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Introduction: Water diffusion in biologicalttissues is not Gaussian asignal attenuation is n
monoexponential with b-val{i. Two approaches to deal with thhghavior are l-exponential model
[1,2], oftencorrected using Karger model [3], and Kurtosis apph [4]. We formulate an ODE mel
for diffusion MRI signalthat is more generdhanKarger model, valid for mai diffusion gradient
shapes and gives a goagdproxination to ADC and Kurtosis. Given DMFsignals before and aft
cell swelling, we camrstimate the amount of cell swelling after numéiycsolving an ODE syster

New ODE model: We propose a two compartment mc for the DMRI signg, with P andy’, the
signals from the extra- and intreellular compartmes Q°, Q' (with effective diffusion coefficient ®
D'). The intra- and extraellular residence tins aret' andt®=t'v® /', where \* and v are the volume
fractions Given a diffusion gradie with profile f(t), where f(t) is antsymmetric with respect t/2,

tqis diffusion time,and gradient strenc g = ¢/y, new ODE model is the followin
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where the time dependent coefficic(t) = E(fo du(fs f(s)ds)z). The justification for this choic

of c(t) is that ina homogeneous medium total signal satisfies;:—tllf(ﬁ, t) = c()DIGI*¥ (@G, t).
Measuring cell swelling: From DMRI signe, we obtain ADC (apparerdiffusion coefficient) an
KUR (Kurtosis)which are defined as the first ¢ second order terms of the Taylor expansion-
value of the logarithm dfignal ¥(b) = w¢(b) + Wi(b): log‘l’(b) =0—ADC *b + KUR = b? + 0(b3).
ADCOPE = yiDi 4 v¢D°  KURYRE ~ (D' — D®)2vive & k(j D=L

From two DMRI signals, corresponding to tinb_efore and after cell swelling, we want to estintht
change in the intraellular volume fractiorAv'. From simulations and experimental data [1]
hypothesized that bottl and Ddo not change much with lume fraction chang. Matching ADC
and Kurtosis, we search tiugh all possible solution sp: of T and D, thenfind that only a very
small range of and Dcan give physically reasonable solutionsv' (between -1) and [5(between
0.5x10° — 2x10°um*ps) and that within this range @ and D the estimated change V'is almost
constant. From thisye can compute trchange in Wwithout knowing the true values T andD'.
Results and discussion: Two simulatd DMRI signal from PGSE= 10ms,A=10ms by numerically
solving the twocompartment Bloc- Torrey PDE on a sample consisting3i convex-shaped cells
(Fig 1a) The original volume fraction V' =0.63. Reducinghe size of the e¢tra-cellular space to
obtain V= 0.80, true swelling iAv' =0.17. We plot family of 'vandD' ‘matcting the simulated ADC
and KUR with expressions obtained frODE model. These'\and D' (physically reasonable f v/
and D) lie on two curves C(yD') of signals before (blueind after cell swellir (red) inFig 1b. The
difference of two curves (blacky an almost constant valueAv' =0.17 on the entire interval D'. In
Table 1 we show the averag®/' for som¢ permeabilities whicls close to the true value of 0.
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Fig 1a. Convex cells: S/V= 1;om™ Fig 1b. Cell swelling V = 0.63t0 0.8  Table 1. EstimatecAv' close to true 0.17
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