
A Spectral Approach for Computing Survival

Probabilities and Residence Times in Model Porous

Media

B. T. Nguyen1
and D. S. Grebenkov

1

1Laboratoire de Physique de la Matière Condensée, CNRS – Ecole Polytechnique, 91128 Palaiseau France

Diffusion is a fundamental transport mechanism in physics, chemistry and biology [1, 2].
During the diffusive exploration, particles may encounter traps, reactive regions or relaxing
sinks which are distributed either in the bulk, or on the interface. While staying inside or in
vicinity of these specific zones, particles may disappear with a given rate. This is a common
mathematical model for many biological and industrial systems, e.g.

1. chemical reactors with heterogeneous spatial distributions of catalytic germs [3];

2. biological cells with specific arrangements of organelles [4, 5];

3. mineral porous media with relaxing agents in nuclear magnetic resonance (NMR) ex-
periments [6].

We propose a spectral approach for computing and investigating the survival proba-
bility inside a bounded isolated medium [7]. Traps, reactive regions or relaxing sinks are
represented through a spatially heterogeneous trapping, reaction or relaxation rate B(r).
The reaction term in the diffusion-reaction equation is treated as a “perturbation” to the
Laplace operator. Two infinite-dimensional matrices Λ and B represent respectively the
Laplace operator and the reaction rate B(r) in the Laplacian basis [8, 9]:

Λm,m′ = δm,m′λm, Bm,m′ =

∫

Ω

dr u∗

m(r)B(r)um′(r), (1)

where λm and um(r) are the eigenvalues and eigenfunctions of the Laplace operator in a
confining domain Ω. Once the matrices Λ and B are computed, analytically or numerically,
the survival probability takes an explicit multi-exponential form:

Sh(t) =

∞∑
m=0

Ah
me−γh

mt, (2)

where h is the reaction “strength”, Ah
m = (UV h

m)(V h
mŨ), γh

m and V h
m are the eigenvalues

and eigenvectors of the matrix Λ + hB, and U and Ũ are the infinite-dimensional vectors
representing the initial density of particles ρ(r) and the weighting function ρ̃(r):

Um =

∫

Ω

dr u∗

m(r)ρ(r), Ũm =

∫

Ω

dr um(r)ρ̃(r) (3)

(in many practical situations, ρ(r) and ρ̃(r) are constant).
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Figure 1: Several shapes of the reactive region A (in green) inside the unit disk, with B(r) = 1
in the reactive region and 0 otherwise.

According to Eq. (2), the survival probability exhibits a mono-exponential decay in the
long-time regime, and the decay constant is the smallest eigenvalue γh

0
. Traditionally, γh

0
is

expected to be proportional to the total amount, or “strength”, of traps, relaxing sinks or
reactive regions. We aim at revealing subtle influences of a spatial heterogeneity B(r) on the
constant γh

0
. For this purpose, we consider diffusion inside the unit disk which is filled with

reactive regions of various shapes (Fig. 1). We search for configurations that provide the
highest overall performance of a medium, aiming in future at design of efficient catalysts or
diffusive exchangers via optimization of their geometrical shapes. Since the eigenvalues and
eigenfunctions of the Laplace operator in the disk are known in a closed analytical form, the
computation of the matrix B is reduced to a numerical integration of Bessel functions over
reactive regions.

We show that a uniform filling of the disk provides the highest value for the overall
reaction rate γh

0
. Although the heterogeneity tends to reduce the reaction rate, reactive

regions can still be heterogeneously arranged to get nearly optimal performances.
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