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Chapter 0

Introduction

This thesis is devoted to the phenomenon of embryogenesis. Embryogenesis is
the process where an embryo’s cells progressively organize themselves, through
proliferation, motility and differentiation, into morphogenetic fields and compart-
ments, that will carry out specific functions in the organism. Since these com-
partments have a very specific spatial organization, which is fundamental for
the formation of organs and the execution of the animal’s physiological func-
tions, the study of these compartments’ individuation and morphogenesis is
essential to our understanding of embryogenesis.

The formation of these regions gives rise to an intermediary structure of organi-
zation between cells and the whole animal. Therefore, this is also an emergence
phenomenon, with the appearance of a mesoscopic scale between a microscopic
one and a macroscopic one. We study this process through a complex systems
science approach. Two aspects of this approach are especially significant: the
interaction between the parts and the whole, and the mathematical representa-
tion of objects.

The first aspect characterizes the way we study the interaction between the
individual cells and the whole embryo. In this thesis, models are based on
hypotheses that impose either a bottom-up causality or a top-down restriction
on states. This allows the study of the embryo to not consist only in the study
of individual cells.

The second aspect characterizes the method by which the study is performed,
which can be described by the approximation of embryogenesis to the formal
sciences. This approximation is done through the representation of the objects
of study by mathematical objects, and their manipulation following either for-
mal rules or semantic inferences, similarly to what is done in physics.

This study is made possible by reconstructed spatio-temporal cell lineages. This
data is algorithmically extracted from 3D+time microscopy images and is com-
posed by the set of cells present at each moment in time, together with their
positions and genealogic relations. Therefore, we can observe how the cell lin-
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8 CHAPTER 0. INTRODUCTION

eage evolves in time and how groups of cells flow to particular configurations.
The quantity of cells in each data set is large and we manipulate it computa-
tionally.

Our analysis is focused on the zebrafish (Danio rerio), a very well studied model
animal. More particularly, in a moment of its development when its spatio-
temporal cell lineages consist largely on the displacement of cells, which gives
a physical nature to the data. For this reason, together with biological reason-
ing, we use established physical theories as the basis for the manipulation and
interpretation of the data.

Based on these observations we summarize the point of view of this thesis on
embryonic morphogenesis by:

Biological objects, observed through physics, described by mathe-
matics, manipulated computationally, in the light of biology and
physics.

The theoretical accomplishments of this project are a mathematical formalism
for the manipulation of spatio-temporal lineages and three independent appli-
cations, investigating different aspects of embryogenesis. These studies provide
many evidences and results that open the way to a large range of descriptive
and predictive studies in morphogenesis.

The mathematical framework is based on the formal description of biological
data. While many possibilites exist, we claim that the point of view of mea-
surements over temporal lineages is the most adapted one for our goals. In this
representation, one "forgets" the spatial details of the spatio-temporal lineages
and represents them as a measurement over cells at each time step. In order
to give a mathematical description to these temporal lineages, we use areas of
mathematics that are descriptive and algebraic by nature. This framework is
used in three applications.

The applications have been developed following some general guidelines, im-
posed by the data, which exhibit two main characteristics: the data is abundant,
and while structurally homogenous, it is semantically diverse. It is abundant
since the experiments producing it are reproducible at will, thus making it pos-
sible to have large numbers of analysed embryos. It is also diverse since many
different animals are imaged, each one having different singular characteristics
that define its embryogenesis. Therefore it is desirable, especially in an incip-
ient domain of study, for the developed methods and theories to have as little
bias and manual selection as possible. In that way, one maximizes the initial
utility of the developed algorithms, opening the way for more specific and pre-
cise ones.

The first application explores the emergence of morphogenetic fields through
the hypothesis that tissues can be characterized from quantities defined over
temporal lineages. For this goal, we propose an algorithm that transforms sets
of measurements into groups of cells that are temporally and genealogically
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coherent. The algorithm shows in many cases a good matching between the
morphology of the animal and the emerged clusters.

The second application explores deterministic aspects of embryogenesis, deal-
ing with the estimation of intercellular forces from the trajectories of cells. We
do this by finding the set of forces between neighboring cells that fits in the
best possible way the accelerations calculated from trajectories. The patterns
revealed by this algorithm are well aligned with what is expected from the for-
mation of many supracellular structures.

The last application explores stochastic aspects of embryogenesis by perform-
ing a statistical study of the deviations of cell pairs. This is done through the
comparison of statistical distributions and summarizing measurements of the
relative movement of neighboring cells. Evidences have been found that cor-
roborate the intuition that cells behave differently immediately after mitosis
and that indicate that the relative movement of cells is not very distinct from a
Brownian motion.

We proceed to the discussion of the practical aspects of the thesis. The main
material accomplishment of this work is the implementation of lineageflow,
which is an extensible ecosystem of libraries, executables and interfaces that
aim to serve as a basis for a progressive collaboration between biologists, physi-
cists, mathematicians and computer scientists. The implementation of all the
mentioned applications has been done in this system. Its design is based on the
following idea:

Interdisciplinary science is made not only from the interaction of
concepts but also the interaction of people with different expertise.
One can optimize this interaction through the establishment of for-
mal and practical interfaces of interaction.

We put some of its components in perpective in the following.

The application of theories to real data goes through their computational imple-
mentation. For this computation to be coherent, it is important to have guaran-
tees that the computational manipulations follow the meaning of the theoreti-
cal manipulations. This has been done through the specification of a domain-
specific language, which leverages the type system of the programming lan-
guage for the interactive verification of the coherence of the computation with
its mathematical semantics.

As mentioned, we aimed to create applications which are as unbiased as possi-
ble. However, while the mechanical analysis of data can be unbiased, the inter-
pretation of the results should not be, and should be accessible to the specialists
of the domain. For this purpose, we make use of our mathematical framework
and provide an infrastructure allowing non-programmers to use the methods
that have been developed by others. This is done through a declarative interface
for algorithms, which allows the integration of new methods into the present
ecosystem and their use through an unified user interface. The results of these
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algorithms can be interpreted through their 3D visualization or their statistical
plotting.

This can be interpreted as the search for a scientific modularity, allowing each
person to work on its domain of expertise, but with means to offer mutual feed-
back. The common interface allows for this feedback to be more efficient, di-
minishing the need of learning new systems. Also, since the development of
algorithms has a large quantity of technical prerequisites, the possibility of a
certain level of autonomy makes it easier for the relation between specialists to
be one of collaboration, and not one of dependence.

We summarize our main thesis by:

The goals of performing integrative studies of multilevel complex
systems, and theoretical studies through mathematical representa-
tions are not incompatible, and can provide a synergetic relation be-
tween all involved scientists.

We proceed now to a more precise description of embryogenesis.
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Figure 1: Example of zebrafish mutants exhibiting various degrees of cy-
clopia. Frontal views of a wild-type zebrafish embryo (A) and two embryos
(B,C) with mutations affecting the formation of the ventral brain (hy) that is nor-
mally located between the eyes. The retinae (r) are partially (B) or completely
(C) fused. Images by Ichiro Masai.

