΔ)J̃ab(s∣r, z) = 0 (r, z ∈ Ω), (1a)

J̃ab(s∣r, z) = 1 (z = H), (1b)

(−∂z + qs)J̃ab(s∣r, z) = 0 (z = 0), (1c)

(∂r + q′s)J̃ab(s∣r, z) = 0 (r = L), (1d)

where Δ = ∂2
r + (1/r)∂r + ∂

2
z is the Laplace operator in cylindrical

coordinates (without the angular part) and D is the diffusion coef-
ficient. The surfaces are characterized by the parameters qs and
q′s ,

qs =
ka

D(1 + kd/s)
, q′s =

k′a
D(1 + k′d/s)

, (2)

where ka and kd are the adsorption and desorption constants for
the bottom disk and k′a and k′d are the adsorption and desorption
constants for the cylindrical surface.

A. Solution in Laplace domain
We search the solution of Eq. (1a) under the boundary

conditions (1b)–(1d) as

J̃ab(s∣r, z) = 2
∞
∑
n=0

c(s)n J0(α(s)n r̄)
g(s)n (z)
g(s)n (H)

, (3)

where r̄ = r/L, Jν(⋅) is the Bessel function of the first kind of order ν,
and

g(s)n (z) = α̂(s)n cosh (α̂(s)n z̄) + qsL sinh (α̂(s)n z̄) (4)

to respect the boundary condition (1c), with z̄ = z/L and

α̂(s)n =

√

[α(s)n ]
2
+ L2s/D. (5)

From the boundary condition (1d), we find that α(s)n satisfy the
transcendental equation

α(s)n
J1(α(s)n )

J0(α(s)n )
= q′sL. (6)

For any s ≥ 0, there are infinitely many solutions of this equation that
we enumerate by n = 0, 1, 2, . . . in an increasing order. The unknown
coefficients c(s)n are found by multiplying the boundary condition
(1b) by rJ0(α(s)k r/L) and integrating over r from 0 to L. This gives

TABLE I. Summary of dimensionless quantities.

h = H/L
ρ = l/L
z̄ = z/L
r̄ = r/L
κa = kaL/D
κd = kdL2

/D
κ′a = k′aL/D
κ′d = k′dL2

/D

α̂(s)n =

√

[α(s)n ]
2
+ L2s/D

2c(s)k L2 J2
0(α

(s)
k ) + J2

1(α
(s)
k )

2
=

L

∫

0

dr r J0(α(s)k r̄)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=L2J1(α(s)

k )/α
(s)
k

, (7)

from which we get

c(s)n =
J1(α(s)n )/α

(s)
n

J2
0(α

(s)
n ) + J2

1(α
(s)
n )

. (8)

To obtain these relations, we used the orthogonality of the Bessel
functions together with

1

∫

0

dr r J2
0(αr) =

J2
0(α) + J2

1(α)
2

(9)

and
1

∫

0

dr r J0(αr) =
J1(α)

α
. (10)

It is worth noting that the numerical inversion of the Laplace
transform is challenging here; in fact, one needs to evaluate the solu-
tion at complex s, which, in turn, requires an improved algorithm
for finding the roots α(s)n , given that qs and q′s become complex as
well.

To facilitate further analysis, we introduce the following
dimensionless quantities:

κa =
kaL
D

, κd =
kdL2

D
, κ′a =

k′aL
D

, κ′d =
k′dL2

D
. (11)

For convenience, in Table I, we collect the definitions of all dimen-
sionless quantities defined so far and also define h = H/L and ρ = l/L
that will be used later.

B. Mean escape time
Here, we compute the mean escape time by studying the asymp-

totic behavior of J̃ab(s∣r, z) as s→ 0. In the spectral expansion (3),
we first analyze the term n = 0 and then discuss the other terms with
n > 0.

As s→ 0, one has q′s → 0 so that α(s)0 → 0. Using the Taylor
series expansion of Bessel functions in Eq. (6), one gets in the leading
order
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α(s)0 ≈

√

2q′sL ≈
√

s
√

2κ′a/k
′
d (s→ 0). (12)

As a consequence, one has

c(s)0 =
1
2
⎛

⎝
1 +
[α(s)0 ]

2

8
+ ⋅ ⋅ ⋅

⎞

⎠
=

1
2
+

κ′a
8k′d

s +O(s2
) (13)

and

J0(α(s)0 r/L) = 1 −
r2κ′a

2L2k′d
s +O(s2

). (14)

We also get α̂(s)0 ≈ L
√

s/D
√

1 + 2κ′a/κ′d in the leading order, from
which we obtain

g(s)0 (z)
g(s)0 (H)

= 1 − (
κa

kd

H − z
L
+ [

L2

2D
+

κ′a
k′d
]

H2
− z2

L2 )s +O(s2
). (15)

Let us now consider the terms with n > 0. Denoting the left-
hand side of Eq. (6) as F1(z) = zJ1(z)/J0(z), we apply the Taylor
expansion near α(0)n > 0,

F1(α(s)n ) ≈ F1(α(0)n ) + F′1(α
(0)
n )(α

(s)
n − α(0)n ). (16)

According to Eq. (6), F1(α(s)n ) = q′sL→ 0 as s→ 0 and thus
α(0)n = j1,n, where j1,n denote the zeros of the Bessel function J1(z).
Plugging in z = j1,n into the relation F′1(z) = z(1 + J2

1(z)/J
2
0(z)),

we find that F′1( j1,n) = j1,n. All that remains is to compare the
right-hand side of Eqs. (6) and (16) in the limit s→ 0, which gives

α(s)n = j1,n +
κ′a

k′dj1,n
s +O(s2

). (17)

Similarly, setting F2(z) = (J1(z)/z)/(J2
0(z) + J2

1(z)) such that
according to Eq. (8) we have c(s)n = F2(α(s)n ), and using Eq. (17), we
obtain

c(s)n = F2(α(0)n ) + F′2(α
(0)
n )(α

(s)
n − α(0)n ) +O(s2

)

=
1

j1,nJ0(j1,n)

κ′a
k′dj1,n

s +O(s2
) (18)

and

α̂(s)n = j1,n +
1 + 2κ′a/κ′d

2j1,n

L2

D
s +O(s2

). (19)

Since c(s)n ∝ s for n > 0, the other factors in Eq. (3) can be found to
the lowest order in s. This gives

g(s)n (z)
g(s)n (H)

≈
cosh (j1,nz̄)
cosh (j1,nh)

, (20)

where h = H/L and

J0(α(s)n r̄) ≈ J0(j1,n r̄). (21)

Substituting these expressions into Eq. (3), we get

J̃ab(s∣r, z) = 1 − s⟨T (r, z)⟩ +O(s2
), (22)

where

⟨T (r, z)⟩ =
H2
− z2

2D
+

ka(H − z)
kdD

+
k′aL
k′dD
(

H2
− z2

L2 +
2r2
− L2

4L2

− 2
∞
∑
n=1

J0(j1,n r̄)
j2
1,nJ0(j1,n)

cosh (j1,nz̄)
cosh (j1,nh)

) (23)

is the mean escape time.
In the limit k′a → 0 or k′d →∞, namely when the cylindrical sur-

face is not sticky but reflecting, we retrieve the mean escape time for
a one-dimensional box with a sticky surface,25

⟨T (r, z)⟩ =
1

2D
(H2
− z2
) +

ka

kdD
(H − z). (24)

Averaging Eq. (23) over the cross section at a fixed height
z yields

⟨T (z)⟩ = 2π
πL2

L

∫

0

dr r ⟨T (r, z)⟩

=
ka

kd

H − z
D
+ (1 +

2k′a
k′dL
)

H2
− z2

2D
, (25)

where we used ∫
L

0 drJ0( j1,nr/L) = 0. This remarkably simple expres-
sion quantifies the effect of adsorption/desorption mechanisms onto
the mean escape time. Further averaging over z, we obtain

⟨T u⟩ =
H2

3D
(1 +

ka

kd

3
2H
+

k′a
k′d

2
L
), (26)

where the subscript “u” denotes a uniform distribution of the initial
position within the cylinder, which is a common experimental con-
dition. Indeed, zooming out and assuming that the particle’s initial
position is distributed uniformly inside the holes of the textured sur-
face, it is equally likely to find the particle in any of the holes. Since
the surface is homogeneous and the holes are all the same, the mean
escape time from the textured surface is thus given by Eq. (26).

