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Thesis summary

Diffusion magnetic resonance imaging (dMRI) is a non-invasive imaging technique
that gives a measure of the diffusion characteristics of water in biological tissues, no-
tably, in the brain. The hindrances that the microscopic cellular structure poses to
water diffusion are statistically aggregated into the measurable macroscopic dMRI
signal. Inferring the microscopic structure of the tissue from the dMRI signal al-
lows one to detect pathological regions and to monitor functional properties of the
brain. For this purpose, one needs a clearer understanding of the relation between
the tissue microstructure and the dMRI signal. This requires novel numerical tools
capable of simulating the dMRI signal arising from complex microscopic geometrical
models of tissues.

We formulate and implement such a numerical approach based on the linear finite
elements method (FEM) for the multi-compartment Bloch-Torrey partial differ-
ential equation (PDE) that allows us to work with general gradient pulses and
relatively complex geometries. To compute the long-time effective diffusion tensor
predicted by homogenization theory, we also considered the solution of the related
steady-state Laplace equations.

Compatible with the linear finite elements discretization, we used linear approxima-
tion of the cellular interfaces. The semi-permeable biological cell membranes were
modeled by zero-volume elements to allow jumps in the finite elements solution on
the membranes. The computational domain was periodically extended by applying
the appropriate artificial boundary conditions. This allows us to reduce the edge
effects caused by artificial boundaries. This finite elements discretization is second
order accurate in space.

The spatial discretization was then coupled to the adaptive explicit Runge-Kutta
Chebyshev (RKC) time stepping method that is second order accurate in time.
Being an explicit time stepping method, this choice has the advantage that the
linear system to be solved at each time step involves only the mass matrix.

Furthermore, using a transformation of the Bloch-Torrey PDE, we reduced the
oscillations in the sought-after solution and simplified the implementation of the
artificial boundary conditions. In this way, we were able to keep the mass matrix of
our FEM real-valued and time-independent after applying the boundary conditions.
Because it is real-valued, the mass matrix is only half the size compared to a naive
implementation without the transformation. Due to the time independence, the
mass matrix only needs to be assembled and the artificial boundary conditions
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applied once before the time integration.

In short, our method can bring improvements in the computational time, memory
usage, and the accuracy of dMRI signal simulations. Our method was implemented
on the FeniCS C++ platform. The finite elements meshes were obtained using the
mesh generator Salome that gives an efficient way to manage complex domains with
multiple compartments and periodic boundaries.

Next, we considered three application areas for the dMRI simulation method that
we have developed.

In the first application, we investigated the long-time asymptotic behavior of the
dMRI signal and showed the convergence of the apparent diffusion tensor to the
effective diffusion tensor predicted by homogenization. Due to the long history of
homogenization techniques and the existence of important results developed using
these techniques, we expect that some useful information about biological structures
can be revealed by the analysis of the effective diffusion tensor. This would be an
easier task than a direct analysis on the time-dependent Bloch-Torrey PDE.

For the second application, we numerically verified that the dMRI signal of a three-
compartment model of the biological cell, with a thick membrane layer between the
cell interior and the extra-cellular space, approaches that of the two-compartment
model of the biological cell, with an infinitely thin and semi-permeable interface
between the cell interior and the extra-cellular space. For the three-compartment
model, we implemented both isotropic and anisotropic diffusion in the membrane
layer and showed both choices lead to dMRI signals that approaches the dMRI
signal of the two-compartment model, with the convergence being faster for the
case where there is fast tangential diffusion.

In the third application we validated the macroscopic Kärger model of dMRI signal
that takes into account inter-compartmental exchange. We verified that the Kärger
model is valid for narrow pulse gradients and at low permeabilities.

In the last part of this thesis, we simulated and analyzed the dMRI signal arising
from isolated neurons. First, we proposed numerical (PDE) models for accurately
computing the dMRI signal inside isolated neurons that is more efficient than full
3D simulation, namely, by reducing the simulation on the 3D neurites tree to a
simulation on a 1D neurites tree. We showed that the computational time is greatly
reduced while the accuracy is preserved. Then we numerically investigated the
water exchange between the soma and its connected neurites tree and concluded
that the exchange is negligible under normal dMRI acquisition conditions. Next,
we compared our simulation results to a previously published semi-analytical dMRI
signal model for neurites. We fitted this dMRI signal model to simulation results
on several classes of neurites trees in an attempt to estimate the average branch
length of the neurites tree. Finally, we also proposed upper and lower bounds for
the dMRI signal for neurites trees and numerically verified those bounds for several
classes of neurites trees.

This thesis has 5 chapters and they are organized as follows. In chapter 1, we
briefly introduce dMRI concepts as well as related equations and existing works.
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In chapter 2, we propose a numerical method based on linear finite elements that
allows for more accurate descriptions of complex geometries. Three applications of
our method to study diffusion inside multi-compartment models are considered in
chapter 3. In chapter 4, we propose two models of the dMRI signals inside isolated
neurons. Chapter 5 contains our conclusions and future work.
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Chapter 1

Introduction

1.1 Background

Diffusion magnetic resonance imaging (dMRI) is an imaging modality that gives a
measure of the diffusion characteristics of water in tissue during a diffusion time in
the range of tens of milliseconds [3, 14, 37, 38, 75], at the spatial resolution on the
order of 1 mm3, meaning the signal acquired represents the average diffusion charac-
teristics in a volume, called a voxel, of that size. While a major application of dMRI
has been acute cerebral ischemia (stroke) [49, 77], dMRI is used to image almost
every part of the human body. In the brain, dMRI has been used to detect a wide
range of physiological and pathological conditions, including tumors [46,60,69,74],
myelination abnormalities [25], connectivity [36], as well as in functional imaging
where recent work has suggested that water dMRI could also be used to visualize
changes in tissue microstructure that might arise during neuronal activation [40].

The microscopic cellular structure of tissue in the brain is very complicated. There
are many types of cells in a voxel, including neurons and glial cells, all embedded
in the extra-cellular space. Neurons have a solid cell body called the soma that
measures 1 to 10µm in diameter. Attached to the soma are long protrusions called
neurites (axons and branching dendrites) that measure, respectively, 0.5 and 0.9µm
in average diameter, and can be several hundreds of µm in length. The glial cells
do not have long protrusions and the tissue is densely packed with cells. In the
cortex, soma occupy 11% and the rest includes 34% axons, 35% dendrites, 14%
spines and 6% extracellular space in volume [17] (see also in [79]). Averaged over
all the brain tissues, the range of the extracellular space volume fraction is between
15 and 30% in the normal adult, with a typical value of 20%, and this fraction
falls to 5% during global ischemia whereas the true size of the spaces between
cells is less obvious. Recent study indicates that the true average width of the
extracellular space in the in vivo rat cortex lies between 38 and 64nm [71]. The
cellular organization is complex. The cells of the cortex are organized into layers,
with columns of cells linking the different layers. The cells are usually permeable.
Water can move between the cells and the extra-cellular space, except across the
myelin layer of the myelinated axons.
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DMRI is limited to a range of diffusion times it can measure due to biological and
technical reasons. In the brain, diffusion times in the range of 1ms − 100ms can be
measured, associated to average diffusion distances of 2.5µm−25µm. This distance
is averaged over all water molecules. The actual diffusion distance can be different
depending on whether the water molecules are in the neuronal bodies, the neurites
(dendrites and axons) or the extra-cellular space. If diffusion is homogeneous with
diffusion coefficient D, this distance is given by ℓD =

√
2 d D tD, where d is the

problem dimension and tD is the diffusion time.

1.2 Equations of diffusion MRI

Suppose r1, r2, r3 are the axes of a 3D coordinate system. Inside the MRI scanner,
a strong static magnetic field of magnitude B0 is induced along the positive r3-
direction, and the spins of the water protons inside the body become aligned to
this magnetic field, resulting in a net magnetization in the positive r3-direction.
When a time-varying magnetic field (much weaker than the static magnetic field)
is applied for a short time at the resonance frequency, ω0 = γB0, where γ =
2.67513 × 108 rad s−1T−1 is the gyromagnetic ratio, the net magnetization is tipped
off the r3-axis. We consider a so-called 90◦ pulse, an oscillating magnetic field that
tips the net magnetization onto the r1 − r2 plane. The spins then precess around
the r3-axis, inducing a voltage in a receive coil. The net magnetization in the r1 −r2

(transverse plane to the direction of the main magnetic field) can be measured as
a signal.

The net magnetization will realign along the r3-direction, due to two relaxation
effects: the spin-lattice relaxation of the net magnetization along the r3-direction to
its original value, and the spin-spin relaxation of the decay of the net magnetization
in the r1 − r2 plane to zero. The rate constant of the first relaxation is called T1

and the rate constant of the second kind of relaxation is called T2. Both T1 and T2

vary according to the tissue environment. Additionally, the spin density also varies
with the tissue environment.

In addition to T2 (spin-spin) relaxation, local inhomogeneities also contribute to
the signal decay. The latter can be partially canceled by a refocusing 180◦ pulse,
applied at time t = TE/2 after the 90◦ pulse, producing an echo at time TE, that
gives a measurable signal that will have the correct contribution from T2. Such a
sequence of applied magnetic fields is called a spin echo sequence.

The spatial encoding of the signal is obtained by applying additional magnetic
fields in the r3 direction, called magnetic field gradients, that vary linearly in space:
r · Gim(t), where Gim(t) will be called the imaging gradient. In the rotating frame
at the frequency ω0, the complex transverse magnetization on the r1 − r2 plane,
M(r, t) := Mr1

(r, t) + IMr2
(r, t), (where I is the imaginary unit), obeys the Bloch

equation [5]:

∂M(r, t)

∂t
= −Iγ r · Gim(t)M(r, t) − M(r, t)

T2(r)
, (1.1)
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where T2(r) is the local spin-spin relaxation rate. The solution of Eq. (1.1) is

M(r, t) = ρ(r) exp

(
− t

T2(r)
− I γ r ·

∫ t

0
Gim(s) ds

)
,

where t = 0 is the start of the 90◦ pulse and ρ(r) is the initial transverse magneti-
zation.

Even though 3D imaging is possible, most often the MRI signal is acquired in 2D,

slice by slice. Suppose r3 ∈
[(

l − 1
2

)
∆r3,

(
l + 1

2

)
∆r3

]
are the limits of the slice of

interest. By choosing Gim(t) = (0, G2, 0) for a time interval ∆t2 and then choosing
Gim(t) = (G1, 0, 0) for a time interval ∆t1, then the magnetization at r at TE is

M(r, TE) = ρ(r) exp

(
− TE

T2(r)
− I (k1r1 + k2r2)

)
,

where k1 = γG1∆t1 and k2 = γG2∆t2. The MRI signal, acquired at echo time
t = TE, is the integral of the magnetization in that slice:

µ̂l (k1, k2) =

∫

r1,r2

µl(r1, r2) exp
(
−I(k1r1 + k2r2)

)
dr1dr2, (1.2)

where the contrast function is:

µl(r1, r2) =

(l+ 1

2
)∆r3∫

(l− 1

2
)∆r3

ρ(r1, r2, r3) exp

(
− TE

T2(r1, r2, r3)

)
dr3. (1.3)

It is clear that the MRI signal in Eq. (1.2) is the 2D Fourier transform of the
contrast function in Eq. (1.3).

By the appropriate choice of G1, G2, and ∆t1 and ∆t2 the Fourier transform can
be obtained at a set of 2D Fourier points. Then the inverse Fourier transform can
be performed and then sampled at physical space points to obtain in each voxel,
Vi,j,l where

Vi,j,l :=

[(
i − 1

2

)
∆r1,

(
i +

1

2

)
∆r1

]
×
[(

j − 1

2

)
∆r2,

(
j +

1

2

)
∆r2

]

×
[(

l − 1

2

)
∆r3,

(
l +

1

2

)
∆r3

]
,

an average value of the contrast function:

µ̄l(i, j) ≈
∫

Vi,j,l

ρ(r1, r2, r3) exp

(
− TE

T2(r1, r2, r3)

)
dr1 dr2 dr3, (1.4)

that can be displayed in an image. In Eq. (1.4) we can see two widely used contrast
mechanisms in MRI, the spin density and the T2 relaxation.
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Besides the spin density and the T2 relaxation, water diffusion in the tissue is
another source of contrast. This contrast can be encoded by the application of
another magnetic field gradient Gdf (t). One pulse of the gradient is applied in
the direction g before 180◦ refocusing pulse and the same pulse after. The lack of
complete refocusing is due to water diffusion and gives the diffusion MRI contrast.

The mathematical description of the complex transverse magnetization including
effects of diffusion is called the Bloch-Torrey equation [73]:

∂M(r, t)

∂t
= −Iγ r·Gim(t) M(r, t)−M(r, t)

T2(r)
−Iγ r·Gdf (t) M(r, t)+∇·

(
D(r)∇M(r, t)

)
,

(1.5)
where Gdf (t) = g f(t), f(t) containing the time profile information of the diffusion-
encoding gradient, D(r) is the (possibly discontinuous) intrinsic diffusion tensor.
The last term in the above equation concerns diffusion (random movement) of water
molecules.

Among numerous time profiles, two profiles are most commonly used:

1. The pulsed-gradient spin echo (PGSE) sequence [66], with two rectangular
pulses of duration δ, separated by a time interval ∆ − δ, for which the profile
f(t) is

f(t) =





1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,

(1.6)

where t1 is the starting time of the first pulse and T E
2 , the time of the appli-

cation of the 180 degree refocusing pulse, is between t1 + δ and t1 + ∆. See
Figure 1.1a.

2. The oscillating gradient spin echo (OGSE) sequence [15] has been recently
introduced to access short diffusion times. An OGSE sequence usually consists
of two oscillating pulses of duration σ, each containing n periods, hence the
frequency is ω = n2π

σ , separated by a time interval τ − σ (Figure 1.1b). For
a cosine OGSE [8,15], the profile f(t) is

f(t) =





cos (n2π
σ t), t1 < t ≤ t1 + σ,

− cos
(
n2π

σ (t − τ)
)
, t1 + τ < t ≤ t1 + τ + σ,

0, otherwise,

(1.7)

where t1 + σ ≤ TE

2
≤ t1 + τ . See Figure 1.1b.
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(a) (b)

Figure 1.1: A PGSE sequence (1.1a) and a cos-OGSE sequence (1.1b) for t1 = 0.

In the rest of the thesis, we will neglect the imaging gradients and focus on the
contrast function. T2 effects will also be neglected. Hence, we will analyze and
solve the following Bloch-Torrey PDE:

∂M(r, t)

∂t
= −Iγ r · g f(t) M(r, t) + ∇ ·

(
D(r)∇M(r, t)

)
, (1.8)

instead of the more complete description of Eq. (1.5). After solving Eq. (1.8) up
to t = TE, we compute the average value of the contrast function inside the voxel:

S =

∫

Vi,j,l

M(r, TE)dr, (1.9)

which is called the diffusion MRI signal.

1.3 The apparent diffusion coefficient

Under the assumption that water molecules experience a homogeneous isotropic
diffusion environment characterized by the diffusion coefficient D, one can solve
Eq. (1.8) in free space. Using the separation of variables [57],

M(r, t) = S(t) exp
(
Iϕ(r, t)

)
, (1.10)

and subtituting Eq. (1.10) to Eq. (1.8) and defining the spin phase ϕ(x, t):

ϕ(r, t) = γ g · r

t∫

0

f(s) ds, (1.11)

one obtains:
∂S(t)

∂t
= −S(t)

(
∇ϕ

)T
D
(
∇ϕ

)
. (1.12)

So,

S(TE) = S(0) exp
(
−b D

)
, (1.13)
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where the b-value is a weighting factor,

b = γ2‖g‖2
∫ T E

0
du

(∫ u

0
f(s)ds

)2

. (1.14)

For PGSE, the b-value is [66]:

b(g, δ, ∆) = γ2‖g‖2δ2
(

∆ − δ

3

)
. (1.15)

For the cosine OGSE with integer number of periods n in each of the two durations
σ, the corresponding b-value is [78]:

b(g, σ) = γ2‖g‖2 σ3

4n2π2
= γ2‖g‖2 σ

ω2
. (1.16)

The same results also can be obtained using the Fourier transform for 1D free space
where r = r and g = g:

M(r, t) =
1

2π

∫ ∞

−∞
M̂(k, t) exp

(
I k r

)
dk,

M̂(k, t) =

∫ ∞

−∞
M(r, t) exp

(
−I k r

)
dx.

(1.17)

The exact solution in the Fourier domain was computed to be [33]:

M̂(k, t) = M̂

(
k + γ g

t∫

0

f(s) ds, 0

)
exp

(
−D

t∫

0

du
(
k + γ g

t∫

u

f(s) ds
)2
)

, (1.18)

and the signal to be:

S =

+∞∫

−∞

M(r, t) dx = lim
k→0

M̂(k, t)

= M̂

(
γ g

t∫

0

f(s) ds, 0

)
exp

(
−D

t∫

0

du
(
γ g

t∫

u

f(s) ds
)2
)

.

(1.19)

When the initial condition is the Dirac delta function, the signal is

S = exp
(
−b̄ D

)
, (1.20)

and the b-value is

b̄ =

T E∫

0

du

(
γ g

T E∫

u

f(s) ds

)2

. (1.21)

We note that although Eq. (1.21) is different from Eq. (1.14) at some t < TE, they
are identical at t = TE for PGSE and OGSE sequences. Eq. (1.14) is preferred
because it is based on the uniform distribution as the initial condition.
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The basis of diffusion weighted imaging is that the MRI signal is acquired with a
diffusion gradient g as well as with no diffusion gradient. The first image (after
inverse Fourier transform) is divided by the second image in order to estimate
D(r1, r2, r3) in each voxel, through the so-called “Apparent Diffusion Coefficient”
(ADC):

ADC := − ∂

∂b
log

S(b, TE)

S(0, TE)

∣∣∣∣
b=0

, (1.22)

which serves as a contrast mechanism. See Figure 1.2 for examples of different MRI
contrasts, the last one (D), being the ADC contrast.

Figure 1.2: Image from Wikimedia Commons. Description: Brain MRIs demon-
strating hyperintense lesions in middle cerebellar peduncles on axial T2 weighted
brain MRI (Part A), similar intensities in the tectum and tegmentum of mid-
brain on the left side (Part B), intense enhancement of mammillary bodies on
the T1 weighted MRI with contrast (Part C), and hyperintense lesions in the
medial portions of thalami in diffusion weighted MRI (Part D). Source: http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC3533170/, Author: Ghorbani et al

1.4 Multiple compartments Bloch-Torrey PDE

It was realized that when the diffusion gradient g is varied in magnitude or direction,
the ADC may change significantly. Also, different values of the ADC are obtained
when ∆ is varied. By fixing the direction of g and ∆ (as well as the pulse duration
δ) and varying the amplitude ‖g‖, one can see clearly that the diffusion-induced
MRI signal attenuation is not a decaying exponential in b [9, 12, 28, 44, 45, 50, 52].
The reason for this is that in biological tissue, the diffusion environment seen by
water molecules during the diffusion time (tens of milliseconds) is not homogeneous
due to the presence of cells membranes and other heterogeneities. It also cannot be
described simply by a homogenized diffusion coefficient.

Thus, inside the voxel, we define a geometrical model of tissue, made up of an
extra-cellular space, Ω0, and M non-overlapping biological cells defined by open
sets: Ωl ∈ R

d, l = 1, . . . , M , where Ωl ∩ Ωn = ∅ for l 6= n, and d is the space
dimension (typically d = 2 or d = 3). We also allow the possibility of adding a
membrane compartment around each biological cell. In this case, there would be

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533170/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533170/
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additional M membrane compartments: Ωl, l = M + 1, . . . , 2M . If the membrane
compartments are not included in the tissue model, then they are approximated
by the semi-permeable interface conditions between the cell compartments and the
extra-cellular space. We denote the interface between Ωl and Ωn by Γln = Ωl ∩ Ωn.
When we do not need to distinguish between the individual cells, we will group all
the cells into one intra-cellular compartment Ωc, and all the membranes into one
membrane compartment Ωm, and the extra-cellular space will be denoted by Ωe.

Ideally, the total computational volume ∪l=1Ωl would be on the scale of the diffusion
MRI resolution, usually on the order of 1 mm3. However, due to the fact that
cell features are on the scale of microns, typically a small portion of the tissue
contributing to the signal in an imaging pixel is simulated. We denote this portion
of tissue by C for the computational domain. Typically, C = [−L/2, L/2]d is a
box that contains a “representative volume” of the tissue in the voxel under study.
To simplify the notation, we will assume that any parts of biological cells that
are outside of C will be removed so that C =

⋃
Ωl. In addition, we will define

Γ =
⋃

Γln\∂C to be the union of the interfaces minus the boundary of C.