0.1 Embryogenesis

The process of development of an embryo is called embryogenesis. During this
process the cells progressively organize themselves into tissues and functional
compartments (Fagotto, 2014). These compartments have a particular spatial
organization, which gives a characteristic shape to the animal. This characteris-
tic of embryogenesis makes it an example of morphogenesis, the development of
shapes.

The consolidation of the compartments occurs through the formation of mor-
phogenetic fields (Alberts, Johnson, Lewis, & others, 2002). A morphogenetic
field is a group of cells that behaves in a coherent way, leading eventually to
the formation of the presumptive organs. Therefore, central to the study of
embryogenesis is the study of cell behavior.

Biochemical processes inside a cell are performed and regulated by proteins or
their complex interactions and assemblages. Some examples of the functions
they perform are catalysis, cell signaling, ligand binding, active transport and
structural constitution. The production of proteins is regulated by the expres-
sion of genes.

Since the composition of a cell, including its membranes and the elements that
go through it, result from its internal processes, the genetic activity also regu-
lates indirectly the interaction between cells. This has a counterpart, since exter-
nal interactions can also alter the expression of genes. The factors that regulate
the genetic expression of a cell can be either genetic or epigenetic.

The genetic factors are those that come from the genetic composition of the cell.
A practical example of the effect of the genetic composition of a cell in embryo-
genesis is given by mutants. The Figure 1 shows an one-eyed pinhead (oep)
zebrafish mutant (Zhang, Talbot, & Schier, 1998). A mutation in the oep gene of
these specimens results in cyclopia and other formation abnormalities.

Non-genetic factors that change the activity of genes are called epigenetic (Holli-
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Figure 2: BioEmergences workflow for the reconstruction of cell lineages. The
scheme representing the different phases of the reconstruction of cell lineages
from 3D+time imaging data, going through nuclei center identification and cell
tracking

day, 1990). There are many possible origins for these changes in genetic activity,
most of which are chemical and molecular in nature. However, there are fac-
tors that are physical in nature. An example is the observed effect of mechanical
forces on genetic expression (Chien, Li, & Shyy, 1998). Another example is the
role of temperature on the rate of division of cells in many species (Begasse,
Leaver, Vazquez, Grill, & Hyman, 2015).

In the following we discuss the data that we use for the study of embryogenesis.

Imaging data and processing workflow

The data used in this thesis comes from in-vivo microscopy images of several
embryos analysed through the BioEmergences workflow (Faure et al., 2016).
We describe here the steps performed to obtain the reconstruction of embryonic
spatio-temporal cell lineages. A schema of this process is shown in Fig. 2.

The process starts with the preparation of the embryo and the staining of some
biological structures, in order to enhance contrast in images. Typically, nuclei
and optionally membranes are stained, with reagents that emit different fre-
quencies that can be captured independently by the microscope.
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The embryo is then imaged using techniques like multiphoton laser scanning
microscopy (MLSM) and selective plane illumination microscopy (SPIM) (Fis-
cher, Wu, Kanchanawong, Shroff, & Waterman, 2011). These techniques explore
the imaging of planar sections of the embryo in order to reconstruct the 3D vol-
ume. This process is then repeated successively in order to obtain the temporal
evolution of the imaged object, in the form of 3D+time images. An example
of the obtained images is shown in Fig. 3. From this point, one can perform
a visual exploration of the development of the imaged embryo, which is an
essential part of the work of the biologist.

From these images one can algorithmically identify the positions of cell nuclei
at each time step. One option is filtering the image using a geodesic mean cur-
vature flow algorithm (Bourgine et al., 2010) and analysing the filtered image
using a flux-based level set algorithm (Frolkovič & Mikula, 2007). Another is
analysing the image directly using the difference of Gaussians algorithm (Rizzi
& Sarti, 2009). The choice between these options depend on the species being
analysed and the nature or the images. In the following chapters we use the
term cell center for these identified points. The rate of identification of cell cen-
ters is very close to 100%, this rate being calculated in comparison to manually
corrected identifications.

The final step of the analysis is the reconstruction of spatio-temporal lineages
through the tracking of cells. This is done through the identification of the move-
ment of cells between different time steps and the identification of mitosis. This
can be done algorithmically from the cell centers identified previously using a
simulated annealing algorithm (Melani et al., 2007). The precision rate of the
tracking of cells is around 98% and that of mitosis identification around 50%,
this rate being calculated in comparison to manually corrected identifications.

The practice of biologists involve the visualization of the embryo, augmented
by the capacity of following cells and their lineages in time. This is done through
a visualization software named Mov-IT (Savy, 2007). However, in this thesis,
all the work is done through the algorithmical manipulation of cell centers and
their tracking.

Zebrafish

We use the zebrafish as a model for the analysis of early embryogenesis. It can
be seen in its adult phase in Fig. 4.

This species is widely studied in developmental biology due to some character-
istics that are advantageous for research. Its genome has been fully sequenced,
its embryonic development is very rapid and its embryos are relatively small,
robust, transparent and able to develop outside the mother. Furthermore, its
embryo has a fairly constant size, and is amenable to long-term imaging with
nuclei and membranes staining through the expression of fluorescent proteins.
A full body image of the early development of the zebrafish is shown in Fig. 5.
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Figure 3: Example of time lapse imaging of a developing zebrafish embryo.
These images give an example of a perspective view of the 3D volumes that
compose the 3D+time images obtained from the microscopy of a wild-type ze-
brafish. In these images one can see the fluorescent signal emitted by nuclei
(orange) and membranes (green). This embryo is imaged from 6h51 to 19h53
hours post fertilization, and the time evolution goes from left to right, from top
to bottom. This data set contains around 9000 cells per frame and has a volume
size of 705 × 705 × 241 µm.
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Figure 4: A zebrafish adult specimen. An adult specimen has around 4cm in
length. Image by Mike Norén.

Figure 5: Full body image of a zebrafish in its chorion. In this image we can
see a specimen 36 hours post fertilization. The zebrafish embryo develops fast
and its tissues are transparent. Image by University of Guelph, Department of
Integrative Biology.
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The phases of the development of the zebrafish are well described (C. B. Kim-
mel, Ballard, Kimmel, Ullmann, & Schilling, 1995). We reproduce the table
present in this article as a reference in Fig. 6.

In the data sets used in this thesis we have roughly the following phases:

• at the end of blastulation, epiboly, which consists on the spreading of cells
over the yolk;
• during gastrulation, convergence and extension movements elongating

the antero-posterior axis;
• in early segmentation, formation of different compartments and begin-

ning of organogenesis.