C. Two-state switching diffusion approximation
In Sec. II D, we will analytically invert Eq. (3) to get the PDF of

the escape time. As this inversion is quite involved, it is worthwhile
to first consider a simple approximation for the problem at hand:
a model of two-state switching diffusion. This model is expected to
approximate the escape from a perforated surface in the limit L≪ H,
i.e., when the holes are very narrow and deep. In this limit, assum-
ing that the reactivities of all surfaces are comparable, the area of the
lower disk becomes negligible compared to the area of the cylindri-
cal surface. The bottom disk is thus expected to have little effect on
the escape time, and, so, we can treat it as an inert reflecting surface
(ka = 0).

When L≪ H, one can expect that diffusion in the radial direc-
tion is not relevant and try to reduce the original model to a two-state
switching diffusion model when the particle diffuses in the bulk with
a diffusion coefficient D in the state 1, or remains immobile in state
2 (mimicking its adsorbed state). The transition between two states
is a random first-order kinetics with rates k12 from the free state to
the adsorbed state and k21 = k′d in the reverse direction (see below).
A model of two-state switching free diffusion was introduced by
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Kärger,26 and more general models were studied in Refs. 27 and 28
(see references therein). In particular, the subordination concept was
used in Ref. 28 to show that the PDF of the escape time admits a
general spectral expansion,

Jsd(t∣x) = −
∞
∑
n=0

∂tΥ(t; Λn)un(x)∫
Ω

dx′ un(x′), (27)

where Λn and un(x) are the eigenvalues and L2(Ω)-normalized
eigenfunctions of the Laplace operator with appropriate boundary
conditions and the function Υ(t; Λ) accounts for switching dynam-
ics. An explicit form of this function for the two-state model26,28

reads in our setting as

Υ(t; Λ) =
e−γ+t
(DΛ − γ−) − e−γ−t

(DΛ − γ+)
γ+ − γ−

, (28)

where

γ± =
1
2
(DΛ + k12 + k21 ±

√

(DΛ + k21 + k12)
2
− 4DΛk21). (29)

Here, we consider diffusion on the interval (0, H) with
an absorbing endpoint z = H and a reflecting endpoint z
= 0, for which Λn = π2

(n + 1/2)2
/H2 and un(z) =

√
2/H cos (π(n

+ 1/2)z/H) such that

Jsd(t∣z) =
∞
∑
n=0

∂tΥ(t; Λn)
2(−1)n+1

π(n + 1/2)
cos (π(n + 1/2)z/H). (30)

From this PDF, we calculate the mean escape time,

⟨T sd(z)⟩ =
∞

∫

0

dt t Jsd(t∣z) =
∞
∑
n=0

2(−1)n

π(n + 1/2)

× cos (π(n + 1/2)z/H)
∞

∫

0

dt Υ(t; Λn)

=
(k12 + k21)H2

Dk12

∞
∑
n=0

2(−1)n cos (π(n + 1/2)z/H)
π3
(n + 1/2)3

= (1 + k12/k21)
H2
− z2

2D
, (31)

where we note that the sum in the third line is the Fourier series
of (1 − (z/H)2

)/2. A comparison of Eqs. (25) and (31) suggests a
way to assign the transition rates as k12 = 2k′a/L and k21 = k′d so that
the MFPTs are identical in both cases (for ka = 0). Note that for
ka > 0, the approximation identifies with the exact result to the
leading order in H/L, which was hereby considered large.

In Fig. 2, we assume ka = 0 and demonstrate how the two-state
diffusion approximation Jsd(t∣z) captures the PDF Jab(t∣r, z) in the
limit L≪ H. We plot the density and its approximation for three
heights H of the cylinder with unit radius L = 1. We see that even
when H ≈ L, the two-state approximation turns out to be remarkably
accurate at long times. Surprisingly, it accurately captures even the
short-time behavior.

D. Solution in time domain
The desorption kinetics implies the s-dependence of the para-

meters qs and q′s in the Robin boundary condition and thus leads to
a convolution-type boundary condition in time domain, rendering
the problem much more difficult than that with the ordinary Robin
boundary condition for irreversible binding. Nevertheless, as diffu-
sion is restricted in a bounded domain, the PDF of the escape time
is still expected to admit a spectral expansion. Moreover, the pres-
ence of an absorbing boundary at z = H ensures that the survival
probability vanishes exponentially in the long-time limit.

In mathematical terms, the inversion of the Laplace transform
J̃ab(s∣r, z) can be performed by evaluating its Bromwich integral
representation via the residue theorem,

Jab(t∣r, z) =
1

2πi∫
γ

ds est J̃ab(s∣r, z)

=∑
j

esj t Ressj{J̃ab(s∣r, z)}, (32)

where {sj} are the poles of J̃ab(s∣r, z), Ressj{J̃ab(s∣r, z)} is its residue
at sj, and γ is a contour in the complex plane of s chosen such that
all the poles are to the left of it. As the poles are determined by the
zeros of the function g(s)n (H) in Eq. (3), it is more convenient to
employ a double index (n, m) instead of a single index j. In fact, the

FIG. 2. PDF Jab(t∣r , z) of the escape time from a cylindrical hole (see Fig. 1) with L = 1, ka = 0, D = 1, k′a = 1, k′d = 1, r = 0, z = H/2, and with H = 10 (left), H = 2 (center),
and H = 0.5 (right). The solid lines represent the exact solution from Eq. (40) truncated to 30 × 30 = 900 terms. The dashed lines give the two-state switching diffusion
approximation Jsd(t∣z) from Eq. (30) truncated to 200 terms. The circles give estimates based on 106 particles whose motion was simulated according to the protocol in
Appendix D of Ref. 25, with simulation time step Δt = 10−6.
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first index n = 0, 1, 2, . . . refers to the function g(s)n (H), whereas the
second index m = 0, 1, 2, . . . enumerates all positive zeros sn,m of this
function,

g(sn,m)
n (H) = 0. (33)

The numerical computation of the poles sn,m will be discussed in
Sec. II E.