In each compartment Ωl, the complex transverse magnetization M(r, t) also satisfies
the Bloch-Torrey PDE (1.8):

∂

∂t
M(r, t) = −Iγf(t)G(r) M(r, t) + ∇ ·

(
D(r)∇M(r, t)

)
, r ∈ ∪Ωl, (1.23)

This equation needs to be supplemented by interface conditions at the interfaces
Γln, and by boundary conditions on ∂C. Let Mk and Dk be restrictions of M
and D onto the kth compartment (that take the appropriate limiting values in the
case when M and D are discontinuous). The two interface conditions are the flux
continuity [20]:

Dl(r)∇M l(r, t) · nl = −Dn(r)∇Mn(r, t) · nn, r ∈ Γln, ∀ l, n, (1.24)

and a condition that incorporates a permeability coefficient κln across Γln:

Dl(r)∇M l(r, t) · nl = κln
(
Mn(r, t) − M l(r, t)

)
, r ∈ Γln, ∀ l, n, (l 6= n), (1.25)

where nk is a normal vector pointing outward from Ωk. If the permeability coeffi-
cient is the same at all the interfaces, then we will simply use the notation κ.

In the limit κln = ∞, Eq. (1.25) reduces to the simple continuity condition on
M(r, t):

M l(r, t) = Mn(r, t). (1.26)

Following [78], we extend C by periodic copies of itself to handle the diffusion of
water molecules close to the boundary of C. According to [78], the two boundary
conditions on ∂C are

M(r, t)|ri=−L/2 = M(r, t)|ri=L/2 exp
(
I θi(t)

)
, i = 1, · · · , d, (1.27)

∂M(r, t)

∂ri

∣∣∣∣
ri=−L/2

=
∂M(r, t)

∂ri

∣∣∣∣
ri=L/2

exp
(
I θi(t)

)
, i = 1, · · · , d, (1.28)
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where r = (r1, · · · , rd),

θi(t) := γ gi L

t∫

0

f(s) ds,

and g = (g1, · · · , gd). The PDE in Eq. (1.23) also needs an initial condition:

M l(r, 0) = ρl, r ∈ Ωl, ∀ l, (1.29)

where ρl is the initial transverse magnetization in Ωl.

The complete multiple compartments Bloch-Torrey PDE problem to be solved in-
volves the PDE (1.23), the two interface conditions Eqs. (1.24,1.25), the two bound-
ary conditions Eqs. (1.27,1.28), and the initial condition Eq. (1.29).

The dMRI signal measured (without the imaging gradients and T2 effects) is

S(b) :=
∑

l

∫

r∈Ωl
M l(r, TE) dr. (1.30)

In a dMRI experiment, the TE and sequence f(t) are usually fixed while g is varied
in amplitude or/and in direction to obtain the signal at different b-values. The
ADC (Eq. 1.22) gives an indication of the effective mean squared distance traveled
by water molecules, averaged over all starting positions.

1.5 Laplace PDE for the homogenized diffusion tensor

If there is no jump in the magnetization, and supposing the infinite periodic exten-
sion of the computational domain C, the effective diffusion tensor in the limit of
infinite time, Dhom, can be obtained by homogenization [4]. If there is a jump in
the magnetization, the effective diffusion tensor from homogenization can be found
in [10]. The apparent diffusion coefficient (ADC) is related to Dhom by:

ADC → gT

‖g‖Dhom g

‖g‖ ,

where Dhom is the homogenized diffusion tensor that can be obtained by solving
the following d steady-state Laplace equations for Wi(r), i = 1, . . . , d, over C [10]:

∇ ·
(

D(r)∇Wi(r)

)
= 0, r ∈ ∪Ωl, (1.31)

with the same interface conditions in Eqs. (1.24,1.25) as for the Bloch-Torrey
equation, and two simpler boundary conditions on ∂C:

Wi(r)|rk=−L/2 = Wi(r)|rk=L/2 − δi,k L, k = 1, · · · , d, (1.32)

∂

∂rk
Wi(r)

∣∣∣∣
rk=−L/2

=
∂

∂rk
Wi(r)

∣∣∣∣
rk=L/2

, k = 1, · · · , d, (1.33)
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where δi,k = 1 for k = i, and 0 otherwise. The problem to be solved consists of Eqs.
(1.31,1.24,1.25,1.32,1.33), for i = 1, · · · , d.

The entries of the homogenized tensor Dhom are then given by:

{Dhom}i,k =

∫

C

D(r)∇Wi(r) · ek dr, i, k = 1, . . . , d, (1.34)

where ek is the unit vector in the kth direction.

1.6 Explicit solutions and approximations

1.6.1 Explicit solution

For the PGSE sequence, there exists an analytical solution of the Bloch-Torrey
PDE (1.8), proposed in [33]. On the computational box C = [−L/2, L/2]d, if the
initial condition is the Dirac delta distribution at r0 = (r0

1 , . . . , r0
d ) ∈ C, with

the diffusion gradient vector g = (g1, . . . , gd), spatial position r = (r1, . . . , rd) and
constant diffusion coefficient D, then

M(r1, . . . , rd, t) =
∞∑

n1=−∞

· · ·
∞∑

nd=−∞

d∏

i=1

M̃(ri, r0
i + niL, gi, t),

where,

• if 0 < t ≤ δ:

M̃(r, r0 , g, t) =
1

2
√

πtD
exp

(
−I

2
t g γ(r0 + r) − t4 D2 g2γ2 + 3 (r − r0 )2

12 D t

)
,

• if δ ≤ t ≤ ∆:

M̃(r, r0 , g, t) =
1

2
√

π D t
exp

(
−D g2γ2δ3 (−3 δ + 4 t)

12 t

)

× exp




−I gγ δ
(
(2 t − δ) r0 + δ r

)

2 t
−(r − r0 )2

4 D t




• if ∆ ≤ t ≤ ∆ + δ:

M̃(r, r0 , g, t) =
1

2
√

π D t
exp

(
I gγ

(−δ2 + t2 − ∆2
)

(r + r0 )

2 t
−(r − r0 )2

4 D t

)

× exp

(
−I gγ

(−δ2 − ∆2 + tδ + t∆
)

(r0 )

t
+

D g2γ2
(
δ2 + ∆2

)2

4 t

)

× exp

(
− 1

12
D g2γ2t3 +

1

2
D g2γ2

(
δ2 + ∆2

)
t

)

× exp

(
−D g2γ2

(
δ3 + 2 ∆3 + 3 δ2∆

)

3

)
,
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• if t > ∆ + δ:

M̃(r, r0 , g, t) =
1

2
√

π t D
exp

(
D g2γ2δ3 (−δ + 2 ∆)

3 t
+

I gγ (r − r0 ) ∆ δ

t

)

× exp

(
−D g2γ2δ2 (−δ + 3 ∆) (t − ∆ − δ)

3 t
− (r − r0 )2

4 t D

)
,

is a solution of Eq. (1.23) and also satisfies the pseudo-periodic boundary conditions
Eqs. (1.27, 1.28). We will use it in later sections as a reference solution.

1.6.2 Narrow pulse approximation

For the PGSE sequence, when the duration of the diffusion gradient pulse, δ, is
sufficiently small compared to the interval between pulses: δ ≪ ∆, the influence
of the diffusion-encoding magnetic field gradient pulse on the complex transverse
magnetization due to water molecules starting at r0 at t = t1 can be described by

a gain of the complex phase exp
(
−Iγg · r0 δ

)
between t1 and t1 + δ. Then, the

magnetization due to water molecules at position r at t1 + ∆ acquires a complex

phase exp
(
Iγg · r δ

)
between t1 + ∆ and t1 + ∆ + δ. Thus, the effect on the MRI

signal, compared to having no diffusion gradient g, due to water molecules at r0

when t = t1, is:
∫

r∈Vi,j,l

P (r, r0, ∆) exp

(
Iγ g · (r − r0) δ

)
,

where the diffusion propagator P (r, r0, ∆) is the solution to the diffusion equation,
i.e., the Bloch-Torrey PDE with g = 0. The narrow pulse assumption allows for
the use of classical results about the diffusion equation rather than deriving them
for the more complicated Bloch-Torrey PDE.

1.6.3 Gaussian phase approximation

Another way to compute the dMRI signal is based on distribution functions for
phases. Different from the narrow pulse approximation, the phases are not only
considered at the starting and the ending position but also accumulated along the
full molecule trajectory:

ϕ(TE) = γ

T E∫

0

dt g · r. (1.35)

The expression for the signal is the average of all contributions of individual molecules:

S = S0

〈
exp

(
−Iϕ(TE)

)〉
. (1.36)

For unrestricted diffusion it is simply:

S = S0 exp

(
−1

2

〈
ϕ2(TE)

〉)
, (1.37)
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where

〈
ϕ2(TE)

〉
=

2 γ2

|Ω|

T E∫

0

dt1

t1∫

0

dt2

∫

Ω

dr1

∫

Ω

dr2 (g · r1)(g · r2) P (r1, r2, t1 − t2), (1.38)

and

P (r1, r2, t1 − t2) =
1

(
4πD(t1 − t2)

) d
2

exp

(
− ‖r1 − r2‖2

4D(t1 − t2)

)
. (1.39)

The signal for PGSE sequence is then:

S = S0 exp
(
−b D

)
, (1.40)

where b = γ2‖g‖2δ2

(
∆ − δ

3

)
.

In the frame of the Gaussian phase approximation (first proposed by Neuman [51]),
one neglects the second and higher-order terms in the cumulant expansion of the
dMRI signal over the b-value (see the review [19] for details). The signal is there-
fore approximated as S(b) = S(0) exp(−bDeff), where the effective (or apparent)
diffusion coefficient Deff depends on sequence timing and profile, and on the ge-
ometrical confinement. For a given temporal profile f(t) and arbitrary bounded
domain Ω, one can get an explicit analytical formula for Deff . For instance, if the
temporal profile consists of two rectangular gradient pulses of duration δ separated
by diffusion time ∆ (Figure 1.1a), one gets [19]:

Deff =
1

δ2(∆ − δ/3)
×

∞∑

m=0

B2
0,m

(
2δ

Dλm
− 2 + e−Dλm(∆+δ) + e−Dλm(∆−δ) − 2e−Dλm∆ − 2e−Dλmδ

D2λ2
m

)
,

(1.41)
where λm and um(r) are the eigenvalues and eigenfunctions of the Laplace operator
in the studied domain Ω: ∇2um(r) + λmum(r) = 0, with reflecting (Neumann)
boundary condition. The coefficients B0,m =

∫
Ω dr um(r)(q · r) determine the

projection of the gradient (here q = g/‖g‖ is the direction of the gradient) onto the
eigenfunctions. For simple shapes such as segment, disk or sphere, the Laplacian
eigenbasis is known analytically that allows one to compute explicitly Deff . These
representations are summarized in [19]:

• For a segment of length L with reflecting endpoints, one has

λm = π2m2/L2, B0,m = L×




√
2
(
(−1)m − 1

)
/(π2m2) (m > 0),

1/2 (m = 0)
(m = 0, 1, 2, ...).

(1.42)

• For a disk of radius L with reflecting boundary, one has

λm = α2
m/L2, B0,m = L

√
2

αm

√
α2

m − 1
(m = 0, 1, 2, ...), (1.43)
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in which α0, α1, . . . are all positive solutions of the equation J ′
1(z) = 0, where J ′

1(z)
is the derivative of the Bessel function J1(z) of the first kind

αm = 1.8412, 5.3314, 8.5363, 11.7060, 14.8636, . . .

For practical computation, the infinite series in Eq. (1.41) is truncated, given that
the eigenvalues λm rapidly grow with the index m.





Chapter 2

A finite elements method to
solve the multi-compartment
Bloch-Torrey equation

Summary A finite elements method is formulated and implemented to solve the
steady-state Laplace equation and the time-dependent Bloch-Torrey equation on
multi-compartment domains. The computational domains are periodically extended
by appropriate boundary conditions. The semi-permeable interface conditions are
implemented by allowing jumps in the solution using double nodes. Using a transfor-
mation of the Bloch-Torrey PDE we reduce oscillations in the solution and simplify
the implementation of the pseudo-periodic boundary conditions. The spatial dis-
cretization is then coupled to the adaptive Runge-Kutta-Chebychev time stepping
method. Our method is second order accurate in space and second order accurate
in time. We implement this method on the FEniCS C++ platform and show time
and spatial convergence results.

2.1 Introduction

Biological tissue is a heterogeneous medium, consisting of cells of various sizes
and shapes distributed in the extra-cellular space. The cells are separated from
each other and from the extra-cellular space by the cell membranes. When water
passes very slowly between the cells and the extra-cellular space as compared to the
diffusion time, the cell membranes can be approximated as impermeable to water.
In this case, various analytical or semi-analytical expressions have been obtained
for the dMRI signal arising from inside the cells [8, 19, 54, 55, 67, 70]. In general,
however, cell membranes are permeable to water, and it is important to study the
effect of membrane permeability on the dMRI signal by using a richer numerical
model.

In this chapter, we focus on a mathematical model called the multiple compart-
ment Bloch-Torrey partial differential equation (PDE), which is a generalization
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of the Bloch-Torrey PDE [73] to heterogeneous domains [20, 55]. This PDE de-
scribes the water proton magnetization subject to diffusion-encoding magnetic field
gradient pulses and the dMRI signal is given by the integral of the magnetization.
The above analytical models can be thought of as starting with the multiple com-
partment Bloch-Torrey PDE and then using simplifying assumptions to arrive at
(semi-)analytical expressions for the dMRI signal.

Numerical solutions of the multiple compartment Bloch-Torrey PDE were reported
in [24,26,58,78], in which the finite difference method on a uniform Cartesian grid
was coupled to the explicit Forward Euler time-stepping method. This approach
is first order accurate in space and time. A finite elements method coupled to the
implicit Backward Euler time-stepping has been recently proposed to solve the diffu-
sion equation with Neumann boundary conditions to study the diffusion in the short
gradient pulse limit for some simple geometries [48]. With linear basis functions,
this approach is first order accurate in time and second order accurate in space. Our
approach also uses a finite elements discretization but for the multi-compartment
Bloch-Torrey equation so that we can work for general gradient pulses as well as
multi-compartment domains. Because of the finite elements discretization, the cel-
lular interfaces are described more accurately. We implemented linear elements to
ensure second order spatial convergence. For the time integration, we used an ef-
ficient adaptive time-stepping method, called the Runge-Kutta Chebyshev (RKC)
method [63]. The RKC method has second order time convergence, whereas the
Forward Euler method used in [24,26,58,78] is first order convergent in time. More
importantly, the RKC method is adaptive in time as it takes steps commensurate
with the desired accuracy of the solution during the course of the simulation. In
the case of moderate desired solution accuracy, the RKC time integrator is pre-
ferred to the explicit Forward Euler method because in the latter, the time step
size is usually limited by numerical stability for diffusive-type problems. We used
the formulation in which the computational domain is assumed to be periodically
extended to infinity in all three coordinate directions.

In addition, we also solved steady-state Laplace PDEs that produce the homog-
enized diffusion tensor that describes diffusion in a heterogeneous medium in the
long time limit.

For an efficient implementation of finite elements we chose to base our code on the
FEniCS Finite Elements platform [43]. The Bloch-Torrey PDE has several uncon-
ventional features that cause implementation issues for a standard PDE platform
such as FEniCS. We describe these issues and how we resolved them. First, we
allowed jumps in the finite elements solution at the compartment interfaces by im-
plementing double-nodes at the interfaces. Second, the pseudo-periodic boundary
conditions resulting from the periodic extension of the computational domain are re-
duced to standard periodic boundary conditions by transforming the Bloch-Torrey
PDE, as in [58]. We note, however, that in [58], the discretized PDE using centered
finite difference did not take into account first order terms. To obtain second order
convergence in space, we had to include all the appropriate first order terms in our
discretization. Third, we reformulated the Bloch-Torrey PDE so that the real and
imaginary parts of the magnetization are decoupled to allow the solution of two
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systems of half the number of unknowns compared to a naive implementation. We
then show accuracy and timing results for our method.

The chapter is organized as follows. In Section 2.2, we explain our numerical
method, including the double-node formulation to allow jumps in the finite ele-
ments solution on the compartment interfaces, the transformation of the PDE to
replace pseudo-periodic by standard periodic boundary conditions, the decoupling
of the real and imaginary parts, as well as the coupling of the finite elements dis-
cretization to the RKC time integration method. In Section 2.3 we briefly describe
the implementation of the proposed method on the FEniCS C++ platform as well
as the use of the mesh generator Salome. In Section 2.4, we show accuracy and
timing results for this method. Section 2.5 contains our conclusions.

2.2 Method

In this section we describe our method to solve the Bloch-Torrey PDE (1.23, 1.24,
1.25, 1.27, 1.28, 1.29) and the steady-state Laplace PDEs (1.31, 1.24, 1.25, 1.32,
1.33).

The standard Galerkin formulation for the Bloch-Torrey PDE in the weak form is

∂

∂t

∫

Ωl

M v dr = − Iγf(t)

∫

Ωl

GMvdr −
∫

Ωl

D∇M · ∇vdr +

∫

∂Ωl∩Γ

D∇M · nlv ds

+

∫

∂Ωl∩∂C

D∇M · nlv ds,

(2.1)
for each compartment Ωl, where nl is the outward pointing normal and v is a test
function. We separated the two surface integrals into one involving the interface
conditions and the other involving the boundary conditions. Similarly, the weak
form for the steady-state Laplace PDE is

∫

Ωl

D∇W · ∇v dr −
∫

∂Ωl∩Γ

D ∇W · nl v ds −
∫

∂Ωl∩∂C

D ∇W · nl v ds = 0. (2.2)

We will use linear elements and write our code using the finite elements platform
FEniCS [43].

There are some numerical issues in the spatial discretization that will be addressed
in this section. They concern several non-standard aspects of these two PDEs that
require special handling when using a general finite elements platform like FEniCS.

2.2.1 Interface conditions: allowing jumps in the finite elements
solution

Standard finite elements discretization enforces that the solution is continuous
across elements. Discontinuous Galerkin discretization allows the solution to be
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fully discontinuous across all the elements [43]. In our case, the solution is con-
tinuous in each compartment Ωl, and possibly discontinuous on the compartment
interfaces Γ = ∪Γln. For this reason, the discontinuous Galerkin discretization that
would double the nodes on the edges of all the elements, is not efficient and we
do not use it. Instead, we keep the finite elements formulation in order to use the
matrix assembly routines in FEniCS. To do so, we need to find a way to incorporate
jumps in the solution on the interface Γ while still keeping the solution ‘continuous’,
at least formally.

To achieve this goal, we looped through the finite elements mesh and repeated
nodes that lie on the interfaces Γ and created elements of zero volume there. We
call these additional elements interface elements: an element consists of d distinct
vertices, each repeated once. Standard linear finite elements are triangles in 2D
and tetrahedrons in 3D. Interface elements are “fake” elements that are segments
in 2D and triangles in 3D. In this way, the solution is formally continuous across the
interface elements, but it is physically discontinuous because the interface elements
have zero volume. We will then associate a local stiffness matrix to the interface
elements even though this stiffness matrix represents a surface integral and not a
volume integral.

We explain this discretization in detail for the steady-state Laplace PDE in Eq.

(2.2). We write the solution as W (r) =
N∑

i=1
ξiϕi(r), where ϕi(r) is the linear basis

function that is equal to 1 at the ith vertex, vi, zero at all other vertices, and
whose support lies in the elements containing vi; N is the total number of nodes in
a discretized mesh of C. We consider a standard (non-interface) element Ei ∈ Ωl

containing the vertices {vk}, with

W (r) =
∑

{k,vk∈Ei}

ξkϕk(r), r ∈ Ei.

We set v = ϕj and consider the quantity
∫

Ei

D∇W · ∇ϕj dr −
∫

∂Ei∩Γ

D ∇W · ni ϕj ds

=
∑

{k,vk∈Ei}

ξk



∫

Ei

D∇ϕk · ∇ϕj dr


−

∫

∂Ei∩Γ

D∇W · ni ϕj ds,

(2.3)

for j where vj ∈ Ei. (For other j, this quantity is zero.) The stiffness matrix
associated with the element Ei is the first term on the right hand side and that has
entries

Sjk =

∫

Ei

D∇ϕk · ∇ϕj dr. (2.4)

The second term on the right hand side,

−
∫

∂Ei∩Γ

(
D∇W · ni

)
ϕj ds, (2.5)
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is zero if {vj} /∈ ∂Ei ∩ Γ. So for this term, we only need to consider an Ei that
touches a compartment interface Γln and only the vertices of Ei that lie on Γln.
To be specific, we choose Ei ∈ Ωl and restrict j to those j ∈ {kl} where {vkl}
is the set of vertices that belong to ∂Ei ∩ Γln. Because we have doubled nodes
on Γ, as described earlier, we know these same vertices are repeated, and let the
repeated nodes be {vkn} and belong to the element Ei′ ∈ Ωn. To compute the
above surface integral, we need the flux D∇W · ni on ∂Ei ∩ Γ. This flux can be
related to {{ξkl}, {ξkn}}, the solution values on the repeated vertices, because the
flux is related to the jump in the solution due to the interface conditions in Eqs.
(1.24,1.25). We can repeat the same argument for the element Ei′ on the other side
of Γln to obtain the needed quantities associated with j ∈ {kn}.