The thickness of this embryo makes difficult to image it in full in a single vol-
ume. However, a very significant part of its body is present in the field of view
of the microscope, as it can be seen in Fig. 3. Typical zebrafish data sets that are
used in this thesis have:

• up to 9500 cells per time step, with cells having sizes about 15µm;
• a time interval between two 3D images of around 2min30sec, with a voxel

size about 1.3µm;
• an imaged volume with dimensions about 700µm× 700 µm× 250µm and

a total imaging time of 14h.

Considerations on the data

As the presented numbers show, we have to manipulare a fairly large number
of cells. Besides the computational complexity that decurs from the quantity
of cells, we are also confronted to statistical problems. Since embryogenesis
is characterized by the progressive differentiation of cell behaviors, it would
be unwise to treat the embryo as an homogenous whole. The data lacks the
explicit information of homogeneous groups of cells, meaning that we are left
with a large number of cells whose relation to each other is, a priori, unknown.
Therefore, much care must be taken when integrating the cells into the whole
for applications, which we will discuss in more detail in the following sections.

Another important limitation of the data is the information it gives on cells.
This information consists of their genealogies and trajectories, which gives a
kinematical nature to the data. This makes a physical approach to the dynamics
of cells almost a necessity. For this reason, we discuss some physical aspects of
embryogenesis in the following section.
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Figure 6: Periods of early development of the zebrafish. The times in the
second column indicates the beginning of the period and is measured in hours
post fertilization at 28.5◦C. Our analysis is focuses the interval of time between
the end of blastula up to the beginning of the segmentation period. Reproduced
from (C. B. Kimmel et al., 1995).
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0.2 Physical aspects of embryogenesis

Here we expose some approaches to the physical description of cell behaviors
and embryogenesis, emphasizing the movement of cells and its origins. We
start from the interior of the cell and increase the scale progressively.

As commented before, most activities of the cell are intermediated by proteins.
We give special attention to a number of different protein assemblages here.
The first are motor proteins, which are capable of converting chemical energy
into mechanical work. Their study is done through the interaction of thermody-
namics and hydrodynamics, exploring the chemicals origins of the energy us-
ing it for moving in a crowded environment like the interior of a cell (Howard,
2002). These structures are at the origin of the internal active transport in cells
and the active movement of cells.

The propagation of local forces produced by molecular motors and external
forces is done through a fiber network lying inside cells. This network, which
includes the cytoskeleton, acts as a skeleton for the cell, providing a certain struc-
ture and rigidity. The study of these structures is mechanical by nature, dealing
with the complex topologies of these networks and their composition (Ron-
ceray, 2016). It can be seen as one of the intermediates between cell interaction
and the global propagation of forces.

We proceed by the discussion of membranes and cell adhesion. Adhesion forces
arise from a very complex interplay of ligands and receptors present in the
membrane. A quantitative analysis of this process has been done in (Sackmann
& Bruinsma, 2002) through the study of vesicles with reconstituted receptors
and ligands that mimick the key elements of a cell surface. There one sees indi-
cations that the adhesion between the adherent shell and a target cell or tissue
can be decribed by a double-well potential, each well having a different depth,
whose minima correspond to weak and strong attachment. Furthermore, the
interplay between membrane elasticity and attachment energy has a strong in-
fluence on the deformation of membranes during the process of adhesion.

This interplay between adhesion and elasticity and its influence in the shape
of cells has been studied in (Käfer, Hayashi, Marée, Carthew, & Graner, 2007).
The basis of the study is the resemblance of some epithelial tissues to packed
soap bubbles. Using the analogy, the authors have been able to create a surface
dependent model that reproduces the cell shapes of packs of cells in the eye of
Drosophila.

Cell intercalations and the rate of change of cell shapes are important aspects
of the morphogenesis of the embryo. However, they are difficult to access due
to the level of detail demanded on the images for a proper analysis of these
phenomena. In (Blanchard et al., 2009), the authors defined continuum mea-
surements that correspond to cell intercalations and local change of shape for
planar tissues. The establishment of these quantities allowed to show the rela-
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tive importance of each process to the formation of different tissues in several
animals.

The non-invasive estimation of forces between cells is an open problem in gen-
eral. In (Ishihara et al., 2013), the authors compare a number of methods for the
inference of forces that use the analysis of the shapes of cell membranes in pla-
nar tissues. These methods suppose the interfaces between cells to be straight
lines and explore the angles of the triple points of contact.

There are studies that investigate embryogenesis using a direct fluid dynamics
approach (Fleury, 2011). In this approach one identifies the local velocities of
the fluid flow using particle imaging velocimetry tracking on the images of
the focused region of the embryo. The produced velocity fields can be then
interpreted and used for quantitative analysis. In (Fleury, 2012) these fields
have been used for explaining and justifying some of the global movements of
cells that induce the formation of morphological structures.

We conclude with the fact that there are many techniques for measuring cell-
generated forces (Polacheck & Chen, 2016) in very different contexts. We pro-
ceed now to the approach used in this thesis for the physical exploration of
embryogenesis.
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0.3 Exploration of in-toto embryogenesis

The distinguishing aspect of the data used in this thesis is its position in the
tradeoff between volume and detail. It contains a large volume of the embryo
and consequently a large quantity of cells, constrained by the algorithmical
identifiability of these cells. However, this large volume implies losses in de-
tails. Some features like membranes, cell volumes and contacts, though visible,
are not algorithmically extractible at this moment and their manual identifica-
tion is impractical. For this reason we cannot use many of the finer details that
are known about the interaction between cells exposed in the previous sections.

We can however take advantage of the interaction between two properties of
out data: cells are identified and present in large number, covering a large re-
gion of the embryo. Together with some general facts on biological data, we
are able to explore the interactions between the local and global scales, in the
form of bottom-up causalities and top down restrictions. We will discuss some
aspects of this interaction.

We start with the fact that morphogenetic fields are composed by cells whose
behaviors are similar. Let us assume the reductionist interpretation that these
fields are just sets of cells. Under this hypothesis, we can say that the dynamics
of morphogenetic fields is determined by that of cells. This is explored in Chap-
ter 5, where we propose an algorithm that transforms sets of measurements
over cells, which are meant to represent their behavior, into a segmentation of
the embryo into groups of cells where these measurements are homogeneous.
The algorithm explores the genetic similarity of cells belonging to the same lin-
eage and the role of genetics in morphogenesis. This emergence of artificially
produced morphogenetic fields allows the study of their dynamics and com-
parison with the morphology of the animal.

We proceed with the fact that we can estimate accelerations from the displace-
ments of cells. Let us assume that these accelerations are originated by intercel-
lular forces, which are local by nature. Therefore, the trajectories of cells restrict
the possible allocations of forces between cells. As the number of cells approach
the complete embryo, this restriction becomes stronger. We explore this reason-
ing in Chapter 6, where we estimate intercellular forces and stresses from the
accelerations calculated from cell trajectories.