To compute the residues, we need to find

dg(s)n (H)
ds

=
dα̂(s)n

ds
(cosh (α̂(s)n h) + hα̂(s)n sinh (α̂(s)n h))

+ L
⎛

⎝

dqs

ds
sinh (α̂(s)n h) + qs

dα̂(s)n

ds
h cosh (α̂(s)n h)

⎞

⎠
, (34)

where

dqs

ds
=

kakd

D(kd + s)2 (35)

and

dα̂(s)n

ds
=

1
2α̂(s)n

⎛

⎝

L2

D
+ 2α(s)n

dα(s)n

ds
⎞

⎠
. (36)

If there are higher-order poles, one would need to evaluate higher-
order derivatives with respect to s. However, we did not observe
numerically higher-order poles for all examples considered in this
work. The derivative of α(s)n can be obtained by differentiating
Eq. (6),

dα(s)n

ds
α(s)n
⎛

⎝
1 +

J2
1(α

(s)
n )

J2
0(α

(s)
n )

⎞

⎠
=

k′ak′dL
D(k′d + s)2 . (37)

Substituting sn,m = −Dλn,m/L2, we get

dg(s)n (H)
ds

RRRRRRRRRRRs=sn,m

= i(hβn,m sin (βn,mh)

− cos (βn,mh)(1 −
hκaλn,m

κd − λn,m
))

×
L2
/D + 2αn,m

dα(sn,m)
n
ds

2βn,m

+ i sin (βn,mh)
κaκdL2

/D
(κd − λn,m)

2 , (38)

where αn,m = α(sn,m)
n , βn,m = −iα̂(sn,m)

n , and

αn,m
dα(s)n

ds

RRRRRRRRRRRs=sn,m

=
κ′aκ′dL2

D(κ′d − λn,m)
2
(1 + J2

1(αn,m)
J2
0(αn,m))

, (39)

which is obtained by the use of Eq. (37). We, therefore, get

Jab(t∣r, z) =
∞
∑

n,m=0
e−Dtλn,m/L2

cn,mJ0(αn,mr/L)

× (βn,m cos (βn,mz/L) +
κa

1 − κd/λn,m
sin (βn,mz/L)),

(40)

where

cn,m =
2ic(sn,m)

n
dg(s)

n (H)
ds ∣

s=sn,m

=
2i

dg(s)
n (H)

ds ∣
s=sn,m

J1(αn,m)/αn,m

J2
0(αn,m) + J2

1(αn,m)
. (41)

E. Poles
The poles of J̃ab(s∣r, z) are determined by the zeros of the func-

tion g(s)n (H) in Eq. (3). Let us fix n and introduce the shorthand
notations α(s)n = α and α̂(s)n = iβ so that

α2
+ β2
= λ = −sL2

/D > 0. (42)

Here, α is the solution of Eq. (6) that we rewrite explicitly as

α
J1(α)
J0(α)

=
κ′a

1 − κ′d/λ
. (43)

Equation (33) then reads

0 = i(β cos (βh) +
κa

1 − κd/λ
sin (βh)), (44)

which can also be written as

tan (βh)
β

= −
1 − κd/λ

κa
. (45)

We thus get a system of three nonlinear equations (42), (43), and
(45) for the unknown parameters α, β, and λ. For each n, these equa-
tions have infinitely many solutions, and the main practical difficulty
in their search is to ensure that they are all found. Doing so ana-
lytically is not possible. Thus, while the representation of Eq. (40)
is applicable for the general case, in what follows, we focus on two
limiting cases where the numerical solution is feasible via standard
methods.

1. No adsorption on the cylinder wall
We first discuss the simple limit where there is no adsorp-

tion on the cylinder wall, k′a = 0, such that Eq. (43) is reduced to
J1(α) = 0, which has infinitely many solutions αn = j1,n, where
j1,n are the zeros of J1(z), including α0 = j1,0 = 0. When n = 0, one
has λ = β2 and Eq. (45) can be written as

β tan (βh) =
κd − β2

κa
. (46)
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This equation has infinitely many solutions that we denote β0,m. For
each n > 0, Eq. (45) also has infinitely many solutions (denoted as
βn,m), but they do not contribute because the coefficient cn,m is pro-
portional to J1(αn) according to Eq. (41) and thus vanishes. In other
words, when there is no lateral adsorption, the solution J̃ab(s∣r, z)
and thus Jab(t∣r, z) do not depend on the radial coordinate, and one
retrieves the one-dimensional problem that was solved in Ref. 25
[see the paragraph below Eq. (9) therein]. In this particular case, αn,m
= αn is independent of the second index m and is actually decoupled
from βn,m.

2. No adsorption on the bottom disk
Now, we discuss the more interesting limit where there is no

adsorption on the bottom disk. If ka = 0, Eq. (45) has infinitely
many solutions βnh = π/2 + πn, with n = 0, 1, 2, . . .. We can rewrite
Eq. (43) as

J0(α)
αJ1(α)

=
1 − κ′d/(β

2
n + α2

)

κ′a
. (47)

The left-hand side decreases piecewise monotonously on the inter-
vals (j1,l, j1,l+1), while the right-hand side increases monotonously
from (1 − κ′d/β

2
n)/κ′a at α = 0 to 1/κ′a as α→∞. As a consequence,

for each n, there are infinitely many solutions that we denote by
αn,l+1 for each l = 0, 1, 2, . . ..

In conventional diffusion problems without desorption, tran-
scendental equations obtained from the boundary condition usually
admit only real solutions. In contrast, the desorption mechanism
and the consequent s-dependence in the Robin boundary condition
allow for a purely imaginary solution of Eq. (47). In fact, setting
α = −iᾱ, one gets

I0(ᾱ)
ᾱI1(ᾱ)

=
κ′d/(β

2
− ᾱ 2
) − 1

κ′a
, (48)

where Iν(⋅) is the modified Bessel function of the first kind of order ν.
The left-hand side monotonously decreases from +∞ to 0 as ᾱ goes
from 0 to +∞. In turn, the right-hand side monotonously increases
from (κ′d/β

2
n − 1)/κ′a at ᾱ = 0 to +∞ as ᾱ→ βn and then from

−∞ to −1/κ′a. As a consequence, there exists a single solution of
this equation on the interval (0, βn), for each βn, that we denote ᾱn.
This solution determines αn,0 = −iᾱn that contributes to the list of
poles. Note also that this solution results in small λn,0 = β2

n − ᾱ2
n; in

particular, λ0,0 determines the pole with the smallest absolute value,
which, in turn, determines the asymptotic decay rate of the survival
probability,29

S(t∣r, z) = 1 − ∫
t

0
dtJab(t∣r, z). (49)

Since βnh = π/2 + πn, some earlier expressions for the residues are
simplified,

dg(s)n (H)
ds

RRRRRRRRRRRs=sn,m

=
i(−1)nhL2

2D

×

⎛
⎜
⎜
⎝

1 +
2κ′aκ′d

(κ′d − λn,m)
2
(1 + J2

1(αn,m)
J2
0(αn,m))

⎞
⎟
⎟
⎠

, (50)

such that

cn,m =
4D(−1)nJ1(αn,m)

hL2αn,m(J2
0(αn,m) + J2

1(αn,m) +
2κ′aκ′dJ2

0(αn,m)
(κ′d−λn,m)2 )

, (51)

and the PDF of the escape time becomes

Jab(t∣r, z) =
∞
∑

n,m=0
e−Dtλn,m/L2

cn,mJ0(αn,mr/L)

× βn,m cos (βn,mz/L). (52)

F. Decay time
The decay time is determined by the smallest eigenvalue and is

hence given by

T =
L2

Dλ0,0
. (53)

The value of λ0,0 can be determined numerically, as described
in Sec. II E. In turn, the decay time determines the long-time
exponential decay of the survival probability and of the PDF,29