Now we collect the terms associated with Eq. (2.5) for the two elements Ei and Ei′

in local order

Slocξ{kl,kn}. (2.6)

In 2D and 3D, the local matrices for interface elements with linear basis functions
are:

Sloc =
κ Ck

6




2 1 −1 −2
1 2 −2 −1

−1 −2 2 1
−2 −1 1 2




and

Sloc =
κ Ck

12




2 1 1 −1 −1 −2
1 2 1 −1 −2 −1
1 1 2 −2 −1 −1

−1 −1 −2 2 1 1
−1 −2 −1 1 2 1
−2 −1 −1 1 1 2




, (2.7)

respectively, where ck is the length of the interface segment in 2D and the area of
the interface triangle in 3D.

For the ease of the global assembly routines, the Sloc matrix will be associated to
the interface element defined by the repeated vertices v{kl,kn}. For all standard
(non-interface) elements, the stiffness matrix is the usual one in Eq. (2.4).

2.2.2 Boundary conditions: transformation of the Bloch-Torrey
PDE

The pseudo-periodic boundary conditions for the Bloch-Torrey PDE in Eqs. (1.27,1.28)
and the steady-state Laplace PDE in Eqs. (1.32,1.33) differ slightly from stan-
dard periodic boundary conditions. In addition, the boundary conditions for the
Bloch-Torrey PDE involve complex numbers and are time-dependent. We limit our
discussion to the Bloch-Torrey PDE because it is the more complicated case.

We assume the mesh of C is generated in such a way that the nodes are mirror
reflected on the opposite faces of C. Let {Ek} be the elements that touch ∂C. They
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give rise to the non-zero entry
∫

∂Ek∩∂C

D ∇M · n v ds. Since ∇M · n is unknown on

∂C, this quantity has to be eliminated by using the pseudo-periodic relation (1.28)
on the normal derivative. For example, in the x-direction, this means replacing the
rows of the global finite elements matrices associated to the face of C, r1 = b1,
by new rows that are obtained by multiplying the original rows by eIθ1(t) and
subtracting them from the rows associated to the opposite face, r1 = a1. Then one
replaces the rows associated to the face, r1 = a1, by the pseudo-periodic relation
on the function value in Eq. (1.27).

This naive way of implementing pseudo-periodic boundary conditions introduces
complex arithmetic and time dependence into the global finite elements matrices.
This is a very undesired characteristic for the mass matrix, since many linear sys-
tems involving the mass matrix have to be solved repeatedly.

If we could change the pseudo-periodic boundary conditions to standard periodic
boundary conditions, then we can keep the mass matrix real-valued and time-
independent. Thus, similarly to [58], we chose to transform the magnetization
to a new unknown m(r, t):

m(r, t) = M(r, t) eI γ G(r) F(t), F(t) =

t∫

0

f(s) ds.

The Bloch-Torrey PDE (1.23) is then transformed to

∂

∂t
m = −I γ F

(
∇G·D∇m+∇m·D∇G

)
−∇G·D∇G m

(
γ F

)2
+∇·

(
D∇m

)
, r ∈ ∪Ωl,

(2.8)
with periodic boundary conditions

m(r, t)
∣∣∣
rk=−L/2

= m(r, t)
∣∣∣
rk=L/2

, k = 1, · · · , d,

∂

∂rk
m(r, t)

∣∣∣∣∣
rk=−L/2

=
∂

∂rk
m(r, t)

∣∣∣∣∣
rk=L/2

, k = 1, · · · , d.
(2.9)

The interface conditions (1.24, 1.25) are changed to

Dn∇mn · nn =κln
(
ml − mn

)
+I γ mnF Dn∇G · nn, ∀ l, n,

Dl∇ml · nl =κln
(
mn − ml

)
+I γ mlF Dl∇G · nl, ∀ l, n,

(2.10)

where ml, mn are the limiting values of m(r, t) in Ωl and Ωn. We note that Eq.
(2.8) and Eq. (2.10) are more complicated than those used in [58] because we kept
all the first order terms in order to obtain second order accuracy in space.
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The weak form of Eq. (2.8) is then

∂

∂t

∫

Ωl

m v dr = − I γ F
∫

Ωl

(
∇G · D∇m + ∇m · D∇G

)
v dr − ∇G · D∇G

(
γ F

)2
∫

Ωl

m v dr

−
∫

Ωl

D∇m · ∇vdr +

∫

∂Ωl∩Γ

D∇m · nlv ds +

∫

∂Ωl∩∂C

D∇m · nlv ds.

(2.11)
Ignoring the boundary and interface conditions, the weak form (2.11) can be rewrit-
ten in matrix form:

M
∂

∂t
ξ = −I J ξ − K ξ − S ξ, (2.12)

where M and S are the mass matrix and stiffness matrix, respectively, and

J = γ F
∫

Ω

(
∇G · D∇ϕT + ∇ϕT · D∇G

)
ϕ dr,

K =
(
γ F

)2
∫

Ω

∇G · D ∇G ϕT ϕ dr,

where ϕ = [ϕj ]j=1..N is the column vector of basis functions.

In particular, we compute the flux term which is now complex-valued and time-
dependent, ∫

∂Ei∩Γ

(
D∇m · ni

)
ϕ ds =

(
Sloc + I Jloc

)
ξ{kl,kn}, (2.13)

where

Jloc =
γ F Ck D∇G · ni

6




2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2


 (2D),

and

Jloc =
γ F Ck D∇G · ni

12




2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 0
0 0 0 2 1 1
0 0 0 1 2 1
0 0 0 1 1 2




(3D).

The matrices of the flux term Jloc and Sloc need to be assembled into the matrix
J and the stiffness matrix S. The periodic boundary conditions will be applied to

the remaining term in Eq. (2.11), namely

∫

∂Ωl∩∂C

D∇m · nlv ds.

After applying the interface and boundary conditions to Eq. (2.12), we obtain

M̃
∂

∂t
ξ = −I J̃ ξ − K̃ ξ − S̃ ξ. (2.14)
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This matrix equation will be solved to get ∂
∂tξ, which will be the input of an explicit

time-stepping method described in the next section. We can see that the left-hand
side contains the mass matrix, while the complex-valued terms are all on the right-
hand side. The fact that the mass matrix is real-valued allows one to replace one
linear system (2.14) of size 2N × 2N by two linear systems of size N × N :

M̃
∂

∂t
ξR = J̃ ξI − K̃ ξR − S̃ ξR,

M̃
∂

∂t
ξI = −I J̃ ξR − K̃ ξI − S̃ ξI ,

(2.15)

where ξR and ξI are the real and imaginary parts of ξ, ξ = ξR + I ξI . Moreover,
because the mass matrix is time-independent, it needs only to be assembled once,
and not at each time step. If Eq. (2.15) is solved directly, M̃ will only need
to be inverted once. Besides the numerical advantage related to having a real-
valued and time-independent mass matrix, this transformation also results in a less
oscillatory unknown function m(r, t) than the original magnetization M(r, t), and
hence, coarser discretizations can be used [58]. Note that m is identical to M at
the initial time (t = 0) and at the final time t = TE since both F(0) and F(TE)
vanish.

2.2.3 When the cell interface touches the computational boundary

Because the computational domain C is extended periodically, in some cases the
cell interfaces touch ∂C. In this case, the combination of the interface condition
and periodic boundary condition is necessary. As a simple example, we consider
a computational domain C in which a cell is placed touching x = a (Fig. 2.1).
The boundary needs to be periodic at x = a and x = b. The cell interior is
characterized by a diffusion tensor Dc. The extra-cellular space is the remaining
part and characterized by a diffusion tensor De. The cell touches the boundary at
the interface Σ, which is the intersection between the cell boundary and ∂C.

Figure 2.1: When the interface touches ∂C, the interface conditions and periodic
boundary conditions are combined.
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For the time-dependent Bloch-Torrey PDE, the interface conditions at Σ are

Dc
a∇mc

a · nc =κ(me
a − mc

a) + I γ mc
aF Dc

a∇G · nc,

De
a∇me

a · ne =κ(mc
a − me

a) + I γ me
aF De

a∇G · ne,
(2.16)

and the periodic boundary conditions are

me
a = me

b,

De
a∇me

a · nc = −De
b∇me

b · ne.
(2.17)

Now, we combine Eqs. (2.16, 2.17) to get

Dc
a∇mc

a · nc =κ(me
b − mc

a) + I γ mc
aF Dc

a∇G · nc,

De
a∇me

b · ne =κ(mc
a − me

b) + I γ me
bF De

b∇G · ne.
(2.18)

Similarly, for steady-state Laplace PDE, the combined conditions are

Dc
a∇W c

a · nc =κ(W e
b − M c

a) − κ(b − a),

De
b∇W e

b · ne =κ(W c
a − W e

b ) + κ(b − a).
(2.19)

2.2.4 Time stepping for the Bloch-Torrey PDE using explicit RKC

We solve the system of ODEs in Eq. (2.15) using the Runge-Kutta-Chebyshev
(RKC) method [63]. We briefly describe this method as it applies to solving ODEs
of the form:

d{ξijk(t)}
dt

= F (t, {ξijk(t)}).

Getting ∂
∂tξ(t) at a given time from Eq. (2.15) requires solving two linear systems

with the same mass matrix M̃. To go from {ξijk}n ≈ {ξijk(tn)} to {ξijk}n+1 ≈
{ξijk(tn+1)}, the following s stages are taken as

Y 0 = {ξijk}n,

Y 1 = Y 0 + µ1τF (tn, {ξijk}n),

Y j = µjY j−1 + νjY j−2 + (1 − µj − νj)Y 0 + µ̃ τF (tn + cj−1τ, Y j−1)

+ γ̃ τF (tn, Y 0), 2 ≤ j ≤ s,

{ξijk}n+1 = Y s,

where τ = (tn+1 − tn), and the coefficients are determined by Chebyshev polyno-
mials.

Note that the local time error of the RKC method at tn+1 can be estimated as

errn+1 =
1

15

(
12({ξijk}n − {ξijk}n+1) + 6τ

(
F (tn, {ξijk}n) + F (tn+1, {ξijk}n+1)

))
,

and the time step can be made stable no matter how large it is by increasing the
number of stages s. Specifically, the stability criterion is [63]

(tn+1 − tn)RKC ≤ ∆tmax
RKC :=

0.653s2

max eig(Jac F (t, {ξijk}(t)))
≈ 0.653 s2 h2

6 D
. (2.20)



30
Chapter 2. A finite elements method to solve the multi-compartment Bloch-Torrey

equation

Essentially, the RKC method chooses a tn+1 where the error term above is smaller
than the user-specified tolerance and the number of stages s is increased to en-
sure that tn+1 − tn is a stable step. Because the time step can be enlarged as
O(s2) whereas the computational time only increases as O(s), this means that the
RKC method with larger time steps computes the solution faster than taking many
smaller steps of the Forward Euler method. The number of stages s is typically
30-50 in our simulations. In addition, because of the existence of a three-term
recurrence relation for Chebyshev polynomials, the storage requirement does not
increase with s, it stays constant being 5 times the number of unknowns.

In contrast, for the Forward Euler method, the stability criterion for a spatial
discretization h is

(
tn+1 − tn

)
F E

≤ ∆tmax
F E :=

h2

6 D
. (2.21)

For moderate accuracy requirements, it is usually much more efficient to increase
s according to Eq. (2.20) to get a time step that is appropriate for the desired
accuracy than being limited by the stability condition (2.21). The RKC method
has essentially the second order time convergence [63].

2.3 Implementation on FEniCS Finite Elements plat-
form and mesh generator Salome

We call the method that we described in the previous section the FEM-RKC
method. This method was implemented on the C++ version of FEniCS 1.0.0.
For this purpose, we had to take the following steps.

Because the RKC solver was only available in Fortran, we rewrote it in C++. To
define the computational domain, we need two files: a mesh file and a compart-
ment marker file. Currently, we use Salome 6.6.0 to generate meshes. It gives a
flexible way to generate complex geometries with multiple compartments and pe-
riodic boundaries. We wrote a C++ subroutine to convert a Salome format ‘.unv’
to FEniCS format ‘.xml’ and a subroutine to create the compartment marker file
compatible with the ‘CellFunction’ of FEniCS.

We then wrote a subroutine to split the mesh and add double nodes beyond the
FEniCS library. Matrices and vectors for standard elements are automatically as-
sembled by FEniCS supplied routines. We enforced the interface conditions by us-
ing subroutines that we wrote beyond the FEniCS library. For a two-compartment
model the use of a 1-1 mapping between vertices at the interfaces is enough because
there is no more than two compartments coming together at one point. However,
when the computational domains include more than two compartments, there are
some singular points where more than two compartments come together and the
vertex mapping fails. To effectively manage multi-compartment domains, we had to
generate a 1-1 mapping between facets at the interfaces instead. Based on the fact
that two elements have no more than two facets, this mapping works for general
cases.
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Various linear solvers are available in FEniCS platform but we mainly use two.
For problems with a few thousand unknowns, a direct solver with the sparse LU
decomposition of M̃ was used because the factorization can be reused after the
first iteration. For larger problems, this decomposition becomes slow and memory
demanding, and we use the iterative method GMRES. Unless specified differently,
the absolute tolerance 10−12 and relative tolerance 10−10 were set for GMRES.

All simulations were performed on a Lenovo workstation (Intel(R) Xeon(R) CPU
X3430@2.40GB), running the program as a serial code on Linux Ubuntu 10.04 LTS.

2.4 Numerical results

In this section we present numerical results on the accuracy and timing of the
FEM-RKC method.

Let ε(r, t) = Mh(r, t) − M(r, t) be the difference between the computed magneti-
zation Mh(r, t) obtained on a mesh with maximum elements size h and the exact
solution M(r, t). We will measure the spatial discretization error in three standard
norms:

1. The L2 error: ‖ε(r, t)‖L2 =

(∫

Ω
|ε(r, t)|2dr

) 1

2

;

2. The H1 error: ‖ε(r, t)‖H1 =

(∫

Ω
|∇ε(r, t)|2dr

) 1

2

;

3. The L∞ error: ‖ε(r, t)‖L∞ = max
x∈Ω

|ε(x, t)|.

Additionally, for the application to dMRI, since the dMRI signal is the integral of
the magnetization at t = TE, we define the dMRI signal error:

4. The signal error: ‖ε(r, t)‖S =

∣∣∣∣
∫

Ω
ε(r, t)dr

∣∣∣∣.

Strictly speaking, the dMRI signal is experimentally measured only at t = TE, but
we will show the convergence of the integral of M at t < TE as well.

The FEM-RKC method will be compared to two other methods:

1. the FEM-BE method, coupling the same finite elements discretization de-
scribed in the previous section to Backward Euler time stepping.

2. the FVM-RKC method [41], coupling a uniform Cartesian finite volume spa-
tial discretization with RKC time-stepping.

2.4.1 Local stiffness matrix for the interface jump condition

First we check the accuracy of the local stiffness matrix at the interface for a 2D
problem. On the computational domain Ω = [0, 40] × [0, 10] with the interface
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r2 = r1/4 (Fig. 2.2a), a solution of the Laplace equation is

u(r) =

{
a r1 + b r2 + c1 if (r1, r2) ∈ Ω+,

a r1 + b r2 + c2 if (r1, r2) ∈ Ω−.
(2.22)

For a given intrinsic diffusion coefficient D, we can compute the permeability,

κ =
D (a − 4 b)

(c2 − c1)
√

17
, (2.23)

that satisfies the interface conditions (1.24,1.25). For a = 40, b = 3, c1 = 0 and
c2 = 1000 and D = 3 · 10−3mm2/s, we obtain κ = 2.04 · 10−5 m

s and the values of
u(r) at the exterior boundaries. The values of u(r) at the exterior boundaries are
set as Dirichlet BC and the interface conditions (1.24,1.25) with permeability κ are
enforced to obtain a numerical solution. We found that the numerical solution that
we obtained is accurate to within 10−16 of the theoretical solution at all vertices.
The theoretical solution is plotted in Fig. 2.2b.

(a) (b)

Figure 2.2: The computational domain with the interface r2 = r1/4 (2.2a) and
exact solution Eq. (2.22) of the Laplace equation with a = 40, b = 3, c1 = 0 and
c2 = 1000, D = 3·10−3mm2/s (2.2b). The permeability at the interface is computed
by Eq. (2.23) so that the interface conditions (1.24,1.25) are satisfied.

Second, we consider another problem related to the periodic BCs and the interface

conditions. Over a box
[−L/2, L/2

]d
(L > 0) with the interface r1 = 0, we construct

a function:

u(r) =





κ L r1

κ L + D
− LD

κ L + D
, if r1 ≤ 0,

κ L r1

κ L + D
, if r1 ≥ 0.

One can see that this function satisfies the Laplace equation (1.31) with the interface
conditions (1.24,1.25) and boundary conditions (1.32) where g = ~e1. We solved Eq.
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(1.31) in both 2D and 3D using the FEM-RKC method and recovered the solution

to 10−16. Moreover, the analytical effective diffusion coefficient Deff
11 =

κ L

κ L + D
[79] was also obtained to an absolute accuracy of 10−16. This is an agreement
between the effective diffusion coefficient computed by homogenization theory and
the analytical long-time apparent diffusion coefficient for the 1D interface problem
on a periodic domain.

2.4.2 Different positions of computational domain in periodic struc-
tures

The pseudo-periodic boundary conditions (1.28) allow us to mimic diffusion in an
infinite domain where the computational domain, C, is infinitely repeated in all
three coordinate directions. So, the signals should be identical for some positions
of the computational domain providing that from those positions, the infinitely
extended domain of C for all three directions are the same.

(a) (b)

(c) (d)

Figure 2.3: A computational domain with different positions in a geometrical struc-
ture (2.3a) such that it contains a cell (2.3b), cuts cells (2.3c) and touches a cell
(2.3d).
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The simulations in this section are used to numerically check the effect of the
pseudo-peridic boundary conditions (1.28) as well as Eq. (2.18) where the pseudo-
periodic boundary conditions are combined with the interface conditions for cells
touching the exterior boundaries. We consider different positions of a computational
domain [−2µm, 2µm]3 in a model biological structure in which square cells of length
L = 2µm are periodically placed (Fig. 2.3a) such that it contains a cell (Fig. 2.3b),
cuts cells (Fig. 2.3c) and touches a cell (Fig. 2.3d).

In theory, the signals on these three domains are identical. We perform three simula-
tions on these three domains for the same parameters ∆ = δ = 10ms, κ = 10−5m/s
and diffusion coefficient Dc = De = 10−3mm2/s. The relative difference between
simulated DMRI signals obtained by solving the Bloch-Torrey PDE on three do-
mains is less than 1% (Fig. 2.4b) for all seven b−values from 0 to 3000s/mm2.

(a) (b)

Figure 2.4: The DMRI signals on three domains are close to each other (2.4a), the
relative difference is less than 1% (2.4b).

2.4.3 Spatial discretization

Similar to standard FEM, FEM-RKC with linear basis functions is expected to
have the second order convergence in the L2−norm and the L∞−norm, and the
first order in the H1−norm.

2.4.3.1 Homogeneous problem

First we consider a homogeneous domain C = [−5µm, 5µm]2, the initial condition
is a Dirac delta distribution at r0 = (0, 0). The constant diffusion coefficient is
D = 3 · 10−3mm2/s, ‖g‖ = 373.8mT

m , and the time profile is PGSE with δ = 4ms
and ∆ = 4ms.
The mesh size was varied from 20 × 20 to 640 × 640 vertices for FVM-RKC and
from 10×10 to 100×100 vertices for FEM-RKC. The results at t = 2ms are shown
in Fig. 2.5a, 2.5b, 2.5c. One can see the second order convergence in the L2−norm
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and L∞−norm, and the first order convergence in the H1−norm, as expected for
FEM-RKC. For FVM-RKC, the convergence is first order in the L2−norm and the
L∞−norm. The H1−norm is not defined. Then we study the convergence of the
integral of magnetization M . For a homogeneous domain, the mass conservation
in both the FEM and FVM methods implies that the integral of M is exact up to
numerical accuracy when F(t) is zero. So we just verify the spatial convergence of
the integral of M at t = δ, δ < t < ∆, and δ < t < ∆ + δ. Figure 2.5d shows that
the integral of M has the second order convergence in space.

(a) (b)

(c) (d)

Figure 2.5: Two-dimensional homogeneous problem on C = [−5µm, 5µm]2. The
L2-error (2.5a), L∞-error (2.5b) and signal error (2.5d) are of second order in h for
FEM-RKC and of first order for FVM-RKC; FEM-RKC also gives the first order
convergence in H1−error (2.5c).