We finish with the fact that the sampling of a random variable restricts in prob-
ability its possible distributions. The larger is the sampling, the stronger is the
restriction. Furthermore, one may consider a set of single samples coming from
a set of identical, independent random variables as equivalent to a set of inde-
pendent samples of a single random variable. We explore this idea in Chapter
7 where we compare three different populations of pairs of cells. This compar-
ison explores the local homogeneity of displacement fields in general, due to
the existence of morphogenetic fields. This reasoning allows the inference of
differences between types of pairs of cells from the sampled distributions.
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We proceed by discussing the relevance of this kind of data. Its biological rel-
evance is evident, as it provides visual aspects that are identifiable in both the
local and global scales. We now argue that it is also extremely relevant to the
mathematical and physical exploration of embryogenesis. Spatio-temporal lin-
eages are the minimal observables that offer:

• the recognition of cells as individual entities;
• their life span of cells, which allow to identify the coexistence of cells;
• their genealogical relations, which allow to identify the persistence of the

lineage;
• their positions, which allow to disambiguate cells, since two cells cannot

share the same point in space.

While this set may lack details like membranes, it is structurally rich enough
to allow for the representation of these features as measurements. This is done
through the definition of a temporal lineage, which is the object that consists on
the temporal evolution of the cell lineage. Using this construct, in the same way
that one can represent positions as the measurement of vectors over the tempo-
ral lineage, one may represent membranes and cell contacts using the tools from
algebraic topology, as the measurement of simplicial manifolds over the tem-
poral lineage (Bott & Tu, 1982). That is, these limitations are contextual to the
experimental and algorithmic capabilities of the moment and not to the funda-
mental structure of the data. We provide a deeper discussion of the subject and
present the mathematical formulation of temporal lineages and measurements
in Chapter 2.

We conclude this section by discussing the role of this thesis in the context of
the BioEmergences workflow (Fig. 7). All the work done here proceeds from
the phenomenological reconstruction of spatio-temporal lineages, produced by
the cell identification and tracking algorithms, which can be seen as statistics
calculated from the raw data. The algorithms presented here consist only of the
transformations of these statistics or measurements into other statistics. The
only algorithms that contain extra hypotheses in their formulation, being clas-
sified as theoretical reconstructions, are those presented in the application chap-
ters 5, 6 and 7. These hypotheses are presented explicitly in the corresponding
introductions. No simulation allowing comparisons with the raw data is done,
even if we produce the means for doing so. For this reason, all the exploration
of measurements is done visually and statistically.

We proceed now to the practical aspects of this thesis.
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Figure 7: Epistemological triangle summarizing the BioEmergences work-
flow. This diagram organizes the procedures of reconstruction, modeling, sim-
ulation and exploration performed by the laboratory. This thesis is placed on
the upper part of the triangle, performing the manipulations of statistics and
the inference of observables.
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Figure 8: Decomposition of computation. Computation is divided in two
types: pure and effectful. The interactions of these two types of computation
generate measurements that can be explored visually or statistically.

0.4 Practical aspects and collaboration

We now discuss some practical aspects of the manipulation of data. This in-
cludes both the computational transformation of data and the interaction of the
user with the system which performs the computation.

The manipulations and algorithms presented in this thesis are based only on
the structure of the data. We also avoid making too many assumptions related
to species, period of morphogenesis, etc. This is the case for two reasons:

• this field of study is recent, therefore, we prefer a strategy of progressive
specification of methods to one of progressive generalization;
• the methods developed here can be applied to multiple species, which can

have very different dynamics during embryogenesis.

These choices make the applications developed here prone to be used repeat-
edly with different data sets and by different people.

Based on this consideration, a system named lineageflow has been created,
with the goal of accommodating users who are not programmers and being
extensible by new algorithms. The ease of development, deployment and use
of new methods are essential for a progressive development of the field, since
they allow a more agile feedback loop between developers and embryologists
and therefore, all these aspects have been considered.

We discuss here some engineering aspects of this system. We use the guiding
principle of separation of concerns and expose the different components of this
system, which are schematized in Fig. 8.

The first component of the system is a library defining an embedded domain-
specific language containing the essential types and manipulations on tempo-
ral lineages and measurements. These types are derived from the mathemat-
ical formulation discussed previously, which guarantees a certain degree of
coherence between theory and computation. The development of algorithms,
as transformations of sets of measurements into other sets of measurements is
performed in this component of the system. The algorithms are organized as
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Figure 9: Mathematical formalism and pure computational core. The math-
ematical formalism is used as a specification of types and manipulations. Al-
gorithms are defined in a declarative manner as methods that transform sets of
measurements. These algorithms, due to their declarative nature, can form an
ecosystem.

libraries so they can form an ecosystem of reusable parts, allowing the reuse of
existing algorithms and the reduction of duplicated efforts. This is schematized
in Fig. 9.

The second component consists of a declarative layer for the definition of al-
gorithms. Based on these declarative definitions, the system can generate the
necessary database interactions, as well as the user interface for algorithms.
This makes it possible to have also an ecosystem of executables, which can be
used directly by non-programmers. All practical results are generated from the
interaction of algorithms and this component, allowing transformations to be
applied to actual data.

The third component of the system is composed of an integrated 3D+time mea-
surement viewer and a statistical plot generator. This component allows the
visual and statistical exploration of measurements with no need for program-
ming.

Finally, there is an unified graphical user interface, which integrates all algo-
rithms and exploration tools. The automated interfaces and integrated explo-
ration tools facilitate the communication between algorithm developers and bi-
ologists, making collaboration easier. This is schematized in Fig. 10.

This infrastucture is implemented in lineageflow, an ecosystem of libraries
and executables, which is described in detail in Chapter 3 and released as free
software.
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Figure 10: Standardized effectful inteface and interaction with biologists.
The user interface for algorithms is automatically generated from their defi-
nition. This uniformization allows a faster feedback loop between algorithm
developers and biologists.
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0.5 Reading guide

This thesis is divided in the following parts:

• Mathematical prerequisites and formalism: Chapters 1 and 2;
• Computational infrastructure: Chapter 3;
• Reference algorithms and examples: Chapter 4;
• Applications: Chapters 5, 6 and 7;
• General discussion: Chapter 8.

All the application chapters have the same structure:

• Introduction: general ideas and description of the study;
• Formulation: mathematical formulation of the procedure;
• Implementation: details of the computational implementation of the algo-

rithms;
• Results: results obtained through the application of the algorithms to real

data;
• Discussion: general discussion of the significance of the results and possi-

ble directions for the future.

The text is organized so that a reader may read the introduction and jump di-
rectly to the results and discussion. This is done in order to make the text more
accessible for an interdisciplinary readership.

The only prerequisite for the introduction section of all chapters is this intro-
duction. The formulation sections of applications have a prerequisite on the
introduction of Chapter 2 and the implementation sections have a weak pre-
requisite on Section 3.1. Therefore, this thesis can be read in a non-linear way.

We proceed to the description of the subject of each section of all chapters.