S(t∣r, z)∝ e−t/T , Jab(t∣r, z)∝ e−t/T
(t →∞). (54)

While one can always find T numerically, in certain cases, we
can approximate it analytically. For example, let us assume that
L≫ H such that h = H/L≪ 1. This case corresponds to a very wide
and shallow compartment. We recall that for the case of ka = 0, one
has β0 = π/(2h). A solution of Eq. (48) can be searched (and then
validated with simulations) by setting ᾱ0 = π/(2h) − ϵ with ϵ≪ 1.
Substituting this expression and expanding to the leading order in ϵ,
we get

ϵ ≈
κ′d

π/h + 2κ′a
I0(π/(2h))
I1(π/(2h))

, (55)

where we note that ϵ is, indeed, small when h≪ 1; thus, the approx-
imation is self-consistent. We then compute λ0,0 = β2

0 − ᾱ2
0 ≈ πϵ/h

and thus

T ≈
L2

D

1 + 2
π κ′ah I0(π/(2h))

I1(π/(2h))
κ′d

=
1
k′d
+

2
π

k′aH
k′dD

I0(πL/(2H))
I1(πL/(2H))

≈
1
k′d
(1 +

2
π

k′aH
D
), (56)

where we have used I0(πL/(2H))/I1(πL/(2H)) ≈ 1 for h≪ 1. Note
that in this limit, the decay time does not depend on L.

III. PERIODIC ARRAY OF ADSORBING NANOPILLARS
Here, we study a different textured surface, which is covered

by a periodic array of nanopillars of radius l and height H, sepa-
rated by a distance d (Fig. 3). The survival of a diffusing particle in
the presence of absorbing nanopillars has recently been studied in
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FIG. 3. A surface with a periodic array of nanopillars. A small part of the surface
is shown, in which the periodic cell, drawn in dashed lines, is a rectangular cuboid
that we approximate by a cylindrical cell. Such a cylindrical cell is drawn around
one of the pillars and enlarged. The radius of the cell is L = d/

√

π, where d is
the distance between adjacent pillars. The pillar is a cylinder of radius l capped by
parallel planes at z = 0 and z = H. The top annulus at z = H is absorbing (escape
region in red), whereas the bottom annulus at z = 0 and the inner cylindrical wall
are adsorbing (green). Here, ka and kd are the adsorption and desorption con-
stants for the bottom annulus, respectively, and k′a and k′d are the adsorption and
desorption constants for the pillar surface, respectively.

Refs. 30 and 31. Here, we take a step forward and consider a more
challenging situation when the cylindrical walls and the bottom base
are adsorbing. Following the rationales presented in Ref. 30, we
approximate a periodic cell of the structure, a rectangular cuboid,
by a cylindrical shell of inner radius l and outer radius L, capped by
parallel planes at z = 0 and z = H. In this way, the periodic condi-
tions on the cuboid are replaced by a reflecting boundary condition
on the outer cylinder, whose radius L is chosen to be L = d/

√
π to

get the same cross-sectional area of the true rectangular cuboid cell,
i.e., to preserve the volume of the periodic cell.

In summary, we consider the escape problem from the above
cylindrical shell, in which the top annulus is absorbing, the outer
cylinder is reflecting, whereas the inner cylinder and the bottom
annulus are adsorbing. The adsorption and desorption rates of the
bottom annulus and the inner cylinder can differ. We are interested
in finding the PDF of the first-passage time to the top annulus, which
can also be thought of as the escape time from the textured sur-
face. We denote this PDF as Jab(t∣r, z), where (r, z) ∈ Ω is the initial
location of the particle inside the cylindrical shell.

Repeating the same considerations as in Eqs. (1a)–(1d), we
obtain the boundary value problem

(s −DΔ)J̃ab(s∣r, z) = 0 (r, z ∈ Ω), (57a)

J̃ab(s∣r, z) = 1 (z = H), (57b)

(−∂z + qs)J̃ab(s∣r, z) = 0 (z = 0), (57c)

(−∂r + q′s)J̃ab(s∣r, z) = 0 (r = l), (57d)

∂r J̃ab(s∣r, z) = 0 (r = L), (57e)

where Δ = ∂2
r + (1/r)∂r + ∂

2
z is the Laplace operator in cylindrical

coordinates (without the angular part). The surfaces are character-
ized by the parameters qs and q′s that were defined in Eq. (2), where
ka and kd are the adsorption and desorption constants for the bottom
annulus and k′a and k′d are the adsorption and desorption constants
for the inner cylindrical surface.

A. Solution in Laplace domain
In analogy to Sec. II, we search the solution for Eq. (57a) under

the boundary conditions (57b)–(57e) as

J̃ab(s∣r, z) =
∞
∑
n=0

c(s)n ω0(α(s)n , r̄)
g(s)n (z)
g(s)n (H)

, (58)

where r̄ = r/L, with g(s)n (z) and α̂(s)n being defined in Eqs. (4) and (5),
respectively. The prefactors in g(s)n (z)were determined to ensure the
boundary conditions (57b) and (57c). We further introduce

ων(α(s)n , r̄) ≡ J1(α(s)n )Yν(α(s)n r̄) − Y1(α(s)n )Jν(α(s)n r̄), (59)

where Yν(⋅) is the Bessel function of the second kind of order ν such
that condition (57e) is satisfied. Indeed, the relation ∂rω0(α(s)n , r̄)
= −α(s)n ω1(α(s)n , r̄)/L implies ∂rω0(α(s)n , r̄)∣r̄=1 = 0. From the bound-
ary condition (57d), we find that α(s)n satisfy the transcendental
equation

α(s)n
ω1(α(s)n , ρ)
ω0(α(s)n , ρ)

= −q′sL, (60)

where ρ = l/L. For any s ≥ 0, there are infinitely many solutions that
we enumerate by n = 0, 1, 2, . . . in an increasing order. The unknown
coefficients c(s)n are found by multiplying the boundary condition
(57b) by rω0(α(s)n , r) and integrating over r from l to L. This gives

c(s)k
2
{[ω0(α(s)n , 1)]

2
− [ρω0(α(s)n , ρ)]

2
− [ρω1(α(s)n , ρ)]

2
}

= −
ρ

α(s)k

ω1(α(s)n , ρ), (61)

from which we get

c(s)n =
2ρω1(α(s)n , ρ)/α(s)n

[ρω1(α(s)n , ρ)]
2
+ [ρω0(α(s)n , ρ)]

2
− [ω0(α(s)n , 1)]

2 . (62)

To obtain the left-hand side of Eq. (61), we used the orthogonality of
the Bessel functions together with

c(s)k ∫

1

ρ
dr̄ r̄ [ω0(α(s)n , r̄)]

2
=

c(s)k
2
{[r̄ ω0(α(s)n , r̄)]

2

+ [rω1(α(s)n , r̄)]
2
}

1

ρ
, (63)
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and noted that ω1(α(s)n , 1) = 0. To obtain the right-hand side of
Eq. (61), we used

1

∫
ρ

dr̄ r̄ ω0(α(s)n , r̄) = −
ρ

α(s)k

ω1(α(s)n , ρ). (64)

To facilitate further analysis, we use the dimensionless quantities in
Table I.

B. Mean escape time
Here, we compute the mean escape time by analyzing the

asymptotic behavior of J̃ab(s∣r, z) as s→ 0. We employ the same
procedure that was described in Sec. II B.