The results are similar in 3D. We solve the homogeneous problem on [−5µm; 5µm]3

for the PGSE sequence: ∆ = δ = 4ms, D = 3·10−3mm2/s and ‖g‖ = 373.8mT
m . Fig-
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ure 2.6 illustrates the second order convergence in the L2−norm and the L∞−norm
of FEM-RKC.

Figure 2.6: Spatial convergence of L2-error and L∞-error for a three-dimensional
homogeneous problem on C = [−5µm, 5µm]3 with PGSE sequence: ∆ = δ = 4ms,
D = 3 · 10−3mm2/s and ‖g‖ = 373.8mT

m for FEM-RKC.

2.4.3.2 Impermeable disk and sphere

We consider the convergence of the dMRI signal (integral of the magnetization at
echo time t = TE) inside impermeable circular and spherical cells for the OGSE
sequence. Analytical solution for comparison was obtained using the matrix formal-
ism approach [21]. The simulations are performed for both small and large duration
σ.
For small duration TE = 2σ = 10ms with one period of cos-OGSE, the simu-
lated signal for impermeable sphere of radius R = 4.5µm with diffusion coefficient
D = 3 · 10−3mm2/s and b = 1000s/mm2 versus spatial discretization are shown in
Table 2.1.

Table 2.1: The simulated signal obtained by FEM-RKC in spatial discretization
for cos-OGSE sequence with the number of periods n = 1, impermeable sphere of
radius R = 4.5µm, D = 3 · 10−3mm2/s, TE = 2σ = 10ms, and b = 1000s/mm2

spatial discretization simulated signal

2.000 0.17858
0.912 0.17433
0.418 0.17337
0.186 0.17314
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Compared to the exact signal 0.17308, FEM-RKC gives the second order of the
signal in spatial discretization.

The signal obtained by FEM-RKC for cos-OGSE sequence with n = 100 periods,
TE = 2σ = 400ms at b−values from 0 to 500s/mm2 for an impermeable disk of
radius R = 4.5µm, D = 3 · 10−3mm2/s, also converges to the analytical solution
at the second order in h (Fig. 2.7a). Similarly, we also obtain the second order
convergence for a 3-dimensional impermeable sphere (Fig. 2.7b).

(a) (b)

Figure 2.7: The convergence of the dMRI signal versus space discretization for an
impermeable circular cell in 2D (2.7a) and an impermeable spherical cell in 3D
(2.7b) with the same cell radius of R = 4.5µm, D = 3 · 10−3mm2/s, TE = 2σ =
400ms.

2.4.3.3 Permeable square cell

For permeable square cells, there is no analytical solution. We will compare our nu-
merical solution with the reference numerical solution obtained at the finest mesh.
One square cell of side length L = 8µm is placed in the center of the domain
C = [−5µm; 5µm]2. The boundary conditions on ∂C imply the periodic repetition
of the square cell outside of C. Both intra-cellular and extra-cellular compartments
have the same intrinsic diffusion coefficient D = 3 × 10−3mm2/s. Setting the per-
meability κ = 10−5 m

s for the interface, we consider one case of gradient amplitude
‖g‖ = 373.8mT

m . The mesh size was varied from 253 vertices to 7513 vertices and
all obtained solutions are compared with the reference solution obtained at 81041
vertices. The time profile is the PGSE sequence with ∆ = δ = 10ms.

The results show that FEM-RKC gives the second order convergence in the L2

and L∞ norms (Fig. 2.8a) and the second order convergence in the dMRI signal
(Fig. 2.8b), where h is the maximum element size.
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(a) (b)

Figure 2.8: The spatial convergence for permeable square cells is of the second order
in the L2-norm and the L∞-norm (2.8a) as well as in the dMRI signal (2.8b).

2.4.3.4 Approximation of the interface

Next, we verify that the approximation of the geometry of the interface is more ac-
curate for FEM than FVM, leading to a more accurate dMRI signal approximation.
We consider a periodic domain with many striped squares and extract two periodic
subdomains: domain 1 and domain 2 (Fig. 2.9).

Figure 2.9: Two different computational boxes derived from a periodic domain.

In theory, the signals computed by solving the Bloch-Torrey equation with pseudo-
periodic BCs on both cases should be identical. We perform two simulations with
the parameters D1 = 3 · 10−3mm2/s, D2 = 10−3mm2/s, κ = 5 · 10−5 m

s , using the
PGSE sequence with δ = ∆ = 5ms. The mesh size is 64 × 64 for FEM-RKC and
300×300 for FVM-RKC. The results for RKC tolerance tol = 10−6 are summarized
in Table 2.2.
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Table 2.2: The dMRI signals computed on domains 1 and 2 from Fig. 2.9 with
D1 = 3 · 10−3mm2/s, D2 = 10−3mm2/s, κ = 5 · 10−5 m

s , and a PGSE sequence with
δ = ∆ = 5ms, RKC tolerance tol = 10−6.

b-value (s/mm2) FEM-RKC FVM-RKC

domain 1 domain 2 domain 1 domain 2

0.00 1.0000 1.0000 1.0000 1.0000
92.59 0.8513 0.8514 0.8517 0.8548
370.37 0.5520 0.5526 0.5533 0.5555
833.33 0.3223 0.3226 0.3232 0.3141
1481.48 0.2120 0.2120 0.2123 0.1934
2314.81 0.1680 0.1681 0.1683 0.1456
3333.33 0.1478 0.1480 0.1481 0.1248

One can see that FEM-RKC gives a good approximation of slanted interfaces
whereas FVM-RKC fails at high b-values. In fact, the approximation of the slanted
interface on a Cartesian grid by a zigzag curve leads to significant errors in the
surface area, whatever the spatial resolution of the grid.

2.4.4 Computational efficiency

The RKC solver for parabolic PDEs has the second order convergence in time [76],
and this remains true for FEM-RKC. On the other hand, the Backward Euler
method has the first order convergence in time.

We numerically show that FEM-RKC is more efficient than FVM-RKC and FEM-
BE in running time.

First we fix the mesh size of 200×200 and keep the same parameters: homogeneous
domain C = [−5µm, 5µm]2, initial condition as a Dirac delta distribution at r0 =
(0, 0), diffusion coefficient D = 3 · 10−3mm2/s, ‖g‖ = 373.8mT

m . The solution is
computed at t = 2ms for a constant gradient, f(t) = 1, t = 0 . . . 2ms.

Table 2.3: Accuracy and timing of FEM-RKC and FVM-RKC.

FEM-RKC FVM-RKC

Tol L2-error L∞-error Timing (s) L2-error L∞-error Timing (s)

10−3 1.05 · 10−3 7.02 · 10−4 41.19 3.28 · 10−3 8.18 · 10−3 7.78
10−4 3.93 · 10−4 3.03 · 10−4 54.79 2.97 · 10−3 6.35 · 10−3 7.62
10−5 9.89 · 10−5 3.19 · 10−5 87.37 1.99 · 10−3 1.88 · 10−3 8.06
10−6 1.71 · 10−5 5.45 · 10−6 142.11 1.18 · 10−3 5.25 · 10−4 9.09
10−7 1.84 · 10−6 4.26 · 10−7 240.72 6.18 · 10−4 9.75 · 10−5 14.99

For FVM-RKC and FEM-RKC, we vary the relative and absolute error tolerances
of RKC solver from tol = 10−3 to 10−7 and present the accuracy in Table 2.3.
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Table 2.4: Accuracy and timing of FEM-BE for different sizes of time stepping.

dt (µs) L2-error L∞-error Timing (s)

2 3.83 · 10−5 1.01 · 10−5 1147.21
4 8.98 · 10−5 2.43 · 10−5 591.22
8 1.93 · 10−4 5.25 · 10−5 314.13
10 2.45 · 10−4 6.67 · 10−5 258.31
20 5.04 · 10−4 1.38 · 10−4 148.41
25 6.34 · 10−4 1.74 · 10−4 126.11
40 1.02 · 10−3 2.82 · 10−4 90.70
100 2.61 · 10−3 7.28 · 10−4 55.01
200 5.29 · 10−3 1.53 · 10−3 43.58

For FEM-BE, we change the time stepping from 2µs to 200µs (see Table 2.4).
These two tables show that FVM-RKC can provide moderate accuracy in a short
computational time. However, it does not allow high accuracy on this mesh. In
fact, because FVM-RKC has the first order spatial convergence, one needs a finer
mesh to get higher accuracy. It is time-consuming for Backward-Euler to get high
accuracy because it has the first order time convergence. In contrast, FEM-RKC
can provide high accuracy with moderate computational time.

Now, we fix the tolerance of RKC solver at tol = 10−9 and consider different mesh
sizes. The mesh size was varied from 20 × 20 to 640 × 640 for FVM-RKC and from
10 × 10 to 100 × 100 for FEM-RKC. We keep the same time stepping dt = 2µs and
vary the mesh size from 10 × 10 to 80 × 80 for FEM-BE. The results show that the
same accuracy is obtained with FEM-RKC much faster than with FVM-RKC and
FEM-BE (Fig. 2.10).

(a) (b)

Figure 2.10: The accuracy of FEM-RKC, FEM-BE and FVM-RKC versus compu-
tational time (in second) for different mesh sizes.
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2.4.5 Timing on heterogeneous domain

We simulated both PGSE and OGSE sequences on the computational box C =
[−20µm; 20µm]3 containing random curved cylindrical cells (Fig. 2.11) created by
Salome. The random curved cylinders do not overlap but they do cut the exterior
boundaries. Because of that, the water molecules are not obstructed since the
domain is periodically repeated. To ensure that the domain is periodic at the
boundary ∂C, we create one-eighth of the domain on [0; 20µm]3 including a set of
43 random curved cylinders and the remaining part is the extra-cellular space. The
radius r of the curved cylinders is set to 1.2 µm to obtain an intra-cellular volume
fraction of vc = 40.3%. Then, this one-eighth subdomain is mirror reflected across
the three planes, x = 0, y = 0, z = 0, to obtain C.

For simulation, the same diffusion coefficient D = 10−3mm2/s was set for both intra-
cellular and extra-cellular compartments. A permeability condition with κ = 10−5 m

s
was set between the cylinders and the extra-cellular compartment. The uniform
distribution M(r, 0) = 1 was set as the initial condition.

Figure 2.11: The sample with random curved cylinders created by Salome with
intra-cellular volume fraction vc = 40.3% and 260363 nodes. The random curved
cylinders do not overlap.

For such a large scale problem, the sparse LU decomposition (Gaussian elimination)
failed to work. The iterative Krylov solver, the GMRES method, was used. We set
RKC tolerance at 10−4, the GMRES absolute tolerance at 10−10 and the GMRES
relative tolerance at 10−6. The slowest computation took about 3 hours for one
b−value of the cos-OGSE sequence with n = 4 periods and the fastest computation
was about 20 minutes for one b−value (b > 0) for the PGSE sequence. The memory
usage was 1.4G.

Figure 2.12a shows the dMRI signals for the OGSE sequence with two different
frequencies and the PGSE sequence. The signal becomes smaller at higher fre-
quency. The running time increases monotonically with the gradient amplitude
‖g‖ (Fig. 2.12b). Because of the reduction of oscillations by transforming the un-
known to m(r, t), the running time only increases slightly with ‖g‖.
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(a) (b)

Figure 2.12: Signal (2.12a) and running time (in minute) (2.12b) for the cos-OGSE
sequence with n = 2, 4 periods and the PGSE sequence, on the random curved
cylinders domain with intra-cellular volume fraction vc = 40.3%.

2.5 Conclusion

We developed an efficient FEM-RKC method combining the RKC time-stepping
method with a specially formulated finite elements spatial discretization to solve
two PDEs coming from the field of diffusion MRI. Based on the double-node tech-
nique and a body-fitting mesh, FEM-RKC can give a better approximation at the
cell interfaces than a Cartesian spatial discretization. By a transformation of the
Bloch-Torrey PDE, the pseudo-periodic boundary conditions were transformed to
periodic ones and oscillations in the solution were reduced. The FEM-RKC method
with linear basis functions gives the second order convergence in both time and
space, compared to the approach in the existing literature which is first order ac-
curate in space and time. Our method should result in improvements in both the
computational time and the accuracy of dMRI signal simulations. This efficient
method can become a useful tool to investigate the diffusion of water molecules in
complex biological domains.



Chapter 3

Applications of FEM-RKC code
to study diffusion MRI

Summary In this chapter, the FEM-RKC code proposed in Chapter 2 is applied
to study the diffusion MRI signal. First, the convergence of the apparent diffusion
tensor in the long time limit to the value predicted by the effective diffusion tensor
obtained by mathematical homogenization theory was considered. A numerical
study was conducted in two and three dimensions to demonstrate the convergence
as a function of the diffusion time. Second, we study the relation between the two-
compartment model of the biological cell and the corresponding three-compartment
model where a thick layer around the biological cell membrane is introduced as
the third compartment. We show that the dMRI signal obtained from the two-
compartment model approximates the dMRI signal from the three-compartment
model as the layer thickness decreases, for both isotropic and tangential membrane
diffusion tensors. Finally, we use the code to validate the Kärger model of the
dMRI signal, which is a reduced model taking into account inter-compartmental
exchange.

3.1 Effective diffusion tensor from homogenization

The standard formulation of homogenization [4] assumes the continuity of the PDE
solution. By using a modified formulation of homogenization in which the solution
may have jumps at interfaces [10], we compute the effective diffusion tensor and
show the convergence of the ADC to the value predicted by homogenization as the
diffusion time increases, for complex geometrical domains in 2D and 3D.

To compute the ADC, we solve the Bloch-Torrey equation (1.23) with the conditions
Eqs. (1.24, 1.25,1.27,1.28) for Stejskal-Tanner PGSE sequences (Figure 1.1a) with
two rectangular gradient pulses of a fixed duration δ and several diffusion times
∆ to obtain the dMRI signal at some b−values. Not accounting for fitting errors,
the apparent diffusion coefficient (ADC) is the first moment of the logarithm of
the normalized dMRI signal with respect to b-value computed by Eq. (1.15). To
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compute the effective diffusion tensor, we solve the Laplace equation (1.31) with
conditions (1.24,1.25,1.32,1.33) to obtain Dhom via Eq. (1.34). In this section, we

show numerically that the ADC converges to gT

‖g‖Dhom g
‖g‖ , where g is the gradient

direction.

In two biological samples we consider below (Figures 3.1a and 3.3a), the dMRI
signals are computed for five b−values 0, 50, 200, 500 and 1000 s/mm2. From each
∆, the ADC is obtained by fitting the function − log S(b)/ log S(0) using a cubic
polynomial.

The problem is first considered on a computational domain C = [−5µm; 5µm]2 in
which the cells have irregular shapes and varying sizes (Figure 3.1a). The black
part is considered as the extra-cellular space and the intra-cellular space is what
remains.

(a)

(b) (c)

Figure 3.1: A computational domain in which the cells have irregular shapes and
variable sizes (3.1a) and numerical solutions for the direction [1,0] of the steady-
state Laplace equation (3.1b) and the time-dependent Bloch-Torrey equation (3.1c)
on this domain.

This structure is loaded to Matlab and then the mesh is created, with 14705 vertices.
The boundary conditions (1.24, 1.25) require that the opposite boundaries of the
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computational domain should be aligned, while Figure 3.1a shows that the cells cut
boundaries randomly. A special treatment for the case, when the cell interfaces
touch the exterior boundaries, presented in section 2.2.3, is applied to deal with
this problem.

We show the solutions obtained by solving Laplace equation (Figure 3.1b) and
Bloch-Torrey equation (Figure 3.1c) for De = Dc = 3 ·10−3mm2/s, κ = 5 ·10−5m/s,
δ = 2.5ms and ∆ = 5ms for the gradient direction [1,0].

To compute the ADC, we solve the Bloch-Torrey equation for several diffusion
times with ∆ = 5, 10, 20, 40, 80, 160ms. The simulations were performed by the
FEM-RKC code that took from 5 minutes (∆ = 5ms) to 20 minutes (∆ = 160ms)
for each b-value.

In Figure 3.2, we plot the entries of ADC and gT

‖g‖Dhom g
‖g‖ against ∆−1 for two

gradient directions [1,0] and [0,1]. One can see that the ADC linearly approaches

the effective diffusion tensor gT

‖g‖Dhom g
‖g‖ . The convergence slope is different for

different gradient directions. Based on the ADC and gT

‖g‖Dhom g
‖g‖ , we see that

diffusion in this computational domain is anisotropic and the water molecules can
move in direction [0,1] faster than in direction [1,0].

Figure 3.2: The convergence of ADC to gT

‖g‖Dhom g
‖g‖ for diffusion inside the domain

shown in Figure 3.1a for two gradient direction [1, 0] and [0, 1]. The same intrinsic
diffusion coefficient is set for extra-cellular and intra-cellular spaces, De = Dc =
3 · 10−3mm2/s. The permeability κ = 5 · 10−5m/s is set for the membrane. The

ADC linearly approaches the effective diffusion tensor gT

‖g‖Dhom g
‖g‖ versus ∆−1.

Next, we simulate a 3D example. The computational domain C = [−10µm, 10µm]3

contains 100 Voronoi cells (Figure 3.3a) with intra-cellular volume fraction vc =
61.4% and surface-to-volume ratio 1.03µm−1. The same intrinsic diffusion coeffi-
cient De = Dc = 10−3 mm2

s is set for both intra-cellular and extra-cellular com-
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partments. Two permeabilities, κ = 10−5 m
s and κ = 10−4 m

s , were simulated. The
Bloch-Torrey PDE was solved for the PGSE sequences with δ = 2.5ms and several
∆ = 10, 20, 40, 80, 160ms. The steady-state Laplace PDE was also solved over C to
obtain Dhom.

Similarly to 2D, Figures 3.3b and 3.3c show that ADC converges to gT

‖g‖Dhom g
‖g‖

in three gradient directions: [1, 0, 0], [0, 1, 0] and [0, 0, 1], for both κ = 10−4 m
s and

κ = 10−5 m
s .

(a) (b)

(c) (d)

Figure 3.3: The computational domain with 100 Voronoi cells (3.3a) and the con-

vergence of ADC to gT

‖g‖Dhom g
‖g‖ in three directions [1,0,0], [0,1,0] and [0,0,1] for

κ = 10−4 m
s (3.3b) and κ = 10−5 m

s (3.3c). With the same gradient direction [1, 0, 0],
the convergence is faster at higher permeability (Figure 3.3d) and seems to be linear
versus ∆−1 when the diffusion time is long enough.

Since water molecules can move more easily at higher permeability, the ADC and
gT

‖g‖Dhom g
‖g‖ are bigger (Figure 3.3d). The convergence curve seems to be linear

versus ∆−1 when the diffusion time ∆ − δ/3 is long enough that agrees with the
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result for 1D periodic structure in the long-time regime [79].

The computation of Dhom is much faster than that of the ADC. For a mesh size with
28688 vertices, each ADC is computed in 10 to 20 minutes whereas the computation
of one Dhom takes less than one minute.

This approach can be applied to general geometrical shapes, as long as a good mesh
can be generated. Other diffusion-encoding pulse sequences may be used for long
enough diffusion times.

The analysis of the steady-state Laplace equation within homogenization theory
is much easier than that of the time-dependent Bloch-Torrey equation. We expect
that the experimentally obtained apparent diffusion tensors can be used to estimate
gT

‖g‖Dhom g
‖g‖ by extrapolation in ∆−1 and then information, obtained analytically

or numerically, about gT

‖g‖Dhom g
‖g‖ , can be used to infer the properties of the imaged

sample.

3.2 Layer compartments and interface conditions

In this section, we will study the effect of including a separate diffusion layer between
the intra and the extra-cellular compartments. We refer to the model where the
intra and extra-cellular compartments are divided by an infinitely thin interface
as the two-compartment model of biological tissue, and the model where a layer
compartment of non-zero thickness is placed between the intra and extra-cellular
compartments as the three compartment model of biological tissue.

3.2.1 Myelin sheath and slow diffusion layer around cell mem-
branes

Biological cells have plasma membranes that are very thin. The membrane thick-
ness is on the order of nanometers. However, Le Bihan [39] has suggested that even
though the membrane thickness is much smaller than the dimensions of the biolog-
ical cells, there may be a thick layer of water in the vicinity of the cell membranes
that experience slow diffusion and this effective layer thickness may be on the order
of µm.

The nerve axon is surrounded by a so-called myelin layer which is composed by
some layers of lipids or proteins [56]. In human brain, the axonal diameter varies
between 2 and 7µm, and myelin thickness from 0.5 to 2.5µm [27, 47, 61]. In the
normal nerve of the rabbit, the axon diameters range from 0.5µm to 15µm, with
the myelin layer having a thickness from 0.5µm to 2.5µm [59]. Because the myelin
sheath is comprised of layers of lipids (see Figure 3.4) it is expected that the diffusion
tensor in the myelin layer has a tangential component that is larger than the normal
component. Further discussion of diffusion inside the myelin sheath can be found
in [3, 35,39].
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Figure 3.4: Image from Wikipedia Commons. Descriptions: Transmission electron
micrograph of a myelinated axon. The myelin layer (concentric) surrounds the axon
of a neuron, showing cytoplasmatic organs inside. Generated and deposited into
the public domain by the Electron Microscopy Facility at Trinity College. Source
http://en.wikipedia.org/wiki/Myelin, Author: user:Roadnottaken.