Chapter 1 and 2: Mathematical formalism

In the first chapter we present relations, categories and dependent types. These
structures are a requisite for Chapter 2.

In the second chapter we introduce a mathematical formalism that has as fun-
damental entities cells, connected by their lineage and time steps, connected by
the flow of time. These entities are used to present two equivalent point of view
over the embryo:

• the temporal point of view, which is represented by sets of cells that evolve
in time;
• the cellular point of view, which is represented by the time intervals where

each cell is present.
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These complementary points of view define a temporal lineage. The formal pre-
sentation of these concepts and an proof of the equivalence of these points of
view is the subject of Section 2.1.

We proceed by the definition of measurements as functions whose domain is
composed by times and cells. The classification of measurements by their do-
mains and codomains is very useful for the implementation of the declarative
interface for algorithms. This is the subject of Section 2.2.

Finally, we explore the algebraic structure of cell trajectories. The formulation of
this structure is important for the development of the applications. This is the
subject of Section 2.3.

Final considerations and possible directions of research are presented in Sec-
tion 2.4.

Chapter 3: Computational implementation

The structure of this chapter is based on the discussion presented in the previ-
ous section.

A computation is pure when it consists of a transformation of data described
by its inputs and outputs. Relevant to this thesis are the algorithms exposed in
the application chapters, which tranform measurements or statistics into other
statistics. Since we aim to represent manipulations of measurements on the
embryo, we must be able to represent them computationally. This representa-
tion of measurements is derived from the mathematical formulation through
denotations. This is the subject of Section 3.1.

In contrast there is an effectful computation, which besides its input and out-
put, has an implicit interaction with the environment. Relevant to this thesis
are database access and data visualization. The definition of measurements in
the pure computational core allows a declarative interface for algorithms. This
interface makes possible the automation of the interaction with the database of
measurements and an universal user interface for the use of algorithms. This is
the subject of Section 3.2.

The interaction with the database gives an easy interface for the 3D+time vi-
sualization of measurements. This is important since it allows to immediately
grasp patterns in a way that is coherent with the spatio-temporal organization
of the animal. Also, even if measurements are semantically very diverse, they
can be represented in very similar ways. We take advantage of this structural
similarity to offer a range of standard statistics without the need for program-
ming. These capabilities are the subject of Section 3.3.

Final considerations and possible directions of research are presented in Sec-
tion 3.4.
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Chapter 4: Reference manipulations

When analysing measurements over the embryo, two operations are very com-
mon. The first one is the calculation of the rate of change of a measurement.
This is done through differentiation which is the subject of Section 4.1.

The second one is the control of the characteristic time and space scales in order
to better visualize patterns. For this purpose we should use a process which
reduces the local variations of a measurement. This is done through homoge-
nization which is the subject of Section 4.2.

While these two operations are conceptually simple, there are some details that
are subtle, due to the discrete nature of cells and time steps. Furthermore, these
operations serve as an example for the foundations established in the previous
chapters.

Chapter 5: Clustering cell trajectories

The morphogenetic fields of an embryo are composed of cells. It is reasonable
to expect that there should be a certain set of observables or measurements over
cells that define the formation of these structures.

In this chapter we expose a method that serves as a tool for the search of such
set of observables. This is done through the transformation of measurements
over the temporal lineage into groups of cells that share similar measurements.
For the exposition of the method we explore the groups of cells generated from
the measurement of positions and velocities, which are shown to have a good
match with the morphology of the animal.

The application of the algorithm to different sets of measures allows the trans-
formation of a multidimensional set of measurements, each changing constantly
in time, into groups of cells that are temporally and genealogically persistent.
Also, this transformation makes the visualization and interpretation of the set
of measurements much easier.

Chapter 6: Estimating forces from trajectories

In this chapter we explore some deterministic aspects of the development of the
embryo. This is done through the prism of Newtonian mechanics.

The general idea is that from the trajectories of cells we can obtain accelera-
tions, which are determined by forces in classical mechanics. We aim to find the
set of forces between neighboring cells that reproduces as well as possible the
observed trajectories.

While this model is too restricted for biological data, we are able to obtain inter-
esting results and a good match with the expectations given by the formation



0.5. READING GUIDE 29

of tissues. Furthermore, since forces are easy to interpret, as compared to other
more abstract physical concepts, they offer a good bridge between physicists
and biologists.

Chapter 7: Cell trajectory deviations

In this chapter we explore some stochastic aspects of the movement of cells.
This is done through the study of the relative positions of cells sharing similar
environments.

Using this analysis we have been able to identify differences between the be-
havior of cells after mitosis, and cells in general. Also, some general summa-
rizing statistics of the relative movement have been measured, giving strong
evidences of the similarity of this process to a Brownian motion.

The results of this chapter provide some strong restrictions on possible models
of noise on cell trajectories.

Chapter 8: Discussion

In this chapter we discuss some general aspects of this project, summarize the
main results and propose future directions of research.
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Chapter 1

Mathematical prerequisites

This chapter exposes the mathematical prerequisites for the next two chapters,
which constitute the foundations used for applications. It is recommended for
mathematically inclined people that are interested in the inner workings of the
mathematical foundations and the denotations of computations. For the basic
aspects of the mathematical representation one can read Section 2.1 directly.
Otherwise, it is not essential for the reader who is only interested in the practical
results.

Since we aim to describe objects mathematically, it is natural that we use de-
scriptive, algebraic and constructive aspects of mathematics. The sections, which
are independent of each other, are organized as follows.

Section 1 is devoted to relations. As the name suggests, they are an abstraction
of valued relations between objects. In particular, they represent the concepts
of graphs and paths in graphs, which are strongly related to cell lineages and
time.

In Section 2 we proceed to the presentation of some concepts of category theory.
Categories are suited for the definition of structured objects and transforma-
tions preserving this structure. In the next chapters we will be interested by
categories whose objects are cell lineages and times.

Finally in Section 3 we present some dependent types. Dependent types are
suited for the definition of sets that depend on values. They are used for the
representation of the evolution of the set of cells with time and the difference
on the life spans of cells.

31
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1.1 Relations

Relations are suited for the representation of graphs, which are the basis for the
representation of cell lineages and times in the next chapters. The definition
used here is taken from (Jost, 2015) and is slightly more general than usual.
In this section we define relations and their composition, and provide some
examples.

Monoids and semirings

We start by defining some algebraic structures (Golan, 1999).

Definition A monoid is composed of a set M , a function ∧ : M ×M → M and
an element > ∈M such that:

• ∧ is associative: a ∧ (b ∧ c) = (a ∧ b) ∧ c;
• > is an unit for ∧: for all a ∈M we have that > ∧ a = a ∧ > = a.

Definition A semiring is composed of a setM , two functions ∧,∨ : M×M →M
and two elements >,⊥ : M such that (M,∧,>) and (M,∨,⊥) are monoids and
satisfy:

• ∨ is commutative: a ∨ b = b ∨ a;
• for all a ∈M we have ⊥ ∧ a = a ∧ ⊥ = ⊥;
• the following distributive laws hold:

– a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
– (b ∨ c) ∧ a = (b ∧ a) ∨ (c ∧ a).