In the spectral expansion (58), we first analyze the term n = 0
and then discuss the other terms with n > 0. As s→ 0, one has q′s → 0
(with an asymptotic form κ′a

κ′d
L
D s), and so, according to Eq. (60),

α(s)0 → 0. Using the Taylor expansion of the Bessel functions in
Eq. (59), one gets

ω0(α(s)n , r̄) =
2

πα(s)n
+ α(s)n

1 − r̄ 2
+ 2 ln (r̄)
2π

+O((α(s)n )
2
) (65)

and

ω1(α(s)n , r̄) ≈ −
1 − r̄ 2

πr̄
+O((α(s)n )

2
). (66)

Therefore, for s→ 0, we obtain

α(s)0 ≈
√

s
√

2κ′a/k
′
d

√
ρ

1 − ρ2 (s→ 0). (67)

As a consequence, we have

c(s)0 ≈
π
2

α(s)0 (1 +
ρ

1 − ρ2
κ′a
k′d

1 − ρ4
+ 4ρ2 ln (ρ)

4(1 − ρ2
)

s) +O(s5/2
). (68)

We also get α̂(s)0 ≈
√

s
√

L2
/D
√

1 + 2(ρ/(1 − ρ2
))κ′a/κ′d in the lead-

ing order, from which we obtain

g(s)0 (z)
g(s)0 (H)

= 1 − (
κa

kd

H − z
L
+ [

L2

2D
+

ρ
1 − ρ2

κ′a
k′d
]

H2
− z2

L2 )s +O(s2
).

(69)

Let us now consider the terms with n > 0. Denoting the left-
hand side of Eq. (60) as

F1(x) = x
ω1(x, ρ)
ω0(x, ρ)

, (70)

we Taylor expand

F1(α(s)n ) ≈ F1(α(0)n ) + F′1(α
(0)
n )(α

(s)
n − α(0)n ). (71)

According to Eq. (60), F1(α(s)n ) = −q′sL→ 0 as s→ 0, and thus, α(0)n
are the zeros of the function ω1(x, ρ) defined in Eq. (59). Taking the
derivative of Eq. (70) and plugging in x = α(0)n , we find

F′1(α
(0)
n ) = α(0)n ρ −

4

π2α(0)n ρ[ω0(α(0)n , ρ)]
2 . (72)

Comparing the right-hand side of Eqs. (71) and (60) in the limit
s→ 0, we obtain

α(s)n = α(0)n −
κ′a
k′d

1
F′1(α

(0)
n )

s +O(s2
). (73)

Similarly, setting

F2(x) =
2ρω1(x, ρ)/x

[ρω1(x, ρ)]2 + [ρω0(x, ρ)]2 − [ω0(x, 1)]2
, (74)

we have c(s)n = F2(α(s)n ) according to Eq. (62). Taking the derivative
of Eq. (74) and plugging in x = α(0)n , we find

F′2(α
(0)
n ) =

J0(α(0)n )Y1(α(0)n ρ) + Y2(α(0)n )J1(α(0)n ρ) − ρ[Y1(α(0)n )J0(α(0)n ρ) + J1(α(0)n )Y2(α(0)n ρ)]

− 2
π2α(0)

n ρ
+

α(0)
n ρ
2 [ω0(α(0)n , ρ)]

2 , (75)

and using Eq. (73), we get

c(s)n = F2(α(0)n ) + F′2(α
(0)
n )(α

(s)
n − α(0)n ) +O(s2

)

= −
F′2(α

(0)
n )

F′1(α
(0)
n )

κ′a
k′d

s +O(s2
) (76)

and

α̂(s)n = α(0)n + (
1

2α(0)n
−

κ′a
κ′dF′1(α

(0)
n )
)

L2

D
s +O(s2

). (77)

As a consequence, we find that to the leading order in s,

g(s)n (z)
g(s)n (H)

≈
cosh (α(0)n z̄)
cosh (α(0)n h)

(78)

and

ω0(α(s)n , r̄) ≈ ω0(α(0)n , r̄), (79)

with z̄ = z/L. Substituting these expressions into Eq. (58), we get

J̃ab(s∣r, z) = 1 − s⟨T (r, z)⟩ +O(s2
), (80)
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FIG. 4. Mean escape time from a surface textured by an array of pillars (Fig. 3).
The solid lines are drawn using the exact solution of Eq. (81). Each line represents
a different adsorption equilibrium constant for the pillar, K′ = k′a/k

′
d , where we set

k′d = 1 and vary k′a accordingly. The marker symbols represent the mean escape
time of 104 particles simulated according to the protocol in Appendix D of Ref. 25,
with simulation time step Δt = 10−4. We set D = 0.7, l = 0.9, ka = 0.7, kd = 6.1,
z = 0.1, and r = 1. The mean escape time is plotted as a function of (a) the height
of the pillars H, where we set L = 5, and (b) the radius of the unit cell L (divided by
the radius of the pillars l), where we set H = 10.

where

⟨T (r, z)⟩ =
H2
− z2

2D
+

ka(H − z)
kdD

+
k′a
k′d

L
D

⎡
⎢
⎢
⎢
⎢
⎣

ρ
1 − ρ2 (h2

− z̄ 2

−
1 − r̄ 2

+ 2 ln (r̄)
2

−
1 − ρ4

+ 4ρ2 ln (ρ)
4(1 − ρ2

)
)

+
∞
∑
n=1

ω0(α(0)n , r̄)
cosh (α(0)n z̄)
cosh (α(0)n h)

F′2(α
(0)
n )

F′1(α
(0)
n )

⎤
⎥
⎥
⎥
⎥
⎦

(81)

is the mean escape time, in which h = H/L is the dimensionless
cylinder’s height. In Fig. 4, we plot the mean escape time from a sur-
face textured by an array of pillars as given by Eq. (81), with varying
pillar height and varying inter-pillar distance.

As in Sec. II B, in the limit k′a → 0 or k′d →∞, when the pillars
are not sticky but inert, we retrieve the mean escape time for a one-
dimensional box with a sticky surface,25

⟨T (r, z)⟩ =
1

2D
(H2
− z2
) +

ka

kdD
(H − z), (82)

which is identical to Eq. (24).

Averaging Eq. (81) over the cross section at height z yields

⟨T (z)⟩ = 2π
π(L2

− l2
)

L

∫

l

dr r ⟨T (r, z)⟩

=
ka

kd

H − z
D
+ (1 +

2k′a
k′dL

ρ
1 − ρ2 )

H2
− z2

2D
, (83)

where we used ∫
L

l dr ω0(α(0)n , r̄) = 0. Further averaging over z, we
obtain

⟨T u⟩ =
H2

3D
(1 +

ka

kd

3
2H
+

k′a
k′d

ρ
1 − ρ2

2
L
), (84)

where the subscript “u” denotes a uniform distribution of the initial
position.

C. Solution in time domain
The solution in time domain can be found via the residue

theorem. The computation is very similar to the case of the capped
cylinder in Sec. II D; here, we differentiate Eq. (60) to get

α(s)n
dα(s)n

ds
= −

κ′ak′d
(k′d + s)2 ×

⎛
⎜
⎜
⎝

ω1(α(s)n , ρ)
α(s)n ω0(α(s)n , ρ)

+

ω0(α(s)n , ρ) dω1(α(s)
n ,ρ)

dα(s)
n

− ω1(α(s)n , ρ) dω0(α(s)
n ,ρ)

dα(s)
n

[ω0(α(s)n , ρ)]
2

⎞
⎟
⎟
⎠

−1

.