3.2.2 Three-compartment model of biological tissue

In the three-compartment model of biological tissue, the computational domain
is a union of three compartments: the intra-cellular space Ωc, the extra-cellular
space Ωe, and the membrane layer Ωm of thickness η (see Figure 3.5a). Each
compartment Ωc and Ωe is characterized by its own intrinsic diffusion tensor Dc,
De respectively. In this section, we assume that diffusion in both compartments Ωc

and Ωe is isotropic, while diffusion inside the thick membrane may be anisotropic
with its diffusion tensor Dm.

Furthermore, the magnetization is supposed to be continuous across the cell-membrane
and the membrane-extra-cellular space interfaces. For latter use, we call M the so-
lution M of the Bloch-Torrey equation (1.23) in the three-compartment domain.
The interface conditions (1.24, 1.26) at Ωl ∩ Ωn (l = c, e, m; n = c, e, m; l 6= n) can
be rewritten

Dl∇M
l · nl = −Dn∇M

n · nn

M
l = M

n
(3.1)

where nk is the normal vector pointing outward from Ωk (k = l, n).

http://en.wikipedia.org/wiki/Myelin
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3.2.3 The relationship between the two- and three-compartment
models

In the two-compartment model, the membrane layer is replaced by an infinitely
thin interface Γ (see Figure 3.5b) which is characterized by a finite permeability
κ. In our work, Γ is placed in the middle of the membrane layer. For the sake of
simplicity, we describe 2D case and assume that Γ is a closed curve which divides
the computational domain Ω into two subdomains Ω

c
and Ω

e
. Each subdomain

occupies a half of the membrane layer and Ωc ⊂ Ω
c
, Ωe ⊂ Ω

e
, Ω = Ω

e ∪ Ω
c
.

We define M
k

the solution of the Bloch-Torrey equation in the k−compartment
(k = c, e) on this two-compartment model.

The transverse diffusion coefficient inside the membrane layer (which is perpendic-
ular to Γ) κn is related to the permeability κ of Γ as

κ ≈ κn/η. (3.2)

At each point r ∈ Ωm, one defines a normal vector n(r) and a tangential vector τ(r)
to Γ. The diffusion tensor inside the membrane layer can be computed as following

Dm(r)n(r) = κnn(r),

Dm(r)τ(r) = κτ τ(r),
(3.3)

where κτ indicates the diffusion coefficient along the tangential direction of Γ.

Ωc

Dc

Ωe

De

η

M
m

Ωm

M
c

M
e

(a)

Ω
c

Dc

Ω
e

De

Γ

M
c

M
e

(b)

Figure 3.5: Two models of a cross section of a myelinated axon. In the three-
compartment model (3.5a), Ω is a union of three compartments: the intra-cellular
space Ωc, the extra-cellular space Ωe, and the membrane layer Ωm of thickness η.
Each compartment is characterized by its own intrinsic diffusion tensor Dc, De and
Dm respectively. In the two-compartment model (3.5b), the intermediate layer is
replaced by an infinitely thin interface that is characterized by a finite permeability
κ.
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If diffusion inside the membrane is isotropic, κn = κτ , Dm is diagonal with the
same entries

Dm = κ η




1 0 0
0 1 0
0 0 1


 .

A standard interface condition for the two-compartment model ensures that the
flux across the interface is continuous but the magnetization is not [13,22,42,79]

Dl∇M
l · nl = −Dn∇M

n · nn = κ
(
M

n − M
l
)
. (3.4)

3.2.4 Interface conditions for anisotropic diffusion inside the mem-
brane layer

In this section, we derive the interface conditions for two-compartment model cor-
responding to the three-compartment model with anisotropic diffusion inside the
membrane. We assume that the diffusion coefficient along tangential directions
to the membranes is much larger than that along the perpendicular directions:
κn ≪ κτ .

Following the expression of the differential operators given in [23] (see also in [1]),
we detail the two dimensional case but similar results should be valid for the three
dimensional case. Assuming that Γ is a regular curve (at least C2) and Ω is simply
connected, the boundary Γ can be parametrized in terms of the curvilinear abscissa
s as s 7→ xΓ(s), s ∈ [0, L[, with |dxΓ(s)/ds| = 1, where L is the length of Γ. We
note that this parametrization defines a counter-clockwise orientation. Let n be the
unitary normal vector at xΓ(s) directed to the interior of Ω and set τ(s) = dxΩ(s)/ds
which is a unitary vector tangential to Γ at xΓ(s). The curvature c can be defined
by

c(s) := τ(s) · dn(s)/ds = ∇τ n.

These notations are summarized in Figure 3.6.

Let ν0 := inf
0≤s≤L

1

|c(s)| , Ω0 := {r ; d(r, Γ) < ν0} and xΓ be the orthogonal projection

of r on Γ. Then,

∀r ∈ Ω0, ∃!(s, ν) ∈ [0, L[×] − ν0, ν0[, r = xΓ(s) + ν n(s). (3.5)

The couple (s, ν) will be referred to as curvilinear (or parametric) coordinates of
r ∈ Ω0 (with respect to Γ).

Let M̃ : [0, L[×] − ν0, ν0[ be defined by M̃(s, ν) = M(r), where r and (s, ν) satisfy
Eq. (3.5). Then, we have

∇M(r) =
1

1 + νc

∂M̃

∂s
τ +

∂M̃

∂ν
n,
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Dm
Ωm
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η
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M̃M
c

M
e

r = xΓ(s) + ν n(s), ν ∈ [−η/2, η/2]

Figure 3.6: Notations

and for a tensor D, we have

div
(
D ∇M(r)

)
=

1

1 + νc

∂

∂s

(
1

1 + νc
D

∂M̃

∂s

)
+

1

1 + νc

∂

∂ν

(
(1 + νc)D

∂M̃

∂ν

)

=
1

1 + νc
divτ

(
1

1 + νc
D∇τ M̃

)
+

1

1 + νc

∂

∂ν

(
(1 + νc)D

∂M̃

∂ν

)
.

On the membrane Ωm with assuming Ωm ⊆ Ω0, according to the anisotropy as-
sumption, we have

Dm∇M
m =

1

1 + νc
κτ ∇τ M̃ + ηκ∂νM̃ n,

and then

div (Dm∇M
m) =

1

1 + νc
divτ

(
1

1 + νc
κτ ∇τ M̃

)
+

1

1 + νc
∂ν

(
(1 + νc) η κ ∂νM̃

)
.

We set ξ := ν
η , with ν ∈ [−η

2 , η
2 ] and then ξ ∈ [−1

2 , 1
2 ]. Hence, we obtain:

Dm∇M · n = κ ∂ξM̃ ,
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and

div (Dm∇M
m) =

1

1 + ηξc
divτ

(
1

1 + ηξc
κτ ∇τ M̃

)
+

1

η2

1

1 + ηξc
∂ξ

(
(1 + ηξc)ηκ∂ξM̃

)

=
1

(1 + ηξc)2
divτ

(
κτ ∇τ M̃

)
− ηξ

(1 + ηξc)3
κτ ∇τ M̃∇τ c

+
κ

η
∂2

ξξM̃ +
κc

1 + ηξc
∂ξM̃ .

We also notice that

I γ g · r f(t)Mm = I γ (gΓ · xΓ + gνηξ)f(t) M̃ ,

where gΓ is the orthogonal projection of g on Γ.

Then, multiplying the Bloch-Torrey equations (1.23) by (1 + ηξ)3, we obtain

(1 + ηξ)3∂tM̃ + (1 + ηξ)3 I γ (gΓ · xΓ + gνηξ)f(t)M̃ − (1 + ηξ)divτ

(
κτ ∇τ M̃

)

+ηξκτ ∇τ M̃∇τ c − κ
η (1 + ηξ)3∂2

ξξM̃ − (1 + ηξ)2κc∂ξM̃ = 0.

Then, by identification (from the power of 1/η), we obtain:

∂2
ξξM̃ = 0.

So,
M̃(xΓ, ξ) = A(xΓ) + ξB(xΓ).

To shorten notations, we denote [fl,n] and
〈
fl,n

〉
the jump and the average of

function f at the interface Ωl ∩ Ωn

[f ]l,n = fn − f l,
〈
f
〉

l,n
=

fn + f l

2
.

and

M̃
e(xΓ) = M̃

(
xΓ,

1

2

)
and M̃

c(xΓ) = M̃

(
xΓ, −1

2

)
.

Since [M ]l,n = 0 on the interface, we obtain A(xΓ) = 〈M〉c,e and B(xΓ) = [M ]c,e

and then
M̃

(
xΓ, ξ

)
=
〈
M̃

〉
c,e

+ ξ
[
M̃

]
c,e

. (3.6)

Using the flux continuity [D∇M · n]l,n = 0, we have

κ∂ξM̃

(
xΓ,

1

2

)
= De∇M̃

e · ne and κ∂ξM̃

(
xΓ, −1

2

)
= −Dc∇M̃

c · nc.

Hence
Dc∇M̃

c · nc = −De∇M̃
e · ne = κ

[
M̃

]
c,e

. (3.7)

So, we have exactly the same formula proposed for isotropic case Eq. (3.4). However,
we emphasize that M̃

c and M̃
e are defined at ν = −η/2 and ν = η/2 respectively
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and the two-compartment model is established by removing the membrane from
the three-compartment model. It means that there is an empty zone between the
intra-cellular and extra-cellular compartments. The signal attenuation for two-
compartment model in this case should be

S =
1

|Ω|

( ∫

Ωc∪Ωe

M dr + η

∫

Γ

〈
M

〉
ds

)
. (3.8)

The empty zone between two compartments Ωc and Ωe causes a technical difficulty
in implementing the code in 2D and 3D because the vertices along the interface in
both compartments should be aligned. To overcome this difficulty, we use Taylor’s
expansion of M around ν = 0 so that the interface conditions are moved to the
middle of the interface. The obtained formula in this case is identical to Eq. (3.7)

Dc∇M
c · nc = −De∇M

e · ne = κ
[
M

]
c,e

.

The formula to compute the signal attenuation can be simplified to

S =
1

|Ω|

∫

Ω

Mdr. (3.9)

In what following, we will numerically study the difference in diffusion characteris-
tics between isotropic and anisotropic diffusion inside the membrane layer.

3.2.5 Simulations

We perform the simulations on the domain C = [−5µm, 5µm]d containing one
circular/spherical cell of radius R = 4µm. Four values of the thickness η =
0.2, 0.4, 0.8 and 1.6µm of the membrane layer are used to check the closeness of
the two models. Ten b−values b =0, 100, 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000 s/mm2 were considered. The same intrinsic diffusion coefficient D =
3·10−3 mm2/s is set for both extra-cellular and intra-cellular compartments. For the
three-compartment model with isotropic diffusion in the membrane layer, the diffu-
sion coefficient Dm = κ η is set for the membrane layer. For the three-compartment
model with anisotropic diffusion in the membrane layer, the diffusion coefficients
are different for different diffusion directions. The diffusion coefficient κn = κ η
is set for the normal direction and κτ = 3 · 10−3mm2/s is set for the tangential
direction.

For 2D (d = 2), the first result is that the signals of three-compartment models
with both isotropic and anisotropic diffusion in the membrane layer approach the
signal of two-compartment model. It means that when η → 0, the contribution of
tangential diffusion coefficient is vanishing.

However, there is a significant difference between signals of isotropic and anisotropic
diffusion inside a thick membrane layer, and the two-compartment model is always
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closer to the three-compartment model with anisotropic diffusion than the three-
compartment model with isotropic diffusion in the membrane. Figure 3.7 illustrates
this result for the diffusion time ∆ = 10ms and κ = 10−5m/s.

(a) (b)

(c) (d)

Figure 3.7: Signals of both three-compartment models with isotropic diffusion and
anisotropic diffusion in the membrane approach the signal of two-compartment
model. Four values of the thickness η = 1.6µm (3.7a), η = 0.8µm (3.7b), η = 0.4µm
(3.7c) and η = 0.2µm (3.7d) were considered for ∆ = 10ms and κ = 10−5m/s.
However, the signal of two-compartment model is always closer to the signal of
the three-compartment model with anisotropic diffusion than to the signal of the
three-compartment model with isotropic diffusion in the membrane.

Figure 3.8 shows the convergence slope of the signals of the three-compartment
models to the signal of the two-compartment model. Although the L2− differ-
ence between signals of the three-compartment with anisotropic diffusion in the
membrane and the two-compartment model is smaller than that between the three-
compartment with isotropic diffusion in the membrane and the two-compartment
model, both have the first order convergence versus the thickness.
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(a) (b)

(c)

Figure 3.8: The convergence of the three-compartment models to the two compart-
ment model for different diffusion times ∆ = 2.5ms (3.8a), ∆ = 10ms (3.8b) and
∆ = 100ms (3.8c).

The approximation is better at higher permeabilities but the convergence order does
not change.

The above results remain true for 3D (d = 3). Figure 3.9a shows the gT

‖g‖Dhom g
‖g‖ ,

for g/‖g‖ = [1, 0, 0], computed by solving the steady-state Laplace PDEs (1.31, 1.24,
1.25, 1.32, 1.33) for two- and three-compartment domains with κ = 5 ·10−5 m

s . As η

tends to 0, the gT

‖g‖Dhom g
‖g‖ from the three-compartment models with isotropic and

anisotropic diffusion in the membrane layer both linearly approach to gT

‖g‖Dhom g
‖g‖

of the two-compartment model. However, the difference between gT

‖g‖Dhom g
‖g‖ of

the three-compartment model with anisotropic diffusion and the two-compartment
model is smaller than that between the three-compartment model with isotropic
diffusion and the two-compartment model (Figure 3.9b).
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(a) (b)

Figure 3.9: Comparison between gT

‖g‖Dhom g
‖g‖ , for g/‖g‖ = [1, 0, 0] of three-

compartment model (3.5a) and two-compartment (3.5b) model for κ = 5 · 10−5 m
s .

As η tends to 0, the gT

‖g‖Dhom g
‖g‖ of the three-compartment model approaches that

of the two-compartment model (3.9a). The log10 scale of the difference shows

that gT

‖g‖Dhom g
‖g‖ for both three-compartment models linearly approaches the two-

compartment model but the anisotropic model is closer to the two-compartment
than the isotropic one (3.9b).

3.3 Validation of Kärger model of the dMRI signal

3.3.1 The Kärger model

The Kärger model starts with the following macroscopic description of two-compartment
diffusion [32]. For a two-compartment system made up of the intra- and the
extra-cellular compartments, the set of coupled PDEs governing the concentrations,
ue(r, t), uc(r, t) in the compartments,

∂ue(r, t)

∂t
= ∇ · D

e∇ue(r, t) − 1

τ e
ue(r, t) +

1

τ c
uc(r, t), (3.10)

∂uc(r, t)

∂t
= ∇ · D

c∇uc(r, t) − 1

τ c
uc(r, t) +

1

τ e
ue(r, t). (3.11)

In Eqs. (3.10, 3.11) the first term on the right hand side is due to the assumption
that the self-diffusion in compartment l is Gaussian with the “effective” diffusion

coefficient D
l
. The exchange between the two compartments is effectively accounted

for by the other two terms.

The four parameters in the above equations are what we call in this section the “ef-
fective” extra-cellular diffusion coefficient D

e
, the “effective” intra-cellular diffusion

coefficient D
c
, the effective intra-cellular residence time τ c, and the effective extra-

cellular residence time τ e. The coupled PDEs in Eqs. (3.10, 3.11) are complemented
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by the initial conditions:

ul(r, 0) = ρl δ̄(r), l = c, e, (3.12)

where ρl is the relative number of molecules in region l, and δ̄(r) is the Dirac delta
distribution. To conserve mass we have the additional condition:

ρcτ e = ρeτ c. (3.13)

If the equilibrium concentrations in the two compartments are the same, then

ρe

ρc
=

ve

vc
, (3.14)

where vj is the volume fraction of compartment j.

Using Eqs. (3.10, 3.11), one can get the dMRI signal in the narrow pulse approx-
imation (δ ≪ ∆), The separate signals due to contributions from compartments c
and e are

Sl(g, t) ≈
∫

r∈R3

exp
(
I γ δ g · r

)
ul(r, t) dr, l = c, e, (3.15)

where ul is the solution of the diffusion problem in Eqs. (3.10, 3.11). Multiply-

ing Eq. (3.10) and Eq. (3.11) by exp
(
I γ δ g · r

)
, taking the integral and applying

the Green’s identity, the Kärger equations for the two-compartmental signals are
obtained as following:

dSe(g, t)

dt
= −D

e
γ2‖g‖2δ2Se(g, t) − 1

τ e
Se(g, t) +

1

τ c
Sc(g, t), (3.16)

dSc(g, t)

dt
= −D

c
γ2‖g‖2δ2Sc(g, t) − 1

τ c
Sc(g, t) +

1

τ e
Se(g, t), (3.17)

subject to initial conditions:

Se(g, 0) = ve, (3.18)

Sc(g, 0) = vc, (3.19)

with vj being the volume fractions. The solution to Eqs. (3.16-3.19) is

S(g, t) = Se(g, t) + Se(g, t)

= vf (g) exp

(
−Df (g)γ2 ‖g‖2δ2 t

)
+vs(g) exp

(
−Ds(g)γ2 ‖g‖2δ2 t

)
,

(3.20)

where

Df,s(q) =
1

2

(
D

e
+ D

c
+

1

γ2 ‖g‖2δ2

(
1

τ e
+

1

τ c

))

±1

2

√(
D

e − D
c

+
1

γ2 ‖g‖2δ2

(
1

τ e
− 1

τ c

))2

+
4

γ4 ‖g‖4δ4τ eτ c

(3.21)



58 Chapter 3. Applications of FEM-RKC code to study diffusion MRI

vf (g) =
1

Df (g) − Ds(g)

(
veD

e
+ vcD

c − Ds(g)
)

, (3.22)

vs(g) = 1 − vf (g). (3.23)

The residence times τ e and τ c can be numerically computed by Eq. (3.16) and

Eq. (3.17) with g = 0. What we need are dSe(0,t)
dt , dSc(0,t)

dt , Se(0, t) and Sc(0, t).
They can be found by putting some initial mass inside one of two compartments
and leaving the other empty. Then, the diffusion equation will be solved in this
domain to give needed values.

There also exists an analytical expression for τ c for the low permeability κ [32]

τ c ≈ V

A κ
, (3.24)

where V
A the volume to surface ratio of the intra-cellular compartment.

Both effective diffusion coefficients D
e

and D
c

are computed by solving the Laplace
equation (1.31) with conditions (1.24, 1.25, 1.32, 1.33) and using Eq. (1.34) for
no-exchange case (κ = 0) [13].

3.3.2 Simulations

We performed simulations on a cube Ω = [−2.5µm, 2.5µm]3 containing one spher-
ical cell of radius R = 2.45µm (Figure 3.10a) for ten b−values ranging between 0
and 4000s/mm2. To mimic diffusion in unbounded domain, the computational do-
main is repeated periodically in all three directions by imposing the pseudo-periodic
boundary conditions (1.27, 1.28). The Laplace PDE gives D

e
= 2.32 · 10−3mm2/s

and D
e

= 0. For this simple case, the residence time for sphere is analytically
computed by Eq. (3.24). We fix δ = 5ms for all simulations and the same intrinsic
diffusion coefficient D = 3 · 10−3mm2/s was set for both compartments.

First, we see that for a fixed ∆, the model works better for lower permeabilities.
Figure 3.10b shows the comparison between simulated signals and the signals ob-
tained from the Kärger model for three permeabilities at ∆ = 40ms. It shows that
the two signals lie between the signal in the no-exchange case

SNO-EX = ve exp(−b D
e
) + vc exp(−b D

c
), (3.25)

and the signal in the fast-exchange case

SFAST-EX = exp
(
−b (veD

e
+ vcD

c
)
)
. (3.26)

The maximum of the relative difference between two signals versus ten b−values
is 23%, 7% and 5% for three permeabilities κ = 5 · 10−5, 10−5 and 10−6mm2/s
respectively.
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(a) (b)

Figure 3.10: Computational domain Ω = [−2.5µm, 2.5µm]3 contains one spherical
cell of radius R = 2.45µm (3.10a) and simulated results for three different perme-
abilities κ = 5 · 10−5, 10−5 and 10−6mm2/s at ∆ = 40ms (3.10b).