We present some examples of semirings that are used in the following chapters.
The semiring that is used the most in this thesis is the logical semiring. It is
composed of the booleans Σ = {>,⊥}, whose elements are spelled "true" and
"false" respectively, together with the operations "and" (∧) and "or" (∨). The
notation above has been chosen in order to well accomodate this example.

Another important example is the numerical semiring. It is composed of the
real numbers R and the operations ∧ = × and ∨ = +, whose identities are
respectively 1 and 0. While this set can be given more structure, this is not
needed for the following.

The last example is the tropical semiring. It is composed of the extended real
numbers R = R∪{∞} and the operations ∧ = + and ∨ = min, whose identities
are respectively 0 and∞.

Relations

Definition A relation between finite sets A and B with values in a set M is a
function:
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r : A×B →M

The set of such relations is denoted A
M7−→ B. Every such relation has a corre-

sponding transpose r† : B
M7−→ A defined by r†(b, a) = r(a, b). A relation r is said

to be symmetric if r† = r.

Definition Let s : A
M7−→ X and r : X

M7−→ B, where M is a semiring. We define
the composed relation r ◦ s : A

M7−→ B by

[r ◦ s](a, b) =
∨
x:X

[s(a, x) ∧ r(x, b)]

From the associativity of ∧, commutativity of ∨ and the distributive properties,
it is possible to prove that the composition of relations is associative: r◦ (s◦ t) =

(r ◦ s) ◦ t. Furthermore, by defining IdA : A
M7−→ A by

IdA(x, y) =

{
> if x = y

⊥ otherwise

we have that r ◦ IdA = r and IdA ◦ s = s.

Definition Let r : A
M7−→ B, f : A′ → A and g : B′ → B. We define the pullback

(f, g)∗r : A′
M7−→ B′ by:

[(f, g)∗r](a, b) = r(f(a), f(b))

and it is easy to prove that (g, f)∗ ◦ (†) = (†) ◦ (f, g)∗.

Examples of relations

Logical relations are based on the logical semiring. Typically, a logical relation
r : A

Ω7−→ B is interpreted as the subset of A × B such that r(a, b) = >. The
composition of two logical relations s : A

Ω7−→ B and r : B
Ω7−→ C can be rewritten

as:

[r ◦ s](a, c) = ∃b : B ⇒ s(a, b) ∧ r(b, c)

which is the same as the usual definition of the composition of relations. Fur-
thermore, the identity logical relation corresponds to propositional equality:
IdA =≡A.
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Numerical relations are based on the numerical semiring. The composition of
two numerical relations s : I

R7−→ J and r : J
R7−→ K is given by:

[r ◦ s](i, k) =
∑
j:J

s(i, j)× r(j, k)

which makes it clear that numerical relations behave as matrices on the free
vector spaces (Fletcher, 1973) generated by the sets I , J and K. We see that
composition corresponds to matrix multiplication and that the identity relation
corresponds to the identity matrix.

Finally, tropical relations are based on the tropical semiring. A symmetric trop-

ical relation is called a dissimilarity. A relation r : X
R7−→ X can be seen as a

weighted graph, with the composition r ◦ r:

[r ◦ r](a, c) = min
b:X
{r(a, b) + r(b, c)}

seen as the cost of the smallest two-step path between two points.

Graphs

We now focus on logical relations from a set to itself, which can be interpreted
as graphs. That is, the relation r : X

Ω7−→ X represents the fact that an element is
linked to another one by an edge. For this reason, when the relation is implicit,
we will use the notation x→ y to denote r(x, y) = >.

Definition A graph morphism between graphs (X, r) and (Y, s) is a function f :
X → Y such that:

r(x, y)⇒ s(f(x), f(y))

Definition Let r : X
Ω7−→ X be a graph. We define its graph of paths r̂ : X

Ω7−→ X by:

r̂(x, y) =
∞∨
n=1

r◦n(x, y)

where r◦n represents a relation composed with itself n− 1 times.

Two elements x, y : X are said to be related if either r̂(x, y) or r̂(y, x), that is, if
they are connected by a path. If this is not true, we say that they are unrelated.

Finally, we say that a graph is acyclic if r̂(x, x) = ⊥.
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1.2 Category theory

In this section we present some of the categorical concepts needed in the fol-
lowing chapters. Category theory (Barr & Wells, 2005) can be seen as the study
of structured objects and transformations that preserve this structure. We will
be interested in the next chapters in the structures of times and cell lineages.

Categories

Definition A category C is a collection of objects O(C) and for every pair of ob-
jects A,B : O(C), a set C(A,B) of morphisms such that:

• for every object A, there is a morphism idA ∈ C(A,A) called the identity;
• for all objects A, B, C, there is a function ◦ABC : C(A,B) × C(B,C) →

C(A,C) called composition.

When indices can be inferred from the context, they will be omitted. These
morphisms must obey the following properties:

• identity: f ◦ id = id ◦ f = f ;
• associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h).

Some examples of categories are:

• Set, whose objects are sets and whose morphisms are functions;
• Top, whose objects are topological spaces and whose morphisms are con-

tinuous functions;
• Graph, whose objects are graphs and whose morphisms are graph mor-

phisms, as defined in the previous section.

Definition Every category C has an opposite category called Cop, which has the
same objects but whose morphisms are inverted. That is:

• objects are preserved: O(Cop) = O(C);
• morphisms are inverted: Cop(A,B) = C(B,A);
• composition is inverted: f ◦ g in Cop is equal to g ◦ f in C;
• identities are preserved.

Definition An isomorphism is a morphism f for which there is another mor-
phism f−1 satisfying both f ◦ f−1 = id and f−1 ◦ f = id. If there is an isomor-
phism between two objects A and B we say that they are isomorphic and denote
that by A ∼= B.

Definition For categories C and D we can define the product category C × D
whose objects are pairs of objects and whose morphisms are pairs of mor-
phisms. That is:

• objects are pairs of objects: O(C×D) = O(C)×O(D);
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• morphisms are pairs of morphisms: [C×D]((A1, B1), (A2, B2)) = C(A1, A2)×
D(B1, B2);
• identities are pairs of identities: idA×B = (idA, idB);
• composition is done coordinatewise: (f1, g1) ◦ (f2, g2) = (f1 ◦ f2, g1 ◦ g2).

Functors

Definition A functor is a function between collections of objects that preserve
the category structure. Formally, a functor F between categories C and D is:

• a function F : O(C)→ O(C);
• for all A, B, a function FAB : C(A,B)→ D(F(A),F(B)).

When indices can be inferred from the context, they will be omitted. These
functions must satisfy:

• F(idA) = idF(A);
• F(f ◦ g) = F(f) ◦ F(g).