(85)

Overall, we obtain

Jab(t∣x, z) =
∞
∑

n,m=0
cn,me−Dtλn,m/L2

ω0(αn,mr/L)

× (βn,m cos (βn,mz/L) −
κaλn,m

κd − λn,m
sin (βn,mz/L)),

(86)

where αn,m = α(sn,m)
n , λn,m = α2

n,m + β2
n,m = −sn,mL2

/D,

cn,m =
ic(sn,m)

n
dg(s)

n (H)
ds ∣

s=sn,m

=
i

dg(s)
n (H)

ds ∣
s=sn,m

×
2ρω1(αn,m, ρ)/αn,m

[ρω1(αn,m, ρ)]2 + [ρω0(αn,m, ρ)]2 − [ω0(αn,m, 1)]2
, (87)

and dgn(H)
ds ∣s=sn,m is given by Eq. (38), in which α(s)n

dα(s)
n

ds is substituted
from Eq. (85).

D. Poles
The poles of J̃ab(s∣x, z) are determined by the zeros of g(s)n (H),

as previously (see Sec. II E). We use the former notations: α(s)n = α,
α̂(s)n = iβ, and α2

+ β2
= λ = −sL2

/D. In this case, Eq. (60) reads

ω0(α, ρ)
αω1(α, ρ)

= −
1 − κ′d/(α

2
+ β2
)

κ′a
. (88)
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We focus on the case ka = 0, for which βnh = π/2 + πn. For any fixed
βn, the left-hand side of Eq. (88) increases piecewise monotonously
from −∞ to +∞ on the intervals (α(0)n , α(0)n+1), while the right-hand
side is a monotonously decreasing function of α. As a consequence,
there is a single solution on each interval (α(0)n , α(0)n+1) that we denote
as αn,m+1, for m = 0, 1, 2, . . .. In addition, there is a purely imaginary
solution, which can be found by setting α = −iᾱ, with ᾱ satisfying

1
ᾱ

I1(ᾱ)K0(ᾱρ) + K1(ᾱ)I0(ᾱρ)
K1(ᾱ)I1(ᾱρ) − I1(ᾱ)K1(ᾱρ)

=
1 − κ′d/(β

2
− ᾱ 2
)

κ′a
, (89)

where Iν(⋅) and Kν(⋅) are the modified Bessel functions of the
first and second kind of order ν. The left-hand side monotonously
increases from −∞ to 0 as ᾱ goes from 0 to +∞, whereas the right-
hand side for any fixed βn decreases monotonously on (0, βn) from
(κ′d/β

2
n − 1)/κ′a to −∞ and on (βn,+∞) from∞ to 1/κ′a. As a con-

sequence, there exists only one solution on the interval (0, βn) that
we denote ᾱn. This solution determines αn,0 = −iᾱn that contributes
to the list of poles.

E. Decay time
The general discussion in Sec. II F is valid here. Let us find

the approximation for the decay time T in the limit ka = 0 and
h = H/L≪ 1 such that β0 = π/(2h)≫ 1. A solution of Eq. (89)
can be searched (and then validated with simulations) by setting
ᾱ0 = π/(2h) − ϵ with ϵ≪ 1. Substituting this expression and
expanding to the leading order in ϵ, we get

ϵ ≈ [
π

hκ′d
+

2κ′a
κ′d

I1(
π
2h)K0(

πρ
2h) + K1(

π
2h)I0(

πρ
2h)

I1(
π
2h)K1(

πρ
2h) − K1(

π
2h)I1(

πρ
2h)
]

−1

, (90)

where we note that ϵ is, indeed, small when h≪ 1; thus, the approx-
imation is self-consistent. We then compute λ0,0 = β2

0 − ᾱ2
0 ≈ πϵ/h

and find

T =
L2

Dλ0,0
≈

1
k′d
+

2hκ′a
πk′d

I1(
π
2h)K0(

πρ
2h) + K1(

π
2h)I0(

πρ
2h)

I1(
π
2h)K1(

πρ
2h) − K1(

π
2h)I1(

πρ
2h)

. (91)

To proceed, we note that when h≪ 1, one has Iν(
π
2h) ≈

√
heπ/(2h)

/π,
whereas Kν(

π
2h) ≈

√
he−π/(2h) and is thus negligible. We then get

T ≈
1
k′d
+

2Hk′a
πDk′d

K0(πl/(2H))
K1(πl/(2H))

≈
1
k′d
(1 +

2
π

k′aH
D
), (92)

where we noted that πρ/(2h) = πl/(2H) and used
K0(πl/(2H))/K1(πl/(2H)) ≈ 1 for h≪ 1. We thus see that
in this limit, the decay time identifies with the decay time in Eq. (56)
and that it does not depend on L.

IV. ADSORBING GROOVED SURFACE
We consider a grooved surface, as illustrated in Fig. 5. This

problem is equivalent to diffusion with a diffusion coefficient

FIG. 5. Adsorbing grooved surface. A small part of the surface is shown. The walls
separating the grooves are of height H, and the distance between any two walls is
2L. One of the grooves is enlarged, and the problem is effectively the escape from
a two-dimensional rectangular compartment. The top side at z = H is absorbing
(an escape region in red), whereas the other three sides are adsorbing (green).
Here, ka and kd are the adsorption and desorption constants for the bottom edge,
respectively, and k′a and k′d are the adsorption and desorption constants for the left
and right edges, respectively.

D in a rectangular domain Ω = (−L, L) × (0, H). The top edge of the
domain is absorbing (with a Dirichlet boundary condition), and the
three other edges are adsorbing, with reversible binding. As in the
previous examples, we allow for different adsorption kinetics on the
bottom edge. We search the probability density function Jab(t∣x, z)
of the escape time through the top edge. Note that the problem of
escape from the domain Ω is equivalent to an escape from a twice
smaller domain Ω′ = (0, L) × (0, H), where the left edge is reflecting
(with a Neumann boundary condition); see Fig. 6. We thus focus on
the latter setting.

Repeating the same considerations as in Eqs. (1a)–(1d), we
obtain the boundary value problem

(s −DΔ)J̃ab(s∣x, z) = 0 (x, z ∈ Ω′), (93a)

J̃ab(s∣x, z) = 1 (z = H), (93b)

(−∂z + qs)J̃ab(s∣x, z) = 0 (z = 0), (93c)

− ∂x J̃ab(s∣x, z) = 0 (x = 0), (93d)
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FIG. 6. (a) A schematic illustration of a rectangular domain Ω = (−L, L)
× (0, H) ⊂ R2 with one absorbing edge (an escape region on the top) and
three adsorbing edges with reversible binding kinetics characterized by ka and kd
(bottom) and k′a and k′d (left and right). (b) An equivalent twice smaller domain
Ω′ = (0, L) × (0, H) with a reflecting edge replacing the adsorbing edge on the
left (Neumann boundary condition denoted by N).

(∂x + q′s)J̃ab(s∣x, z) = 0 (x = L), (93e)

where Δ = ∂2
x + ∂

2
z is the Laplace operator in Cartesian coordinates.

The surfaces are characterized by the parameters qs and q′s that were
defined in Eq. (2), where ka and kd are the adsorption and desorption
constants for the bottom edge, respectively, and k′a and k′d are the
adsorption and desorption constants for the right edge, respectively.

