A fast algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media D. S. Grebenkov Laboratoire de Physique de la Matiere Condensee, CNRS -- Ecole Polytechnique, F-91128 Palaiseau, France Email: denis.grebenkov@polytechnique.edu A reliable interpretation of pulsed-gradient spin-echo (PGSE) experiments in mineral samples and biological structures such as concrete, sedimentary rocks or lungs, requires intensive numerical studies of restricted diffusion. Classical Monte Carlo simulations with a fixed time step are too long and inefficient in such porous media. I propose a fast algorithm for computing the PGSE signal in multiscale structures. The algorithm relies on random walks with variable jumps which are adapted to local geometrical length scales. An implementation of gradient encoding is a new feature that opens a possibility for efficient and accurate numerical simulations in model and reconstructed three-dimensional porous media. References [1] P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, Oxford, 1991). [2] A. T. Watson and C. T. P. Chang, Characterizing porous media with NMR methods, Prog. Nucl. Magn. Reson. Spectrosc. 31, 343-386 (1997). [3] P. J. Barrie, Characterization of porous media using NMR methods, Annu. Rep. NMR Spectrosc. 41, 265-316 (2000). [4] D. S. Grebenkov, NMR survey of reflected Brownian motion, Rev. Mod. Phys. 79, 1077-1137 (2007). [5] M. E. Muller, Some Continuous Monte Carlo Methods for the Dirichlet Problem, Ann. Math. Statist. 27, 569 (1956). [6] S. Torquato, I. C. Kim, Efficient simulation technique to compute effective properties of heterogeneous media, Appl. Phys. Lett. 55, 1847 (1989). [7] M. Leibig, Random walks and NMR measurements in porous media, J. Phys. A {\bf 26}, 3349 (1993). [8] D. S. Grebenkov, G. Guillot, B. Sapoval, Restricted Diffusion in a Model Acinar Labyrinth by NMR. Theoretical and Numerical Results, J. Magn. Reson. 184, 143-156 (2007).