The simplest example of a functor is the identity functor IdC : C → C which
leaves both objects and morphisms unchanged. Another important example is
the powerset functor P : Set→ Set which:

• transforms any set A into the set of its subsets P(A);
• transforms the function f : A→ B into the function P(f) : P(A)→ P(B)

which applies the function f elementwise.

Definition A contravariant functor F from C to D is:

• either a functor Cop → D;
• or a functor C→ Dop.

Which means that the composition property for contravariant functors becomes:

F(f ◦ g) = F(g) ◦ F(f)

The powerset functor can also be given the structure of a contravariant functor.
In this case, it:

• transforms any set A into the set of its subsets P(A);
• transforms the function f : A→ B into the function P(f) : P(B)→ P(A)

which maps every set subset X of B into its preimage f−1(X), which is a
subset of A.

Natural Transformations

Definition A natural transformation λ between two functors F ,G : C → D
is, for every object A, a morphism λA : D(F(A),G(A)) such that the following
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diagram commutes:

F(A)

λA
��

F(f)
// F(B)

λB
��

G(A)
G(f)

// G(B)

that is, λB ◦ F(f) = G(f) ◦ λA.

An example of natural transformation is the singleton transformation η : IdSet →
P whose functions ηA : A → P(A) map every element x ∈ A to the singleton
set {x} in P(A).

A natural transformation λ is called a natural isomorphism if for every A, λA is
an isomorphism.

Adjunctions

Let F : C → D and G : D → C be functors. In order to define an adjunction
between them, we must first define two other functors derived from them.

The first is D(F−,−) : Cop ×D→ Set that:

• maps the pair of objects A×B to the set D(F(A), B);
• maps the pair of morphisms (f, g) to the function h→ g ◦ h ◦ F(f).

The second is C(−,G−) : Cop ×D→ Set that:

• maps the pair of objects A×B to the set C(A,F(B);
• maps the pair of morphisms (f, g) to the function h→ G(g) ◦ h ◦ f .

Definition An adjunction between F and G is a natural isomorphism between
D(F−,−) and C(−,G−). It is denoted by F ` G. In this case, we say that F is
the left adjoint of G, which is the right adjoint of F .

Two examples of adjunctions can be given using graphs. There is a forgetful
functor FGraph : Graph → Set which maps every graph into its set of nodes.
There are two simple ways of defining functors that generate graphs from sets.

The first is Fd : Set → Graph which generates from the set X the discrete graph
dX : X

Ω7−→ X defined by:

dX(x, y) = ⊥

The second one is Ff : Set → Graph which generates from the set X the full
graph fX : X

Ω7−→ X defined by:
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fX(x, y) = >

It is not hard to prove that Fd ` FGraph and that FGraph ` Ff . In general, we call
a left adjoint of a forgetful functor a free functor and a right adjoint of a forgetful
functor a cofree functor.

Contravariant right adjunctions

Definition A contravariant right adjunction between two contravariants functors
F : C→ D and G : D→ C is a natural isomorphism:

D(B,FA) ∼= C(A,GB)

whereA varies in C andB varies in D. Both are contravariant functors C×D→
Set. This concept can be reduced to an adjunction by considering the opposite
category Dop in:

Dop(FA,B) ∼= C(A,GB)

This concept is essential for the next chapter.
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1.3 Dependent sums and products

As discussed previously, the number of cells in the data set change over time.
Cells divide, enter inside the field of view and leave the field of view. In order
to describe a structure that models suitably these characteristics, we use depen-
dent sums and products. These structures are generalizations of products and
functions and their study belongs to type theory (Martin-Löf, 1985).

The objects of study of type theory are called types, which are an alternative
to sets in mathematical foundations. The judgement that an element a belongs
to a type A is written a : A. When reasoning informally, one can interchange
the words "type" and "set" freely. In order to avoid confusion, we do not use
the notation typical of type theory for their presentation. However, we present
types using the following pattern, which is typical to the domain:

• formation: how to create a new type;
• introduction: how to construct elements of the type;
• elimination: how to extract information from an arbitrary element of the

type;
• computation: how introduction and elimination interact.

which we examplify below.

Examples and lambda notation

We expose the presentation pattern in two simple examples. The first one is the
product of two types.

Definition In the presence of two types A and B, we can form their product,
named A×B. An element of this product can be constructed using an element
a : A and an element b : B, generating (a, b) : A×B. We can extract information
from pairs using the projections:

• p1, which produces an element of type A from an element of type A × B,
by the computation rule p1(a, b) = a;
• p2, which produces an element of type B from an element of type A × B,

by the computation rule p2(a, b) = b.

The second example is the type of functions between two types.

Definition In the presence of two types A and B, we can form the type of func-
tions between them, named A→ B. An element of this type can be constructed
with a rule that takes an a : A and produces a f(a) : B. We represent anony-
mous functions using λ notation, giving:

λx. f(x)



40 CHAPTER 1. MATHEMATICAL PREREQUISITES

We can eliminate a function A → B using an element a : A, using function
application:

(λx. f(x))(a) = f(a)

As it can be seen, these correspond to the product of sets and functions between
two sets. We proceed now to the generalization of these concepts.

Dependent sums

The word dependent is used when types can depend on values. In this case, we
deal with a type of product which allows the type of the second element of a
tuple to depend on the first one.

Definition In the presence of a type A and a rule that for every a : A gives a
type Ba, we can form their dependent sum

∑
a:ABa. We can construct an element

of this type, called a dependent pair, with an a : A and a b : Ba, generating
(a, b) :

∑
a:ABa. We can extract information from dependent pairs using the

projections:

• p1, which produces an element of typeA from an element of type
∑

a:ABa,
by the computation rule p1(a, b) = a;
• p2, which produces an element of type Bp1(x) from a x :

∑
a:ABa, by the

computation rule p2(a, b) = b.

In the case where Ba = B for every a we have that
∑

a:AB = A×B.

Dependent products

Dependent products are a generalization of function spaces which allows the
codomain of the function to depend on the element in the domain.

Definition In the presence of a type A and a rule that for every a : A gives a
type Ba, we can form their dependent product

∏
a:ABa. We can construct an

element of this type, called a dependent function, with an a : A and a rule that
returns for every such a a b(a) : Ba, generating:

λx. b(x) :
∏
a:A

Ba

We can eliminate a function
∏

a:ABa using an element a : A, by dependent
function application:

(λx. b(x))(a) = b(a) : Ba
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In the case where Ba = B for every a we have that
∏

a:AB = A→ B.

Dependent Currying

Currying is a relation between function and product types, which gives an
equivalence:

A×B → C ≈ A→ (B → C)

that:

• from left to right, takes f to λa . [λb . f(a, b)];
• from right to left, takes f to λ(a, b) . f(a)(b).