A. Solution in Laplace domain
The solution of Eq. (93a) under the boundary conditions

(93b)–(93e) is

J̃ab(s∣x, z) =
∞
∑
n=0

c(s)n cos (α(s)n x/L)
g(s)n (z)
g(s)n (H)

, (94)

where g(s)n (z) and α̂(s)n were defined in Eqs. (4) and (5). The pref-
actors in g(s)n (z) were determined by the boundary conditions (93b)
and (93c).

We have used the reflecting boundary condition (93d) to deter-
mine the form of the x-dependent part in Eq. (94). From the bound-
ary condition (93e), we find that α(s)n satisfy the transcendental
equation

α(s)n tan (α(s)n ) = q′sL. (95)

For any s ≥ 0, there are infinitely many solutions that we enumerate
by n = 0, 1, 2, . . . in an increasing order. The unknown coefficients
c(s)n are found by multiplying the boundary condition (93b) by
cos (α(s)k x/L) and integrating over x from 0 to L. This gives

c(s)n =
2 sin (α(s)n )

α(s)n (1 + sin (2α(s)
n )

2α(s)
n
)

. (96)

To facilitate further analysis, we use the dimensionless quan-
tities in Table I. In the solution process, we will employ the same
procedure that was described in Sec. II. We will thus skip some of
the details of the calculation.

B. Mean escape time
Here, we compute the mean escape time by analyzing the

asymptotic behavior of J̃ab(s∣r, z) as s→ 0. In the limit s→ 0, one
has

α(s)n ≈

⎧⎪⎪
⎨
⎪⎪⎩

√

sκ′a/k
′
d (n = 0),

πn + κ′as/(k′dπn) (n > 0),
(97)

where we used α(0)n = πn. We then deduce

c(s)n ≈

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 +
κ′a

6k′d
s (n = 0),

2s(−1)nκ′a/(k
′
d[πn]2) (n > 0).

(98)

Similarly, we deduce

g(s)0 (z)
g(s)0 (H)

≈ 1 − (
κa

kd

H − z
L
+ [

L2

D
+

κ′a
k′d
]

H2
− z2

2L2 )s (99)

and

g(s)n (z)
g(s)n (H)

≈
cosh (πnz/L)
cosh (πnH/L)

. (100)

Substituting these expressions in Eq. (94), we get J̃ab(s∣x, z) = 1
− s⟨T(x, z)⟩ +O(s2

), where the mean escape time is found to be

⟨T(x, z)⟩ =
H2
− z2

2D
+

ka

kd

H − z
D
+

k′aL
k′dD
(

x2

2L2 −
1
6
+

H2
− z2

2L2

− 2
∞
∑
n=1

(−1)n

π2n2 cos (πnx/L)
cosh (πnz/L)
cosh (πnH/L)

). (101)

Averaging over the cross section at height z yields

⟨T(z)⟩ =
1
L

L

∫

0

dx T(x, z)

=
ka(H − z)

kdD
+ (1 +

k′a
k′dL
)

H2
− z2

2D
. (102)

Further averaging over z, we obtain

⟨T u⟩ =
1
H

H

∫

0

dz⟨T(z)⟩

=
H2

3D
(1 +

ka

kd

3
2H
+

k′a
k′d

1
L
), (103)

where the subscript “u” denotes a uniform distribution of the initial
position.

If one uses the two-state switching diffusion approximation
instead of the exact solution (see Sec. II C), a comparison with
Eq. (31) for ka = 0 suggests that k12 = k′a/L.
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C. Solution in time domain
The solution in time domain can be found via the residue

theorem. The computation is similar to the case of the capped
cylinder in Sec. II D; here, we differentiate Eq. (95) to get

α(s)n
dα(s)n

ds
=

κ′ak′d
(k′d + s)2

⎛

⎝

tan (α(s)n )

α(s)n
+ 1 + tan2

(α(s)n )
⎞

⎠

−1

. (104)

Therefore, we obtain

Jab(t∣x, z) =
∞
∑

n,m=0
cn,me−Dtλn,m/L2

cos (αn,mx/L)

× (βn,m cos (βn,mz/L) −
κaλn,m

κd − λn,m
sin (βn,mz/L)),

(105)

where αn,m = α(sn,m)
n , λn,m = α2

n,m + β2
n,m = −sn,mL2

/D,

cn,m =
ic(sn,m)

n
dg(s)

n (H)
ds ∣

s=sn,m

=
i

dg(s)
n (H)

ds ∣
s=sn,m

2 sin (αn,m)/αn,m

1 + sin (2αn,m)
2αn,m

, (106)

and dgn(H)
ds ∣s=sn,m is given by Eq. (38), in which α(s)n

dα(s)
n

ds is substituted
from Eq. (104).

Figure 7 illustrates the behavior of the PDF Jab(t∣x, z) for
H = 10. For small adsorption rates κ′a (panels a and b), the two-
state switching diffusion model yields an excellent approximation.
In contrast, when κ′a = 10 (panel c), the two-state model accurately
describes the long-time behavior but fails at short times. Simi-
larly, when H = 1, an approximation by the two-state model is less
accurate (figure not shown).

D. Poles
The poles of J̃ab(s∣x, z) are determined by the zeros of g(s)n (H),

as previously (see Sec. II E). We use the former notations:

α(s)n = α, α̂(s)n = iβ, and α2
+ β2
= λ = −sL2

/D. In this case, Eq. (95)
reads

cos (α)
α sin (α)

=
1 − κ′d/(α

2
+ β2
)

κ′a
. (107)

We focus on the case ka = 0, for which βnh = π/2 + πn with
h = H/L. For any fixed βn, the left-hand side of Eq. (107) decreases
piecewise monotonously on the intervals (πm, π(m + 1)), while
the right-hand side is a monotonously increasing function of α.
As a consequence, there is a single solution on each interval
(πm, π(m + 1)) that we denote as αn,m+1, for m = 0, 1, 2, . . .. In addi-
tion, there is a purely imaginary solution, which can be found by
setting α = −iᾱ, with ᾱ satisfying

cosh (ᾱ)
ᾱ sinh (ᾱ)

=
κ′d/(β

2
n − ᾱ 2

) − 1
κ′a

. (108)

As ᾱ goes from 0 to +∞, the left-hand side monotonously
decreases from +∞ to 0, whereas the right-hand side for any fixed
βn increases monotonously on (0, βn) from (κ′d/β

2
n − 1)/κ′a to +∞

and on (βn,+∞) from −∞ to −1/κ′a. As a consequence, there exists
only one solution on the interval (0, βn) that we denote ᾱn. This
solution determines αn,0 = −iᾱn that contributes to the list of poles.

