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Diffusive transport across a semi-permeable interface is ubiquitous in physics, biology, chem-
istry and industry [1,2]. Diffusing particles first arrive onto the boundary and then explore some
neighboring area before reacting or being transferred across this interface. The overall func-
tioning of the interface is then governed by a “competition” between its accessibility (how easy
to reach the boundary) and permeability (how easy to cross the boundary). This competition
is controlled by two transport parameters: diffusion coefficient D and surface permeability or
reactivity W . Their ratio D/W , which is homogeneous to a length, parameterizes a transition
from a purely reactive boundary (W = ∞) and a purely reflecting boundary (W = 0).

In mathematical terms, the arrival points for diffusion are known to be characterized by
harmonic measure. By analogy, one can introduce a family of the spread harmonic measures
(parameterized by the ratio D/W ) in order to characterize the transfer or reaction points [3-5].
These measures can either be generated by partially reflected Brownian motion, or obtained as
solutions of the related boundary value problems for Laplace operator [4-5].

A numerical analysis of the spread harmonic measures on prefractal quadratic von Koch
curves has revealed many interesting properties, some of them having remained poorly un-
derstood in a rigorous mathematical sense. For instance, the family of the spread harmonic
measures exhibits a transition between the harmonic measure (D/W = 0) and the Hausdorff
measure (D/W → ∞). To our knowledge, this is the first numerical observation of such a tran-
sition between two measures having so different multifractal behaviors on fractal sets. Scaling
properties of the spread harmonic measures on prefractal boundaries are found to be charac-
terized by a set of multifractal exponent functions depending on the only scaling parameter. A
conjectural extension of the spread harmonic measures to fractal boundaries is proposed.
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