(a)

(b) (c)

Figure 3.11: The Kärger model works better for larger ∆ corresponding to the
narrow pulse gradients. The maximum of relative difference between two signals is
28% for ∆ = 10ms (3.11a), 7% for ∆ = 40ms (3.11b) and 4% for ∆ = 80ms (3.11c).
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For permeability κ = 10−5m/s, we do simulations for four diffusion times ∆ =
5, 10, 40 and 80ms (Figure 3.11). The model works better for larger ∆ correspond-
ing to the narrow pulse gradients. The maximum of relative difference between two
signals is 28% for ∆ = 10ms, 7% for ∆ = 40ms and 4% for ∆ = 80ms.

3.4 Conclusion

First, the time-dependent ADC converges to gT

‖g‖Dhom g
‖g‖ in both isotropic and

anisotropic diffusion and general shapes. Because the convergence curve looks lin-

ear versus ∆−1 for long diffusion time, we hope to obtain the gT

‖g‖Dhom g
‖g‖ from

experimentally measured ADCs by interpolation. We also expect that the analysis
of the effective diffusion tensor can reveal some useful information about the bio-
logical structures because it is easier and faster to analyze than the time-dependent
ADC computed after solving the Bloch-Torrey equation.

Second, we showed that the two-compartment model can be used to approximate
the signal from three-compartment models with isotropic diffusion and anisotropic
diffusion in the membrane layer. The signals of both three-compartment models
linearly converge to that of the two-compartment model. The two-compartment
model gives a better approximation to the anisotropic case than the isotropic case.

Finally, we used the FEM-RKC code to validate the macroscopic Kärger model
for narrow pulse gradient. It shows that the Kärger model works better at lower
permeability and longer diffusion times ∆.



Chapter 4

Modeling the diffusion magnetic
resonance imaging signal inside
neurons

Summary Studying the dMRI signal arising from isolated neurons can provide
insight into how the geometrical structure of neurons influences the measured signal.
We formulate the Bloch-Torrey partial differential equation (PDE) inside an isolated
neuron, under no water exchange condition with the extra-cellular space, and show
how to reduce the 3D simulation in the full neuron to a 3D simulation in the soma
and 1D simulations in the neurites. The cross-sectional area of each neurite segment
is taken into account to allow working with neurons in which the neurite segments
may have different radii. The transverse diffusion inside each cylindrical segment
is also analytically added to give accurate results over a wide range of diffusion
times. We show that this approach is computationally much faster than a full 3D
simulation. The proposed method is used to validate an earlier published formula
about the ADC of the dMRI from neurites. From the dMRI signal of neurites trees,
we can invert the ADC formula to get back the average length of the neurite trees.
This result indicates a potential way to extract useful information about neurites
tree structure. Finally, we also derive the upper and lower bounds for the signal
and for the related ADC.

4.1 Introduction

In a complex medium such as brain tissue, it is difficult to explicitly link the dMRI
signal to biological parameters such as shape, orientation and volume fraction of
neurons or, more generally, tissue micro-structure. The dMRI signal arising from
an isolated neuron and its dependence on the geometrical structure are still poorly
understood. A number of experimental and numerical works have been devoted
to this problem [2, 7, 11, 18, 29–31, 34, 62, 65, 72]. One of the first analytical models
of water diffusion in neural tissue was proposed by Szafer et al. [72]. Modeling a
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tissue as a regular lattice of cylinders, they derived approximate expressions for the
apparent diffusion coefficients (ADCs) at long times. Stanisz et al. presented an
analytical model of restricted diffusion in the bovine optic nerve, in which prolate
ellipsoids (axons) and spheres (glial cells) were surrounded by partially permeable
membranes [65]. Water exchange was accounted for by a modified Kärger approach.
The derived analytical formulas for the dMRI signal were fitted to experimental data
for bovine optic nerve. Grant et al. reported experimental evidence of multicompo-
nent diffusion in isolated neurons [18]. The usual interpretation of the fractions of
fast and slow apparent diffusion components as the volume fractions of extra-cellular
and intra-cellular spaces has been questioned by Chin and co-workers [11]. Using
a finite difference diffusion simulation model on the basis of optical images from
sectioned rat spinal cord, they showed that the observed multicomponent diffusion
behavior is caused by motional restriction and limited inter-compartmental water
exchange. Assaf et al. considered infinitely long isolated cylinders to model brain
white matter, with two contributions to the dMRI signal coming from hindered
diffusion outside cylinders and restricted diffusion inside cylinders [2]. Kroenke et
al. explained non-monoexponential dMRI signal decay by restricted diffusion in
an ensemble of differently oriented neuronal fibers [34]. Sen and Basser presented
a simplified, but self-consistent modeling framework for predicting the long-time
apparent diffusion coefficients of water parallel and perpendicular to a “pack” of
identical thick-walled (myelinated) cylindrical tubes (axons) arranged periodically
in a regular lattice and immersed in an outer medium [62]. The role of water
exchange between several “layers” and towards the outer space was also studied
in [16, 21, 53, 55]. Jespersen et al. proposed a simplified model of neural cytoar-
chitecture intended to capture the essential features important for water diffusion
as measured by NMR [31] (see also [7]). In their model, two contributions to the
dMRI signal come from (i) the dendrites and axons, which are modeled as infinitely
long isolated cylinders with two diffusion coefficients (parallel and perpendicular
to the cylindrical axis), and (ii) water diffusion within and across all other struc-
tures (i.e., in the extra-cellular space, neuron soma and glia cells), which is modeled
as monoexponential diffusion. This model was confronted to dMRI measurements
in a formalin-fixed baboon brain and shown to be able to provide an estimate of
dendrite density. The model predictions of neurite density in rats have been suc-
cessfully compared to optical myelin staining intensity and stereological estimation
of neurite volume fraction using electron microscopy [30]. Recently, water diffusion
anisotropy measurements have been directly related to characteristics of neuronal
morphology [29]. Budde and Frank introduced a biophysical model of neurite bead-
ing (i.e., focal enlargement and constriction) and showed that this mechanism was
sufficient to substantially decrease ADC and thus rationalize experimental findings
after ischemic stroke [6]. Some other theoretical models and concepts of brain dMRI
have been reviewed in [79].

In most earlier works, the neurites were modeled by infinitely long isolated cylinders
(or prolite ellipsoids), meaning the morphological structure (the dendrite trees) was
ignored. In fact, neurons are made of a neuronal body called the soma to which are
attached long protrusions called neurites (axons and dendrites) and the dendrites
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have a tree structure (Fig. 4.1). The size of the soma is on the order of 10µm,
the diameter of the dendrite segments can range from a few µm to less than half
a µm, and the total length of all the dendrite segments is on the order of several
mm [64,68].

Figure 4.1: Image from Wikimedia Commons. Description: Biological neuron
schema. Source: http://commons.wikimedia.org/wiki/File:Neuron-figure.

svg, Author: Nicolas.Rougier

In this chapter, we study the dMRI signal arising from the interior of a single
neuron, under the common assumption of no water exchange between the neuron
and the extra-cellular space. We consider the full 3D Bloch-Torrey PDE model on
a neuron, comprising of a spherical soma with attached axon and dendrite trees,
and formulate an approximate model in which 3D computations in the neurites are
replaced by 1D computations. This greatly reduces the computational time and
allows one to simulate a large number of neuron configurations. We also simulate
the exchange between the soma and the neurites and conclude that the exchange is
usually small enough that the soma and the neurites can be simulated separately
(as isolated subdomains), which provides numerical supports for the various neuron
signal models proposed in the literature. The proposed models are used to simulate

http://commons.wikimedia.org/wiki/File:Neuron-figure.svg
http://commons.wikimedia.org/wiki/File:Neuron-figure.svg
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and analyze the dMRI signal from neurites trees. From the dMRI signal of neurites
trees, we can invert the ADC formula to get back the average length of the neurite
trees. Finally, we derive two analytical upper and lower bounds of the signal and
related ADC for neurites trees.

4.2 The Bloch-Torrey PDE in a neuron

Let a neuron be defined by Ω = A ∪ N , an open set in R
3, that is the union of the

soma A and the attached neurites N . The water proton magnetization M3D(r, t)
satisfies the Bloch-Torrey PDE:

∂

∂t
M3D(r, t) = −Iγf(t) g · r M3D(r, t) + ∇ ·

(
D∇M3D(r, t)

)
, r ∈ Ω. (4.1)

Neglecting water exchange with the extra-cellular space yields homogeneous Neu-
mann boundary condition:

D∇M3D(r, t) · n(r) = 0, r ∈ ∂Ω. (4.2)

Assuming a uniform excitation of the magnetization in the imaging voxel, the initial
condition is:

M3D(r, 0) = 1. (4.3)

The dMRI signal, which is measured at the echo time t = TE ≥ ∆ + δ, is then

S3D(b) :=
1

|Ω|

∫

r∈Ω
M3D(r, TE) dr. (4.4)

If the exchange between the soma and the attached neurites is neglected the Bloch-
Torrey PDE can be formulated separately in each domain. On the soma A, the
PDE is

∂

∂t
M3D,A(r, t) = −Iγf(t)g · r M3D,A(r, t) + ∇ · (D∇M3D,A(r, t)), r ∈ A, (4.5)

with boundary conditions

D∇M3D,A(r, t) · n(r) = 0, r ∈ ∂A. (4.6)

The initial condition is

M3D,A(r, 0) = 1. (4.7)

The dMRI signal is

S3D,A(b) =
1

|A|

∫

r∈A
M3D,A(r, TE) dr (4.8)
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Similarly, the PDE on neurites N is

∂

∂t
M3D,N (r, t) = −Iγf(t)g · r M3D,N (r, t) + ∇ · (D∇M3D,N (r, t)), r ∈ N ,

(4.9)

with boundary conditions

D∇M3D,N (r, t) · n(r) = 0, r ∈ ∂N . (4.10)

The initial condition is

M3D,N (r, 0) = 1. (4.11)

The dMRI signal for neurites is

S3D,N (b) =
1

|N |

∫

r∈N
M3D,N (r, TE) dr. (4.12)

The dMRI signal for the disconnected neuron is

S3D|3D(b) =
1

|A| + |N |

(∫

r∈A
M3D,A(r, TE) dr +

∫

r∈N
M3D,N (r, TE) dr

)
.

(4.13)

We emphasize that there is no connection between neurites tree N and soma A.
The numerical method to solve these 3D problems was proposed in chapter 2.

4.3 1D model of neurites

In this section we formulate an approximate model of the dMRI signal in a neurites
tree that only involves 1D computations. However, the radii of the neurite segments
and the transverse diffusion are taken into account to give better approximations
for thick neurites and more realistic situations where the neurite segments may
have different radii. At this stage, we neglect the soma, i.e. we assume the domain
Ω = N only contains the neurites.

4.3.1 Problem formulation

To simplify the presentation, a neurites tree is represented as the union of straight

cylindrical segments, N =
K⋃

k=1
Bk, where K is the number of cylindrical segments,

Bk = Tk × Ok, Tk is a 1D line segment of length ℓk, parallel to the unit vector wk,
and Ok is the disk of radius rk perpendicular to wk (see Figures 4.2a and 4.2b).
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(a) (b)

(c)

Figure 4.2: 3D domain of a neurites tree (4.2a), cylindrical segment Bk = Tk × Ok

(4.2b) and corresponding 1D domain (4.2c).

We now formulate an approximation to the full 3D model of the neurite tree N , in
which we replace the 3D PDE in the neurites tree by a 1D PDE on the union of
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the linked line segments N 1D =
K⋃

k=1
Tk. See Fig. 4.2c.

Let Tk = pk + swk, s ∈ [0, ℓk], be the natural parametrization of the line segment
Tk, pk being one endpoint of the segment. We define the 1D magnetization on
the segment Tk as the average value of the magnetization over its transverse cross-
section Ok:

M1D,N
k (s, t) :=

1

|Ok|

∫

(pk+swk)×Ok

M3D,N (r, t)dr, (4.14)

where |Ok| = πr2
k is the surface area of the cross-section. It is easy to show that

M1D,N
k (s, t) satisfies the 1D Bloch-Torrey PDE:

∂

∂t
M1D,N

k (s, t) = −Iγ f(t) g · (pk + swk) M1D,N
k (s, t) + D

∂2

∂s2
M1D,N

k (s, t). (4.15)

To be consistent with the full 3D model, two conditions have to be imposed at any
intersection point r of two (or several) line segments. The first condition is the
continuity of the magnetization derived from Eq. (4.14):

M1D,N
k (sk, t) = M1D,N

k′ (sk′ , t), (4.16)

for all k, k′ ∈ K (k 6= k′) such that pk + skwk = pk′ + sk′wk′ = r.

The second condition is the Kirchhoff law ensuring the conservation of flux. Since
the cylinder segments may have different radii, the cross-sectional area of each
cylinder |Ok| needs to be taken into account:

∑

k

|Ok| D
∂

∂s′
M1D,N

k (sk, t) = 0, (4.17)

such that pk + skwk = r, and s′ = s if r = pk is the starting point of the segment,
s′ = −s otherwise.

For the 1D model of neurites, Eqs. (4.3) and (4.14) imply the initial condition

M1D,N
k (s, 0) = 1, k = 1 . . . K.

The Neumann boundary condition in Eq. (4.2) becomes

D
∂

∂s
M1D,N

k (sk, t) = 0, (4.18)

where pk + skwk is an ending point of N 1D for some segment k.

Finally, one gets the dMRI signal for the 1D model according to Eqs. (4.4) and
(4.14)

S1D,N (b) =
1∑

k |Ok| ℓk

(∑

k

|Ok|
∫ ℓk

0
M1D,N

k (s, TE) ds

)
, (4.19)

where both sums are taken over all segments.
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Eq. (4.19) gives a good approximation of 3D neurites when the transverse diffusion
on cylinder segments can be neglected. The contribution of transverse diffusion to
the signal can be included into Eq. (4.19) to get a more accurate approximation:

S1D,N
tr (b) =

1∑
k |Ok| ℓk

(∑

k

|Ok| Str
k (b sin2 θk)

∫ ℓk

0
M1D,N

k (s, TE) ds

)
, (4.20)

where θk is the angle between the gradient direction g/‖g‖ and Tk. Here, Str
k (b) is

the dMRI signal for the transverse diffusion inside the kth cylinder which can be
either approximated by an analytical formula in the frame of the Gaussian phase
approximation (see Section 1.6.3), or computed rapidly and very accurately within
the matrix formalism (see the review [19] and references therein).

4.3.2 Linear basis functions for 3D line segments

To solve the Bloch-Torrey PDE on linked 1D segments, we need to implement the
finite elements method in a 1D tree of segments. In 1D, the linear basis functions
for a segment [x1, x2] are well known:

ϕ1(x) = − 1

x12
(x − x2),

ϕ2(x) =
1

x12
(x − x1),

(4.21)

where x12 = x2 − x1.

We will design the basis functions for a segment Ā1Ā2 in 3D space, Ā1(x̄1, ȳ1, z̄1),
Ā2(x̄2, ȳ2, z̄2). For this purpose, we rotate the basis functions ϕ1(x) and ϕ2(x) from
x-axis to Ā1Ā2. We denote ~p = (x2 −x1, y2 −y1, z2 −z1) a direction vector of Ā1Ā2,
~px = (x2 − x1, 0, 0) a projection of ~p on x-axis.

• If x2 6= x1, we can compute ~n and θ representing the axis and the angle of the
rotation respectively, ~n = ~px × ~p. The formula for this rotation is then X̄ = R X,
where R is the rotation matrix,

R =




cos θ + n2
x(1 − cos θ) nxny(1 − cos θ) − nz sin θ nxnz(1 − cos θ) + ny sin θ

nxny(1 − cos θ) + nz sin θ cos θ + n2
y(1 − cos θ) nynz(1 − cos θ) − nx sin θ

nxnz(1 − cos θ) − ny sin θ nynz(1 − cos θ) + nx sin θ cos θ + n2
z(1 − cos θ)




(4.22)
XT = (x, y, z) represents old coordinates, and X̄T = (x̄, ȳ, z̄) is new coordinates.
From a straightforward computation, we can obtain the basis functions for Ā1Ā2

as following:

ϕ1(x̄, ȳ, z̄) = θx(x̄ − x̄2) + θy(ȳ − ȳ2) + θz(z̄ − z̄2),

ϕ2(x̄, ȳ, z̄) = −θx(x̄ − x̄1) − θy(ȳ − ȳ1) − θz(z̄ − z̄1),
(4.23)
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where

θx =
1

A

(
(n2

z + n2
y)(−1 + cos θ) + 1

)
,

θy =
−1

A

(
−nz sin θ + nx ny (−1 + cos θ)

)
,

θz =
−1

A

(
nx nz (−1 + cos θ) + ny sin θ

)
,

and

A = −x̄12

((
n2

z + n2
y

)(
cos θ − 1

)
+1

)
+ȳ12

(
nx ny

(
cos θ − 1

)
−nz sin θ

)

+z̄12

(
nx nz

(
cos θ − 1

)
+ny sin θ

)
.

• In the singular case where x2 = x1, we consider that θ =
π

2
and ~n = ~e1 × ~p,

~e1 = (1, 0, 0).

4.3.3 Simulations

We simulate the dMRI signal in a neurites tree consisting of 25 segments shown
in Fig. 4.2a. Information about the neurites tree is summarized in Table 4.1. We
emphasize that in the neurites tree, the cylindrical segments have different radii:
rk ∈ {1, 2, 4µm} and different lengths: 75µm ≤ ℓk ≤ 112.5µm.

Table 4.1: Description of 3D neurites tree in Fig. 4.2a used for the simulation: αk

and βk indicate the angle between the cylinder axis Tk and the trunk [0,0,1], and
between Tk and gradient direction g/‖g‖ = [1, 1, 1]/

√
3.

k ℓk (µm) rk (µm) αk βk k ℓk (µm) rk (µm) αk βk

0 100 4 0.0 54.7 13 75.0 2 135.0 105.0
1 75.0 2 45.0 35.3 14 75.0 2 135.0 165.0
2 75.0 2 45.0 98.6 15 75.0 2 135.0 90.0
3 75.0 2 45.0 56.1 16 88.9 1 108.4 89.0
4 112.5 1 90.0 54.7 17 88.9 1 142.2 160.0
5 112.5 1 41.4 77.1 18 88.9 1 142.2 88.5
6 112.5 1 41.4 21.4 19 88.9 1 142.2 125.9
7 88.9 1 37.8 54.1 20 88.9 1 108.4 158.6
8 88.9 1 37.8 70.9 19 88.9 1 142.2 109.1
9 88.9 1 71.8 124.4 22 112.5 1 138.6 86.3
10 88.9 1 37.8 20.0 23 112.5 1 138.6 130.0
11 88.9 1 37.8 91.5 24 112.5 1 90.0 54.7
12 88.9 1 71.6 67.5

Figure 4.3 shows S3D(b), S1D,N (b) and S1D,N
tr (b) in the gradient direction g/‖g‖ =

(1, 1, 1)/
√

3 and at three diffusion times: ∆ = 2.5, 10 and 100ms.
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(a)

(b) (c)

Figure 4.3: The signals from Eqs. (4.12, 4.19, 4.20) for a neurites tree described
in Table 4.1 for gradient direction g/‖g‖ = (1, 1, 1)/

√
3 and three diffusion times

∆ = 2.5ms (Fig. 4.3a), ∆ = 10ms (Fig. 4.3b) and ∆ = 100ms (Fig. 4.3c). Note
that cylindrical segments have different radii.

For short diffusion time (∆ = 2.5ms, Fig. 4.3a), the simulated signal for 1D neu-
rites (green curve with stars) does not give a good approximation to the signal for
3D neurites (blue curve with circles) because the effect of the transverse diffusion
is still significant. Accounting for the contribution of the transverse diffusion sig-
nificantly improves the result (red curve with triangles). For long time diffusion
(∆ = 100ms, Fig. 4.3c), the transverse diffusion is irrelevant because the average
diffusion distance is much larger than the cylinder radii. In this case, all three
curves coincide.

4.4 The “3D+1D” model

We now consider the complete neuron, Ω, composed of the soma, A, and the at-
tached neurites tree, N , such that Ω = A⋃N . An example of a neuron with a
spherical soma attached to two neurite trees is illustrated on Fig. 4.4a. We now
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formulate an approximation to the full 3D model by replacing the 3D neurites by
1D neurites (see Sec. 4.3 and Fig. 4.4b).

(a) (b)

Figure 4.4: The full “3D” model of a neuron (4.4a) and the reduced “3D+1D” in
which the 3D neurites tree is replaced by a 1D neurites tree (4.4b).