E. Decay time
The general discussion in Sec. II F is valid here. Let us find

the approximation for the decay time T in the limit ka = 0 and
h = H/L≪ 1 such that β0 = π/(2h)≫ 1. A solution of Eq. (108)
can be searched (and then validated with simulations) by setting
ᾱ0 = π/(2h) − ϵ with ϵ≪ 1. Substituting this expression and
expanding in the leading order to ϵ, we get

ϵ ≈
κ′d

π
h + 2κ′actanh(π/(2h))

, (109)

FIG. 7. PDF Jab(t∣x, z) of the escape time from a groove with D = 1, L = 1, H = 10, ka = 0, for three different values of κ′d (see the legend), and κ′a = 0.1 (panel a), κ′a = 1
(panel b), and κ′a = 10 (panel c). The solid lines give the exact solution from Eq. (105), while the dashed lines represent the two-state switching diffusion approximation. The
marker symbols give estimates based on 106 particles whose motion was simulated according to the protocol in Appendix D of Ref. 25, with simulation time step Δt = 10−6.
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from which λ0,0 = β2
0 − ᾱ2

0 ≈ πϵ/h and thus

T =
L2

Dλ0,0
≈

L2

D
1 + 2

π κ′ah ctanh(π/(2h))
κ′d

=
1
k′d
+

2
π k′a(H/D)ctanh(πL/(2H))

k′d

≈
1
k′d
(1 +

2
π

k′aH
D
), (110)

where we used ctanh(πL/(2H)) ≈ 1 when h≪ 1. In this limit, the
decay time does not depend on L. Note that the decay time in this
limit is the same as in the previous two examples; see Eqs. (56)
and (92).

For this example, let us also consider the opposite limit h≫ 1.
In fact, we have already derived in Sec. II C the two-state switch-
ing diffusion approximation for this case. The decay time of this
approximation is determined by γ− with the lowest eigenvalue
Λ0 = (π/2H)2, according to Eq. (29). At the end of Sec. IV B, we have

FIG. 8. Left column: The decay time T for the escape from a groove with h = H/L = 0.1 (top), h = 1 (middle), and h = 10 (bottom), for ka = 0, L = 1, and D = 1. Since ka

= 0, we have β0 = π/(2h). We attain ᾱ0 by numerically finding the roots of Eq. (108). We then use λ0,0 = β2
0 − ᾱ2

0 and T = L2
/(Dλ0,0). Center column: The relative error

(in per cents) of the approximation for T given by Eq. (110). Right column: The relative error (in per cents) of the two-state switching diffusion approximation for T .
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already seen that for this example, k12 = k′a/L and k21 = k′d. Finally,
we have Tsd = L2

/(Dγ−).
The behavior of the decay time and the validity of the approx-

imation in Eq. (110) and the two-state switching diffusion approxi-
mation Tsd are explored in Fig. 8, where we plot the actual decay time
as a function of κ′a and κ′d and the relative errors that are obtained by
using the approximations. While it can be seen that both approxima-
tions work very well in their ranges of validity (h≪ 1 for Eq. (110)
and h≫ 1 for two-state diffusion), we observe that the two-state
diffusion approximation also provides fair results for grooves of
intermediate depth (h = 1).

V. DISCUSSION
Since the early studies of Langmuir in the beginning of the

twentieth century, and to this day, the vast majority of theoreti-
cal studies on adsorption dynamics have dealt with flat surfaces
immersed in an infinite bulk of adsorbates32–50 (which is effectively
a one-dimensional setting), or with smooth curved surfaces.51–59 In
this context, two main models are usually considered: linear kinetics
and Langmuir kinetics. While the latter accounts for saturation of
the surface under high adsorbate concentration, it is not linear and
does not admit an analytical solution.

Given a flat surface located at L and a concentration pro-
file c(x, t), the surface concentration Γ(t) under linear adsorption
kinetics follows59

dΓ(t)
dt
= kac(L, t) − kdΓ(t). (111)

At equilibrium, i.e., when dΓ(t)
dt = 0, one gets the Henry isotherm

Γ(t) = Kc(L, t), with the equilibrium constant K = ka/kd. Trivially,
the desorption rate kd is inversely proportional to the mean time
spent being adsorbed to the surface: kd = ⟨T ⟩−1. But what happens
when the surface is textured? On the microscopic scale, the des-
orption rate is still determined by kd. Yet, on a scale comparable
to that of the surface roughness, multiple events of adsorption and
desorption can give rise to a completely different effective (or macro-
scopic) desorption rate. In this work, we employed the theoretical
framework in Ref. 25 to determine this effective desorption rate.

For this purpose, we adopted a single-particle perspective
and calculated the PDF and the mean of the escape time from
textured surfaces of three different common topographies: holes,
pillars, and grooves. Such solutions are valuable when studying
the adsorption–desorption dynamics of surfaces. In particular, we
obtained the mean escape time for the three surface topographies
in a common experimental setting where the initial position of the
particle is uniformly distributed inside the surface cavities. Let us
rewrite Eqs. (26), (84), and (103) here as follows:

⟨T holes⟩ =
H2

3D
(1 + K

3
2H
+ K′

2
L
), (112a)

⟨T pillars⟩ =
H2

3D
(1 + K

3
2H
+ K′

ρ
1 − ρ2

2
L
), (112b)

⟨T grooves⟩ =
H2

3D
(1 + K

3
2H
+ K′

1
L
), (112c)

where K = ka/kd and K′ = k′a/k′d are the equilibrium constants of the
bottom and lateral surfaces, respectively, and ρ = l/L.

For all the considered examples, the first term in the parenthe-
ses corresponds to the mean escape time in the absence of adsorption
(reflecting surfaces): ⟨T ref ⟩ = H2

/(3D). The second and third terms
correspond to the mean time spent adsorbed to the bottom surface
and the lateral surface, respectively. We can easily quantify how the
introduction of stickiness affects the mean escape time. For example,
dividing Eq. (112a) by ⟨T ref ⟩, we obtain

⟨T holes⟩

⟨T ref ⟩
= 1 + K

3
2H
+ K′

2
L

. (113)

It is apparent that there are two contributions to the deviation of the
mean escape time from its non-sticky benchmark. The contribution
from the bottom surface scales like K/H and the contribution from
the lateral surface scales like K′/L, where L and H are the character-
istic lengths in the direction of the axes. As first mentioned in Ref. 25,
this scaling seems to be universal, and the geometry of the domain
determines the effective length ξ. It can be easily verified to hold in
Eqs. (112b) and (112c).

In this work, we considered surfaces with canonical topogra-
phies. However, the approach we employed is general and we expect
that a similar behavior will also be found for other geometries with
perpendicular sticky surfaces, up to the geometrical prefactor ξ. For
a general (even rugged) sticky surface, the expected form of the mean
escape time is

⟨T u⟩ = ⟨T ref ⟩(1 +∑
n

Kn

ξn
), (114)

where ξn is the effective length scale of the nth surface element
and Kn = k(n)a /k

(n)
d is the equilibrium constant with k(n)a and k(n)d

standing for the adsorption and desorption rates, respectively.
Finally, the mean escape time is inversely proportional to the

effective desorption rate from the textured surface,

keff
d = ⟨T u⟩

−1
= [⟨T ref ⟩(1 +∑

n

Kn

ξn
)]

−1

. (115)

Note that Eq. (115) represents an effective macroscopic descrip-
tion of the system and that it does not imply exponential escape
times from the surface. Importantly, keff

d can be orders of magni-
tude smaller than the characteristic (microscopic) desorption rates
in the system, as it vanishes with lateral confining length scales.
Equation (115) can guide those who wish to predict and control
desorption from textured adsorbing surfaces.

The results established herein can also be used to coarse-grain
microscopic desorption kinetics when building macroscopic models
of diffusive dynamics near textured surfaces. In fact, former studies
on boundary homogenization (see Refs. 30 and 31 and references
therein) provided efficient tools for estimating the macroscopic
adsorption constant for textured surfaces. This work complements
the former results by quantifying the desorption step and thus open-
ing a way to describe the adsorption–desorption kinetics of textured
surfaces.
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