Let Ik be the intersection between the soma A and the neurite segment Bk (there
may be several of these segments that extend out from the soma) and I = ∪kIk.
The Bloch-Torrey PDE applies in both the soma and the neurites:

∂

∂t
M3D+1D,A(r, t) = −Iγf(t)g · r M3D+1D,A(r, t) + ∇ ·

(
D∇M3D+1D,A(r, t)

)
,

∂

∂t
M3D+1D,N

k (s, t) = −Iγ f(t) g · (pk + swk) M3D+1D,N
k (s, t) + D

∂2

∂s2
M3D+1D,N

k (s, t),

(4.24)

with interface conditions at the intersections r between neurite segments:

M3D+1D,N
k (sk, t) = M3D+1D,N

k′ (sk′ , t), (4.25)
∑

k

|Ok| D
∂

∂s′
M3D+1D,N

k (sk, t) = 0. (4.26)

for some k, k′ such that pk + skwk = pk′ + sk′wk′ = r.

We assume that no more than one segment extends from one position of soma,
i.e. Ik ∩ Ik′ = ∅ for all k 6= k′. The continuity of magnetization and the flux
conservation at the intersection of the soma and the neurite k are then

1

|Ik|

∫

Ik

M3D+1D,A(r, t)dr = M3D+1D,N
k (sk, t), (4.27)

1

|Ik|

∫

Ik

D∇M3D+1D,A(r, t) · nk = D
∂

∂s′
M3D+1D,N

k (sk, t), (4.28)



72 Chapter 4. Modeling the diffusion magnetic resonance imaging signal inside neurons

such that sk satisfies pk + skwk = Ik ∩ Tk, where nk, parallel to Tk, is also the
normal vector pointing outward the soma at Ik, s′ = s if pk + skwk is the starting
point of segment k and s′ = −s otherwise.

The Neumann boundary conditions are applied to the soma boundaries ∂A \ I and
ending points of neurites ∂N 1D \ (N 1D ∩ I)

D∇M3D+1D,A(r, t) · n = 0, r ∈ ∂A \ I (4.29)

D
∂

∂s
M3D+1D,N

k (sk, t) = 0, pk + skwk ∈ ∂N 1D \ (N 1D ∩ I) (4.30)

The initial conditions are

M3D+1D,N
k (s, 0) = 1 (k = 1 . . . K),

M3D+1D,A(r, 0) = 1.

The signal is computed as

S3D+1D(b) :=
1

|A| + |N |

(∫

A
M3D+1D,A(r, TE)dr

+
K∑

k=1

|Ok| Str
k (b sin2 θk)

∫ ℓk

0
M3D+1D,N

k (s, TE) ds

)
,

(4.31)
where |N | =

∑
k |Ok| ℓk.

We call the model described here the “3D+1D” model. We emphasize that the
solution in the soma and in each of the line segments are mutually linked via the
interface conditions of the PDE formulation.

4.5 The disconnected “3D | 1D” model

4.5.1 Exchange between neurites and soma

First, we examine whether it is necessary to “link” the soma and the attached
neurites.

The residence time

We numerically compute the residence time inside neurites and soma by using the
Kärger model from Eqs. (3.16) and (3.17) at g = 0. The neuron is modeled by 26
straight cylindrical segments which may have different lengths but all are of the same
radius r, and a spherical soma of radius R = 10µm. The segment lengths ℓk and
radius r were changed to generate four neurons whose information is summarized
in Table 4.2.
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Table 4.2: Information of four neurons.

Neuron index
volume fraction radius segment lengths total length

of soma (%) (µm) (µm) (µm)

1 63 1 20 - 45 800
2 29 2 20 - 45 800
3 37 1 50 - 112.5 2272
4 13 2 50 - 112.5 2272

The residence time for these four neurons are shown in Figure 4.5. We see that the
residence times in both the soma and neurites are very large (τ l > 500ms, l = N , A).
The residence time inside neurites is usually larger than that of the soma even when
the volume fraction of soma is bigger. Finally, we see that the residence times do
not approach a limiting value up to ∆ = 200ms.

(a) Neuron 1 (b) Neuron 2

(c) Neuron 3 (d) Neuron 4

Figure 4.5: The residence times for four different neurons described in Table 4.2.
The residence times are very large in both the soma and neurites. The residence
time in neurites is usually larger than that in the soma.
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The mass exchange

We denote by M3D
SIC the solution M3D when the initial condition is set to 1 for

the soma and 0 for neurites and M3D
NIC indicates the solution M3D when the ini-

tial condition is set to 0 for the soma and 1 for neurites. The mass exchange at
‖g‖ = 0 from the soma to neurites, εA, and from neurites to the soma, εN , after
normalization, can be computed as:

εA =
1

|A| + |N |

∫

N
M3D

SIC(r, TE) dr,

εN =
1

|A| + |N |

∫

A
M3D

NIC(r, TE) dr.
(4.32)

The mass conservation gives ε := εA = εN . We will perform simulations on 3D
neurons to numerically check an estimation:

max
b

{∣∣∣S3D − S3D|3D
∣∣∣
}

≤ 2ε. (4.33)

where S3D and S3D|3D are computed by Eq. (4.4) and (4.13).

In Fig. 4.6, we show the 2ε and the difference between signals of connected and
disconnected neurons. Two neurons in Table 4.2 are used and eight b−values b =
0, 100, 500, 1000, 1500, 2000, 2500, 3000s/mm2 are considered. The simulations are
performed for five diffusion times ∆ = 10, 40, 80, 100, 200ms with fixed duration
δ = 2.5ms. We see that the difference between two signals is always below 2ε and
it is below 10% for all diffusion times. Because neuron 2 is thicker than neuron
1, the mass exchange in neuron 1 (Figure 4.6a) is smaller than that in neuron 2
(Figure 4.6b).

(a) (b)

Figure 4.6: The difference between signals of connected and disconnected neurons
in comparison with 2ε for two neurite radii r = 1µm (4.6a) and r = 2µm (4.6b).

4.5.2 The disconnected “3D | 1D” model

The simulations of the previous sections showed that the exchange between the
soma and neurites is very low and it is can be neglected to consider each domain
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separately. Now we replace 3D neurites by corresponding 1D neurites and this leads
us to the disconnected “3D|1D” model of the dMRI signal in the neuron:

∂

∂t
M3D,A(r, t) = −Iγf(t)g · r M3D,A(r, t) + ∇ · (D∇M3D,A(r, t)),

∂

∂t
M1D,N

k (s, t) = −Iγ f(t) g · (pk + swk) M1D,N
k (s, t) + D

∂2

∂s2
M1D,N

k (s, t),

(4.34)

with interface conditions at the intersections r between neurite segments:

M1D,N
k (sk, t) = M1D,N

k′ (sk′ , t), (4.35)
∑

k

|Ok| D
∂

∂s′
M1D,N

k (sk, t) = 0. (4.36)

for some k, k′ such that pk + skwk = pk′ + sk′wk′ = r.

The Neumann boundary conditions are applied to the soma boundaries ∂A and
ending points of neurites ∂N 1D

D∇M3D,A(r, t) · n = 0, r ∈ ∂A (4.37)

D
∂

∂s
M1D,N

k (sk, t) = 0, pk + skwk ∈ ∂N 1D (4.38)

The initial conditions are

M1D,N
k (s, 0) = 1 (k = 1 . . . K),

M3D,A(r, 0) = 1.

The signal is:

S3D|1D(b) :=
1

|A| + |N |

(∫

A
M3D,A(r, TE)dr

+
K∑

k=1

|Ok| Str
k (b sin2 θk)

∫ ℓk

0
M1D,N

k (s, TE) ds

)
,

(4.39)

where |N | =
∑

k |Ok| ℓk.

We perform simulations for different diffusion times on the neuron including the
spherical soma and two neurite trees. The soma radius is fixed to R = 10µm while
the length and radius of neurite segments are changed to study the validity of the
two models.

For the neuron with neurite radius r = 1µm and the length of neurite segments
varying from 50 to 112.5µm, there is no significant difference between S3D, S3D+1D

and S3D|1D (Fig. 4.7) for two diffusion times ∆ = 40 and 100ms. The largest
difference is below 3% at the highest b−value.
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(a) (b)

Figure 4.7: The dMRI signals inside a neuron with the length of neurite segments
varying from 50 to 112.5µm in the gradient direction g/‖g‖ = (1, 1, 1)/

√
3 at two

different diffusion times: ∆ = 40ms (4.7a) and ∆ = 100ms (4.7b).

For the neuron with short and thick neurites (r = 2µm, the length of neurite
segments is between 20 and 45µm), S3D+1D gives a better approximation to S3D

than S3D|1D since the exchange between neurites and the soma is high so that
diffusing nuclei have enough time to explore the intersection between neurites and
the soma. Figure 4.8 shows the signals for two diffusion times ∆ = 40 and 100ms.
The relative difference between S3D and S3D|1D becomes bigger for longer diffusion
time. The largest difference is about 10% at ∆ = 100ms and the smallest difference
is about 7% at ∆ = 40ms occurring at the highest b−values. On the contrary, the
relative difference between S3D and S3D+1D remains around 5% for both diffusion
times. At short diffusion times, there is no significant difference between two models.

(a) (b)

Figure 4.8: The dMRI signals inside a neuron with the length of neurite segments
varying from 20 to 45µm in the gradient direction g/‖g‖ = (0, 0, 1) at two different
diffusion times: ∆ = 40ms (4.8a), ∆ = 100ms (4.8b).
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4.5.3 Timing

All simulations were performed on a Dell Precision M4700 laptop (Intel(R) Core(TM)
i7-3740QM CPU @ 2.70GHz). The simulation for S3D for eight b−values between
0 and 3000 s/mm2using the code described in chapter 2 took about 30 minutes on
a mesh with 11314 vertices, where the finite element size in the soma is about 1778
vertices. The simulation of the S3D+1D with the same number of b−values on a
mesh with 2897 vertices (while keeping the same 3D mesh in the soma) took about
5 minutes.

4.6 The ADC inside neurites trees

In this section we study the dMRI signal inside 1D neurites trees. To analyze the
signal attenuation as a function of b-values for a chosen pulse sequence, we will
compute ADC by Eq. (1.22) for neurites trees, ADCN .

In practice, we obtain ADCN from the dMRI signal at 11 b−values between 0 and
500 s/mm2 and using cubic polyfit of the logarithm of the signal.

According to [31,34], the ADCN on a neurites tree can be approximated by

ADCN ≈ DN
∫ π

0
cos2 θ P (θ) dθ, (4.40)

where DN is the (possibly time-dependent) effective longitudinal (parallel to the
dendrite segment) diffusivity, P (θ) is the probability distribution of the segment
orientation with respect to the gradient direction.

For a neurites tree modeled by K connected line segments, if we know exactly the
orientation of K segments of the neurites tree, we can rewrite Eq. (4.40) as follows:

ADCN ≈ DN

(
1

L

K∑

k=1

ℓk cos2 θk

)
. (4.41)

We test the validity of Eq. (4.41) by numerically checking if there exists a (possi-
bly time-dependent) DN which satisfies Eq. (4.41) for many randomly generated
neurites trees.

4.6.1 Generation of random neurites trees

In this section, we assume that each neurites tree is modeled by K segments of
two possibly different lengths: n1 segments of length ℓ1 and n2 segments of length
ℓ2. There are three branches coming from each intersection and the father root is
located at the coordinate origin (0, 0, 0). From a root (xc, yc, zc), we randomly take
three points of N random, uniformly distributed points on the upper half of the

spherical surface z = zc +
√

ℓ2
k − (x − xc)2 − (y − yc)2 to ensure that the neurites

tree always grows up. This root is connected with these three points to make three
branches.
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Generating N uniform points on a spherical surface is a classical problem. We
assume that each point P (x, y, z) on a spherical surface is defined by colatitude
ϕ, longitude θ, and radius ρ (Figure 4.9a). N uniform points are generated by
Algorithm 1.

Algorithm 1 Algorithm to generate N random, uniformly distributed points
(x, y, z) on the half of spherical surface of radius ρ and center (xc, yc, zc).

1: θ := randreal(N, [0, 2π]); {generate N random values of θ in the interval [0, 2π]}
2: ϕ := arcsin(randreal(N, [0, 1])); {generate N values of ϕ such that sin(ϕ) is

uniformly distributed in the interval [0, 1]}
3: x := ρ cos(ϕ) cos(θ) + xc;

y := ρ cos(ϕ) sin(θ) + yc;
z := ρ sin(ϕ) + zc; {transform spherical to Cartesian coordinates.}

Figures 4.9b and 4.9c show the uniform distribution of 1000 points, generated by
Algorithm 1, on the upper half of the spherical surface of radius ρ = 10µm and
center (xc, yc, zc) = (0, 0, 0) in different directions of view.

(a)

(b) (c)

Figure 4.9: A diagram of spherical coordinates defining a point P by colatitude ϕ,
longitude θ, and radius ρ (4.9a); and the uniform distribution of 1000 points on the
upper half of the spherical surface of radius ρ = 10µm in different direction of view
(4.9b, 4.9c)
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Next, W neurites trees are randomly generated by Algorithm 2.

Algorithm 2 Algorithm to randomly generate W neurites trees modeled by n1

segments of length ℓ1 and n2 segments of length ℓ2.

θ := randreal(1000, [0, 2π]); {Generate 1000 random, uniformly distributed values
of θ in [0, 2π]}
ϕ := arcsin(randreal(1000, [0, 1])); {Generate 1000 values of ϕ in [0, π/2] such
that sin(ϕ) is random, uniformly distributed in [0, 1]}
Initialize two segment lengths ℓ1 and ℓ2;
Initialize two numbers of segment lengths n1 and n2;
Initialize the numbers of tree generations GN;
Initialize the numbers of branches BN;
FOR ntree FROM 1 TO W DO

Initialize EDGES as an empty set;
Initialize NODES as a set of one element (0,0,0);
num_nodes :=1;
FOR gn FROM 1 TO GN DO

SNODE := 2+BN*(BNgn−2-1)/(BN-1);
ENODE := 1+BN*(BNgn−1-1)/(BN-1);
FOR node FROM SNODE TO ENODE DO

(xc, yc, zc) := NODES[node];
FOR bn FROM 1 TO BN DO

Randomly choose one length ρ of two lengths ℓ1 and ℓ2;
IF ρ == ℓ1 THEN

Decrease n1 by 1;
ELSE

Decrease n2 by 1;
END IF;
Randomly choose a pair (θ1, ϕ1) of (θ, ϕ);
{transform spherical to Cartesian coordinates.}
x := ρ cos(ϕ1) cos(θ1) + xc;
y := ρ cos(ϕ1) sin(θ1) + yc;
z := ρ sin(ϕ1) + zc;
Add (x, y, z) to the NODES array;
Increase num_nodes by 1;
Connect node and num_nodes to form a new edge;
Add new edge to the EDGES array;

END DO

END DO

END DO

RETURN a tree modeled by EDGES and NODES.
END DO

In Fig. 4.10a, we show a neurites tree modeled by 39 segments: 30 segments of
length ℓ = 27µm and 9 segments of length ℓ = 90µm. The empirical distribution of
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1
L

∑39
k=1 ℓk cos2 θk for 1000 neurites tree is shown in Fig. 4.10b.

(a) (b)

Figure 4.10: An example of a neurites tree composed of 39 segments: 30 segments
of length ℓ = 27µm and 9 segments of length ℓ = 90µm (4.10a) and the empirical
distribution of 1

L

∑39
k=1 ℓk cos2 θk for 1000 neurites trees generated by Algorithm 2

(4.10b).

4.6.2 Least squares problem

Fitting Eq. (4.41) for many neurites trees is a least squares problem. On the ith

neurites tree, let ai = 1
L

∑K
k=1 ℓk cos2 θk and di = ADCN . We need to solve

min
DN

W∑

i

(ai DN − di)
2, (4.42)

for W samples of neurites trees. The solution is

DN =

(
W∑

i

a2
i

)−1 W∑

i

aidi.

The root of the mean squared error is then

RMSE =

√√√√ 1

W

W∑

i

(
ai DN − di

)2
. (4.43)

We generated 1000 neurites trees of three generations to compute ADCN . Fig-
ure 4.11 shows the empirical distribution of 1000 simulated ADCN versus 1

L

∑
k ℓk cos2(θk)

at ∆ = 2.5ms (4.11a), ∆ = 40ms (4.11b) ∆ = 80ms (4.11c).

The mean values of ADCN for three diffusion times are 9.4 · 10−4mm2/s, 7.9 ·
10−4mm2/s and 7.2 · 10−4mm2/s respectively.
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(a)

(b) (c)

Figure 4.11: The distribution of 1000 simulated ADCN versus 1
L

∑
k ℓk cos2(θk) at

∆ = 2.5ms (4.11a), ∆ = 40ms (4.11b) ∆ = 80ms (4.11c). The simulations are
performed on 1000 neurites trees modeled by 39 segments: 30 segments of length
ℓ = 27µm and 9 segments of length ℓ = 90µm.

The DN and RMSE obtained by using the least-squares method are summarized
in Table 4.3. We see that DN depends on diffusion time. Additionally, at the
short diffusion time ∆ = 2.5ms, the fit is very good. The fit becomes less good for
longer diffusion times but the relative error, RMSE/DN , is always below 3% for
all diffusion times.

Table 4.3: DN and RMSE of simulated results shown in Fig. 4.11.

∆ (ms) DN RMSE/DN (%)

2.5 2.81 · 10−3 0.38
10 2.67 · 10−3 0.68
40 2.38 · 10−3 1.42
80 2.16 · 10−3 2.01
100 2.08 · 10−3 2.23



82 Chapter 4. Modeling the diffusion magnetic resonance imaging signal inside neurons

4.6.3 Effective length of neurites trees with variable lengths

Can one find an effective length for a neurite tree that has segments of different
lengths? In the first step, in order to calibrate the effective length, we construct
many neurites trees with segments of the same length: ℓk = ℓ, ∀k. For each length
ℓ, 10µm ≤ ℓ ≤ 100µm, we randomly generate 500 neurites trees. Each neurites
tree has 39 segments. The DN and RMSE/DN are computed by the least-square
method described above for different diffusion times.

(a)

(b)

Figure 4.12: DN and RMSE/DN versus segment lengths (4.12a) and diffusion
times (4.12b) for neurites trees of the same length ℓk = ℓ, ∀k, where 10µm ≤ ℓ ≤
100µm.

The results are shown in Fig. 4.12. We see that DN depends on ℓ and the diffusion
time. DN becomes bigger for longer segments or shorter diffusion times, and it
approaches the intrinsic diffusion coefficient D = 3 · 10−3mm2/s. We also see that
the RMSE/DN is always below 7% for all diffusion times and segment lengths.
This value is smaller for shorter diffusion times or longer segment lengths.

We first interpolate the data in Fig. 4.12 using cubic splines to introduce an effective
length ℓ̄ that corresponds to the fitted DN at a given diffusion time for an arbitrary
neurites tree.

In the next step, we generate many neurites trees, each with 39 segments. There
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are now two different lengths in the trees: n1 segments of length ℓ1 and n2 segments
of length ℓ2, n1 +n2 = 39. The generated 500 samples for each choice of n1, n2, l1, l2
are shown in Tables 4.4, 4.5 and 4.6. These tables indicate that even for neurites
trees with two distinct lengths, an effective length ℓ̄ is well defined if two lengths
ℓ1 and ℓ2 are not very far each other (Table 4.4 and Table 4.6 - the first case). In
fact, it is close to the volume averaged neurites length

ℓ̄ ≈ ℓavg ≡
(∑

k

nk

)−1∑

k

nkℓk.

However, when ℓ1 is very far from ℓ2, the effective length ℓ̄ changes quite a lot for
different diffusion times (Table 4.5 and Table 4.6 - the second case) and ℓ̄ can not
give a good approximation to the ℓavg. This is reasonable because ℓ2 = 100µm, its
effective diffusion coefficients DN approximates the intrinsic diffusion coefficient for
all diffusion times with ∆ ≤ 100ms (Figure 4.12a). The segments are considered as
infinitely long ones and the inversion fails.

Table 4.4: The simulations were performed for ℓ1 = 27µm, ℓ2 = 90µm.

n1 = 30, n2 = 9 n1 = 9, n2 = 30

(ℓavg = 41.5µm) (ℓavg = 75.5µm)

∆ (ms) DN (mm2/s) ± RMSE

DN
(%) ℓ̄(µm) DN (mm2/s) ± RMSE

DN
(%) ℓ̄(µm)

2.5 2.80 · 10−3 ± 0.4 39 2.89 · 10−3 ± 0.1 70
10 2.67 · 10−3 ± 0.7 41 2.82 · 10−3 ± 0.2 74
40 2.38 · 10−3 ± 1.4 42 2.66 · 10−3 ± 0.4 76
80 2.16 · 10−3 ± 2.0 43 2.52 · 10−3 ± 0.6 75
100 2.08 · 10−3 ± 2.2 44 2.47 · 10−3 ± 0.7 76

Table 4.5: The simulations were performed for ℓ1 = 10µm, ℓ2 = 100µm.

n1 = 30, n2 = 9 n1 = 38, n2 = 1

(ℓavg = 30.8µm) (ℓavg = 12.3µm)

∆ (ms) DN (mm2/s) ± RMSE

DN
(%) ℓ̄(µm) DN (mm2/s) ± RMSE

DN
(%) ℓ̄(µm)

2.5 2.74 · 10−3 ± 0.7 30 2.37 · 10−3 ± 1.9 12
10 2.58 · 10−3 ± 1.2 32 1.97 · 10−3 ± 3.6 13
40 2.33 · 10−3 ± 2.0 39 1.40 · 10−3 ± 7.1 15
80 2.21 · 10−3 ± 2.3 46 1.15 · 10−3 ± 9.4 16
100 2.16 · 10−3 ± 2.4 48 1.09 · 10−3 ± 10.2 17
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Table 4.6: The simulations were performed for two choices of n1, n2, l1, l2: n1 =
10, n2 = 29, l1 = 20µm, l2 = 40µm and n1 = 35, n2 = 4, l1 = 11.4µm, l2 = 100µm.

n1 = 10, ℓ1 = 20µm, n1 = 35, ℓ1 = 11.4µm,

n2 = 29, ℓ2 = 40µm n2 = 4, ℓ2 = 100µm
(ℓavg = 34.9µm) (ℓavg = 20.5µm)

∆ (ms) DN (mm2/s) ± RMSE

DN
(%) ℓ̄(µm) DN (mm2/s) ± RMSE

DN
(%) ℓ̄(µm)

2.5 2.77 · 10−3 ± 0.3 34 2.62 · 10−3 ± 1.2 21
10 2.61 · 10−3 ± 0.5 35 2.38 · 10−3 ± 2.2 22
40 2.25 · 10−3 ± 1.2 35 2.0 · 10−3 ± 3.8 26
80 1.97 · 10−3 ± 1.7 35 1.81 · 10−3 ± 4.7 30
100 1.86 · 10−3 ± 2.0 35 1.76 · 10−3 ± 4.9 31

Next, we consider the effect of the orientation distribution on the value of DN .
Each neurite is modeled by 10 segments of length 20µm and 29 segments of length
40µm. Table 4.7 shows the least squares fitted DN s and the effective length ℓ̄ for
three different cases of orientation distribution. The segment distribution restricted
to three different regions: 0 ≤ ϕ ≤ π

2 , 0 ≤ ϕ ≤ π
6 and 0 ≤ ϕ ≤ π

12 . We see that DN

and ℓ̄ do not depend on the orientation distribution of the segments.

Table 4.7: Least squares fitted DN in three different cases of segment orientations
distribution of neurites trees. Each tree has 10 segments of length 20µm and 29
segments of length 40µm.

0 ≤ ϕ ≤ π
2 0 ≤ ϕ ≤ π

6 0 ≤ ϕ ≤ π
12

∆ ms DN (mm2/s) ℓ̄(µm) DN (mm2/s) ℓ̄(µm) DN (mm2/s) ℓ̄(µm)

2.5 2.77 · 10−3 34.08 2.76 · 10−3 32.73 2.76 · 10−3 32.73
10 2.61 · 10−3 34.66 2.60 · 10−3 33.79 2.60 · 10−3 33.79
40 2.25 · 10−3 34.64 2.23 · 10−3 33.71 2.23 · 10−3 33.71
80 1.97 · 10−3 34.86 1.93 · 10−3 33.40 1.93 · 10−3 33.40
100 1.86 · 10−3 34.73 1.82 · 10−3 33.36 1.81 · 10−3 33.03

Finally, we consider the effect of gradient direction on DN . Obviously, if the neurite
segments are uniformly distributed in half a sphere, DN should be the same for all
directions. So, there is no effect of gradient directions. In this case, we choose
the segment orientation in the smallest region 0 ≤ ϕ ≤ π

12 to see if DN depends
on different directions. Table 4.8 shows that there is a small effect of the gradient
direction on DN and ℓ̄.
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Table 4.8: Least squares fitted DN for different gradient directions on neurites
trees containing 10 segments of length 20µm and 29 segments of length 40µm, with
orientation distribution 0 ≤ ϕ ≤ π

12 .

g/‖g‖ = (1, 1, 1)/
√

3 g/‖g‖ = (1, 0, 0) g/‖g‖ = (0, 0, 1)

∆ ms DN (mm2/s) ℓ̄(µm) DN (mm2/s) ℓ̄(µm) DN (mm2/s) ℓ̄(µm)

2.5 2.76 · 10−3 32.73 2.77 · 10−3 34.08 2.77 · 10−3 34.08
10 2.60 · 10−3 33.79 2.62 · 10−3 35.58 2.60 · 10−3 33.79
40 2.23 · 10−3 33.71 2.27 · 10−3 35.63 2.23 · 10−3 33.71
80 1.93 · 10−3 33.40 2.00 · 10−3 36.03 1.92 · 10−3 33.05
100 1.81 · 10−3 33.03 1.90 · 10−3 36.20 1.81 · 10−3 33.03

4.6.4 Fitting ADCN by two DN s

Now for neurites trees with two different lengths, ℓ1 = 27µm (n1 = 30) and ℓ2 =
90µm (n2 = 9) (data shown in Fig. 4.11) we check the fit of ADCN when two free
parameters DN1 and DN2 are introduced:

ADCN ≈ DN1

(
ℓ1

L

∑

k1∈K1

cos2 θk1

)
+DN2

(
ℓ2

L

∑

k2∈K2

cos2 θk2

)
, (4.44)

where K1 is the set of the segments of length l1 and K2 is the set of the segments
of length l2. We will use the least-squares method to fit the above equation. We
denote ai = ℓ1

L

∑
k1∈K1

cos2 θk1
, ci = ℓ2

L

∑
k2∈K2

cos2 θk2
, di = ADCN

i . From a
straightforward computation, we have

DN1 =

N∑
i

aici

N∑
i

cidi −
N∑
i

c2
i

N∑
i

aidi

(
N∑
i

aici

)2

−
N∑
i

c2
i

N∑
i

a2
i

, DN2 =

−
N∑
i

diai

N∑
i

aici +
N∑
i

a2
i

N∑
i

cidi

(
N∑
i

aici

)2

−
N∑
i

c2
i

N∑
i

a2
i

.

The root mean square error (RMSE) is:

RMSE =

√√√√ 1

W

W∑

i

(
ai DN1 + ci DN2 − di

)2
, (4.45)

where W is the number of neurites in our sample.

We see in Table 4.9 that fitting with two parameters DN1 , DN2 gives better approx-
imation than just fitting with one parameter DN (smaller RMSE).



86 Chapter 4. Modeling the diffusion magnetic resonance imaging signal inside neurons

Table 4.9: DN1 , DN2 and DN and RMSE (in mm2/s) of simulated results shown
in Fig. 4.11.

∆ ms
One-parameter fit Two-parameter fit

DN RMSE DN1 DN2 RMSE

2.5 2.81 · 10−3 1.06 · 10−5 2.66 · 10−3 2.95 · 10−3 0.70 · 10−5

10 2.67 · 10−3 1.82 · 10−5 2.43 · 10−3 2.91 · 10−3 1.20 · 10−5

40 2.38 · 10−3 3.39 · 10−5 1.92 · 10−3 2.83 · 10−3 2.23 · 10−5

80 2.16 · 10−3 4.35 · 10−5 1.56 · 10−3 2.74 · 10−3 2.80 · 10−5

100 2.08 · 10−3 4.63 · 10−5 1.44 · 10−3 2.71 · 10−3 2.95 · 10−5

The effective lengths, ℓ̄1 and ℓ̄2, corresponding to DN1 and DN2 are shown in
Table 4.10. They approximate two lengths ℓ1 = 27µm and ℓ2 = 90µm used in the
simulations.

Table 4.10: The effective lengths corresponding to DN1 , DN2 .

∆ (ms) ℓ1(µm) ℓ2(µm)

2.5 23 71
10 24 120
40 24 133
80 23 129
100 23 129

4.6.5 A relationship between neurites trees with two lengths and
single length

Next, we numerically clarify the relationship between

• DN
ℓ1,ℓ2

, fitted on trees containing segments of two lengths (l1 and l2),

• DN
ℓ1

, fitted on trees containing segments of the same length (l1 only),

• DN
ℓ2

, fitted on trees containing segments of the same length (l2 only).

The results presented in Table 4.9 suggest an approximation:

DN
ℓ1,ℓ2

≈ n1ℓ1DN
l1

+ n2ℓ2DN
l2

n1ℓ1 + n2ℓ2
, (4.46)

where n1 and n2 are the numbers of segments with length of ℓ1 and ℓ2, respectively.
We test this hypothesis and show results for ℓ1 = 27µm and ℓ2 = 90µm, with n1 = 9
and n2 = 30 (Figure 4.13a), and n1 = 30 and n2 = 9 (Figure 4.13b). The left and
right hand sides of Eq. (4.46) are very close, with relative difference below 0.5%.
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Figure 4.13c shows the results for ℓ1 = 10µm, ℓ2 = 40µm and n1 = 10, n2 = 29.
The relative difference between the right and left hand sides of Eq. (4.46) is 1.2%.

The results for ℓ1 = 10µm and ℓ2 = 100µm; n1 = 30, n2 = 9 are shown in Fig-
ure 4.13d. The results for n1 = 38, n2 = 1 are shown in Figure 4.13e. The relative
difference is bigger compared to the previous simulations but it is still smaller than
8%.

(a) (b)

(c) (d) (e)

Figure 4.13: The simulated DN and its approximation by Eq. (4.46) for ℓ1 =
27µm, ℓ2 = 90µm, n1 = 9, n2 = 30 (4.13a); ℓ1 = 27µm, ℓ2 = 90µm, n1 = 30, n2 =
9 (4.13b); ℓ1 = 10µm, ℓ2 = 40µm, n1 = 10, n2 = 29 (4.13c); ℓ1 = 10µm, ℓ2 =
100µm, n1 = 30, n2 = 9 (4.13d); ℓ1 = 10µm, ℓ2 = 100µm, n1 = 38, n2 = 1 (4.13e).

4.7 Analytical upper and lower bounds of ADC and
signal inside neurites trees

We propose simple analytical expressions for ADCN on neurites trees that take
into account the diffusion time and segment lengths. Let the neurites tree contain
segments Tk and let DTk be the longitudinal diffusivity along Tk, then the ADCN

for infinite segments is:

ADCN
max =

1∑
k ℓk

∑

k

ℓk DTk
max cos2 θk, (4.47)

where DTk
max = D is the intrinsic diffusion coefficient. When the segments are

considered isolated at the end points, then the ADCN is:

ADCN
min =

1∑
k ℓk

∑

k

ℓk DTk

min cos2 θk, (4.48)
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where DTk

min is given by Eq. (1.41) from Section 1.6.3.

Now we show that the ADCN for neurites trees lies between ADCN
min and ADCN

max.
Figure 4.14 shows the results for a neurites tree with 200µm ≤ lk ≤ 450µm in
the gradient direction g/‖g‖ = (1, 1, 1)/

√
3. The difference between ADCN

min and
ADCN

max is less than 11% even at the very long diffusion time, ∆ = 200ms. One can
also see that the simulated ADC curve lies between ADCN

min and ADCN
max curves.

(a) (b)

Figure 4.14: The ADCN
min, ADCN

max and simulated ADC for the neurites with
the length varying from 200 to 450µm and g/‖g‖ = (1, 1, 1)/

√
3 are close to each

other (4.14a). The relative difference between ADCN
min and ADCN

max is between 5%
(∆ = 2.5ms) and 11% (∆ = 200ms) (4.14b).

Similarly, we can write the upper and lower bounds for the signal attenuation:

SN
min(b) =

1∑
k ℓk

∑

k

ℓk exp
(
−b D cos2 θk

)
, (4.49)

SN
max(b) =

1∑
k ℓk

∑

k

ℓk exp
(
−b DTk

min cos2 θk

)
, (4.50)

Figure 4.15 shows the dMRI signals for the neurites trees with 50µm ≤ ℓk ≤
112.5µm, in the gradient direction g/‖g‖ = (0, 0, 1) and at three diffusion times
∆ = 2.5, 40, and 100ms. All simulated signals are between SN

min(b) and SN
max(b).
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(a) (b) (c)

Figure 4.15: The signals for neurites with the length varying from 50 to 112.5µm and
gradient direction g/‖g‖ = (0, 0, 1) and three diffusion times ∆ = 2.5ms (4.15a),
∆ = 40ms (4.15b) and ∆ = 100ms (4.15c).

Figure 4.15 shows the dMRI signals for the neurites trees with 20µm ≤ ℓk ≤
45µm, in the gradient direction g/‖g‖ = (0, 0, 1) and at three diffusion times ∆ =
2.5, 40, and 100ms. All simulated signals are between SN

min(b) and SN
max(b).

(a) (b) (c)

Figure 4.16: The signals for neurites with the length varying from 20 to 45µm and
gradient direction g/‖g‖ = (0, 0, 1) for three diffusion times ∆ = 2.5ms (4.16a),
∆ = 40ms (4.16b) and ∆ = 100ms (4.16c).

4.8 Conclusion

We proposed two numerical models to simulate the dMRI signal arising from a single
neuron by replacing the 3D simulation in the full neuron by a 3D simulation in the
soma and 1D simulations in the neurites. The first model allows water exchange
between the soma and neurites and it works better than the second model in which
there is no exchange between them. However, the latter is still valid for many
cases where the neurites are thin or long enough. Because the cross-sectional area
of each cylindrical segment is taken into account, these models are accurate even
for neurons with neurite segments of different radii. The transverse diffusion on
each segment is analytically added that allows us to work with thick neurites or
short diffusion times where the transverse diffusion is not totally neglectable. In
addition to computational advantages, the two proposed models of the dMRI signal
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of neurons, being more amenable to theoretical analysis due to the existence of
(semi-)analytical results about diffusion in line segments, disks, and spheres, may
be potentially exploited to produce semi-analytical expressions for the dMRI signal
in neurons. Two models were implemented based on finite elements method for 1D
line segments and coupled with the variable time-stepping RKC method. We used
the implemented code to study the ADC inside neurites trees. First we validated
an earlier published formula for the apparent diffusion coefficient. We also inverted
the measured dMRI signal from a class of neurites trees to get the effective length
which is close to the average length. This result may give a potential way to extract
useful information about neurites structure from the measured dMRI signal. We
also showed that for neurites trees containing two different segment lengths, the
use of two effective longitudinal diffusivity gives better fits of the data, while two
effective lengths obtained by the inversion can be used to estimate the two true
lengths. Finally, we also derived the upper and lower bounds of the ADC and the
signal attenuation inside neurite trees.



Chapter 5

Conclusion and Future work

5.1 Conclusion

We formulated and implemented a linear finite elements method coupled to the
adaptive RKC time stepping method to solve the Bloch-Torrey equation. It enables
us to work with general gradient pulses and complex geometries. The long-time
limit of this equation from homogenization theory, Laplace equation, was also par-
allely considered. The interfaces are described accurately and the jump conditions
of semi-permeable membrane is implemented by introducing zero-volume elements.
The computational domain is periodically extended by appropriate boundary condi-
tions. The PDE transformation simplifies the pseudo-periodic boundary conditions
to periodic boundary conditions that reduces oscillation in the solution that allows
getting more accuracy. In this way, the mass matrix is kept real-valued and time-
independent that reduces memory usage and the time we enforce the boundary
conditions for each time step. This method achieves the second order convergence
in both time and space. This method has been implemented in the FeniCS C++
platform and coupled with the mesh generator Salome. Three application areas
were considered. First, we showed the convergence of an apparent diffusion coef-
ficient to the effective diffusion tensor computed by homogenization. Second, we
numerically verified that an infinitely thin and semi-permeable membrane model
can be used to approximate the finite thickness membrane model in which diffu-
sion inside membrane is either isotropic or anisotropic. Third, we validated the
macroscopic Kärger model that takes into account compartmental exchange.

We also proposed two numerical models of isolated neurons consisting of a spherical
soma and cylindrical segments. These numerical models greatly reduce computa-
tional time and form a solid basis for developing further semi-analytical models of
the dMRI signal arising from neurite trees. These models were also implemented in
FeniCS C++ based on finite elements method for 1D segments, coupled with the
RKC method. The simulations are performed to check the accuracy of the numer-
ical models and to validate a published formula about the ADC. We also inverted
the measured dMRI signal from a class of neurite trees to get the effective length
which is close to the average length of tree segments. Finally, we proposed and
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numerically checked the analytical upper bound and lower bound of the signal and
related ADC inside neurite trees.

All these preliminary results show that the FEM-RKC code provided high perfor-
mance and can be used as a guiding tool for further investigations in dMRI.

5.2 Future work on mesh generation

Although the mesh generator Salome was efficient for complex geometries with
multiple compartments and periodic structures, our computational domains are
still far from realistic biological structures.

First, in volume the intra-cellular space occupies about 6% in the cortex and 20%
over all the brain tissues. This volume fraction is small compared to that of the
computational domains that we could generate. For some special shapes like cubic
or spherical cells, we may obtain such volume fractions but in general, it is very
difficult to reach these values. The most complex geometries that we generated
is formed by random cylindrical curves. In that case, the computational domain
contains about 60% of the extra-cellular space which is much smaller than 6-20% in
brain tissue. The problem remains how mesh generators like Salome can overcome
singular points where the distance between two biological cells is very small (nearly
touch each other). The Salome generator usually fails when working with complex
geometries with such features.

Second, the resolution of dMRI (order of 1mm3) is very large compared to cells
features (from sub-micron for diameter of neurites to tens of micron for the soma).
If neurites are described by 3D meshes in a computational domain, one has to deal
with excessive number of elements and vertices to describe the structures accurately
because the neurite diameter (order of µm) is much smaller than the neurite length
(order of 1mm). This problem may be solved by generating anisotropic finite ele-
ments meshes or describing them in lower dimensions. In two proposed numerical
models based on finite elements of 1D line segments, we effectively approached thin
and long neurites. However, one also needs to include diffusion in the extra-cellular
space, as well as the exchange across the biological cell membranes. That leads to
another difficulty about how to link the anisotropic or lower dimension meshes of
neurites/cells with that of the extra-cellular space.

All multi-compartment domains we generated were based on body-fitting features
in a unique mesh, i.e. submeshes share the same nodes at the interface. However,
for large scale problems in which the number of elements/vertices is excessive, it is
better to generate meshes for compartments independently. Because vertices/faces
of compartment meshes at common interfaces should be aligned, the way we link
these meshes becomes very important and a vertex/face mapping at the interfaces
may give a good way to manage this problem. This idea is very similar to the way
one generates the periodic boundaries except that the mapping is built for a unique
mesh in periodic boundaries and for different meshes in multiple compartments.

Figure 5.1 shows a forest of pyramidal neurons. One can imagine how hard to
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describe correctly this geometry. The first problem is how to automatically place
non-crossing neurites which are usually dense and easy to cross, in a computational
domain with extra-cellular space. One can manually defines this domain (as what
we did in chapter 2, about cylindrical curves) but it is very time-consuming and
the volume fraction of the extra-cellular space is high.

Figure 5.1: Image from Wikimedia Commons. Description: Forest of synthetic
pyramidal dendrites grown using Cajal’s laws of neuronal branching. Source http:

//commons.wikimedia.org/wiki/File:Forest_of_synthetic_pyramidal_

dendrites_grown_using_Cajal%27s_laws_of_neuronal_branching.png, Au-
thor: Hermann Cuntz.

5.3 Future work on optimizing the FEM-RKC code

In FeniCS, parallel computing was considered in two paradigms. The first paradigm
uses OpenMP for shared memory machines for some special purposes such as multi-
threaded assembly for finite element matrices and vectors, linear solvers. The second
one uses MPI to parallelize computations. For both paradigms, a mesh should be
preprocessed in special ways. For multi-threaded parallelization, a so-called coloring
approach is used, while for distributed parallelization, a mesh partitioning approach
is used [43]. These features support well serial meshes in which each mesh includes
all compartments. For large-scale problems with excessive number of vertices, this
is disadvantageous in terms of memory usage.

Naturally, our code can be parallelized basing on subdomain decomposition. For-
tunately, since our FEM-RKC method uses the explicit time stepping, each com-
partment can be managed separately and needs to be synchronized only once at
the beginning of each time step. For two-compartment domains, four independent
linear solvers can run in parallel.
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5.4 Ongoing applications of FEM-RKC to dMRI

At this point, we recall that exact solutions to the Bloch-Torrey equation are known
only for free space. It is therefore natural to resort either to approximate solutions
or models (such as Gaussian phase approximation, narrow pulse approximation and
macroscopic models), or to numerical techniques. The complexity of brain tissue
often leads to the failure of classical approximations, especially at high b-values
which are nowadays are available in MR scanners. The research for more accurate
and elaborate models for fitting and interpreting experimental dMRI signal is very
active.

The numerical analysis and three applications of the FEM-RKC method to dMRI
show that the FEM-RKC code can offer high performance and enable us to work
with complex geometries. Moreover, the FEM-RKC code allows one to operate
easily with diffusion tensors that opens new possibilities in studying and modeling
anisotropic diffusion in the brain.
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