This relation can be extended to the dependent case with:

∏
(a,b):

∑
a:ABa

C(a,b) ≈
∏
a:A

∏
b:Ba

C(a,b)

that:

• from left to right, takes f to λ(a : A) . [λ(b : Ba) . f(a, b)];
• from right to left, takes f to λ((a, b) :

∑
a:ABa) . f(a)(b).

which reduces to the more typical:

∑
a:A

Ba → C ≈
∏
a:A

(Ba → C)

when the codomain is constant.

Lifted Application

Suppose we have for every a : A an associated type Ba. A family of functions:

fa : Ba → C

can be assembled in order to define a function
∑

a:A fa :
∑

a:ABa → C, defined
by:

[∑
a:A

fa

]
(a, b) = fa(b)

when the context makes it evident, we will just say Σf .
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Chapter 2

Mathematical formalism

This thesis is centered around physical measurements taken over the embryo
during its development. While much of the formal representation and manipu-
lation of these measurements can be derived from the practice in physics, there
are many differences. This is due to the fact that biological data are more struc-
tured and less regular at the same time. The data has an inherent structure that
comes from the cell lineage and the connection between mother and children
cells. But at the same time, the lifetime of cells is finite, which means we have
to deal with the appearance and disappearance of cells in the data set. Fur-
thermore, the fact that the images do not comprise the animal in toto gives the
possibility of entrance and exit of cells from the field of view.

For these reasons, one needs to model:

• cells and cellular lineages;
• time and the lifetime of cells;
• measurements over combinations of these concepts.

This chapter presents a mathematical formalism that incorporates these fea-
tures in a way that is adapted to the data, its computational implementation
and applications.

All sections of this chapter are independent of each other.

Cells and lineages, time steps and time

We first have to define want we mean by a cell, in the sense of a mathematical
concept that corresponds to a biological cell. It has the following properties.

• Cells are identifiable and unambiguous. That is, we can always tell with
certainty if a cell is inside a data set or not. Furthermore, there is no doubt
about the identity of each cell;
• The life of a cell is uninterrupted in time and defined by its beginning and

end. After a cell quits the data set, it cannot come back;

43
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• Cells can be created in two ways:
– Entrance in the field of view creates a new cell;
– Cellular division creates two new cells, called children cells.

• Cells can be destroyed in two ways:
– Exit from the field of view destroys the given cell;
– Cellular division destroys one cell, called the mother cell.

These properties define a number of cells that is always larger or equal to the
real number of cells. This is due to the fact that the exit and reentrance of the
same cell in the field of view cannot be determined from the information con-
tained in the data set. For this reason, we are obliged to consider it as two
separate entities. The set of cells, together with the relation that exists between
mother and children cells is called a lineage.

The structure we give to time is simpler. In the work developed in this thesis,
it is always a discrete, finite sequence of time steps, together with the relation of
succession between them.

Measurements and temporal lineages

In this thesis, the notion of measurement implies an attribution of values to
objects. This includes both measurements coming from experiences, like po-
sitions, and statistics, which are functions applied to experimental samples. A
simple measurement that can be performed in the embryo, and is accessible
to us from the spatio-temporal lineages, is the determination of the position of
cells. Measuring position means that for all time steps and for all cells there is
an associated position.

This measurement can be seen from two equivalent points of view:

• The temporal point of view: at each time step, there is a set of cells and for
each of these cells, there is an associated position;
• The cellular point of view: each cell has an associated interval of time, cor-

responding to its lifetime, and for each time step in this interval, there is
an associated position.

Physicists are familiar with this kind of duality. In fluid mechanics there are
two different approaches for the study of fluid flow (Landau & Lifshitz, 2013):

• In the Euler approach measurements are written as functions on time and
space;
• In the Lagrange approach measurements are written following a fluid ele-

ment in time.

Another similar duality happens between the Heisenberg and Schrödinger pic-
tures in quantum mechanics (Sakurai, 1994). In the first case the states are de-
pendent of time while in the second one the operators change in time.
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We denote through all this thesis the set of time steps by T and the set of cells
in the whole data set by C. Also, we denote by Ct the set of cells present at the
time step t and by Tc the set of time steps where the cell c is present. Using this
notation we represent the temporal point of view by the set:

∑
t:T

Ct

whose elements have the form (t, c), where t ∈ T and c ∈ Ct. Similarly, we
represent the cellular point of view by the set:

∑
c:C

Tc

whose elements have the form (c, t), where c ∈ C and t ∈ Tc. Therefore, we can
represent the duality of these points of view as an isomorphism:

∑
t:T

Ct ∼=
∑
c:C

Tc

We call this structure, which can be viewed as composed of cells-on-time-steps
or time-steps-on-cells, a temporal lineage, which is the main subject of Section
2.1. This section is recommended only for mathematically inclined readers,
interested in the formal interpretation of these objects and proofs of coherence
of the duality.

A measurement is any function whose domain is composed of times and cells.
In the example of positions, we can see that the domain is a temporal lineage
while the codomain is the set of vectors in three dimensions. However, there
are many other possible domains occuring in practice, which are exemplified
in the application chapters. There are measurements taken over pairs of cells,
pairs of cells in a given time step, etc...

The possibility of describing measurements in this way take us closer to physics,
as it gives us mathematical objects to manipulate. Furthermore, the domain and
codomain of measurements can be used for their classification, which is a funda-
mental component of the computational system discussed in the next chapter.
Some generalities about these measurements are covered in Section 2.2 of this
chapter, which is recommended to anyone who aims to study or develop mod-
els for embryogenesis.

While the temporal point of view is more natural for visualization and manip-
ulation, the cellular point of view has a rich algebraic structure. From this point
of view, cell trajectories are the main objects of our study and this is the subject
of Section 2.3. This structure is particularly important for readers interested on
the mathematical formulation of Chapter 5.



46 CHAPTER 2. MATHEMATICAL FORMALISM

In Section 2.4 we provide some final considerations and propose directions of
future research.
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2.1 Times and cell lineages

In this section we formulate the concepts of times and cell lineages using the
language of relations and categories, presented in Chapter 1. Using these con-
cepts we give the formal definition of a temporal lineage and the proof of the
isomophism of points of view. We finish by the proof that this isomorphism is
preserved by restrictions of times and cells lineages. The results presented here
can be seen as theoretical evidences of the adaptation of temporal lineages to
the intuitions we impose over it.

It is important to note that all the definitions done here are made towards the
goal of the natural isomorphism of points of view. The fact that the microscope
images do not comprise the whole embryo complicates the theory significantly.
This is due to the possibility of cells appearing without a mother, which allows
the existence of cell lineages with multiple independent branches. While this is
not a problem in the cellular point of view, the structure of the temporal point
of view becomes more convoluted.

Finally, all relations used in this chapter are logical and for this reason we write
X 7−→ Y instead of X Ω7−→ Y .

Times and time intervals

We model the concept of time as a relation between elements of a time set. The
elements of a time set are called time steps.

Definition A time is defined by a relation s : T 7−→ T , called succession, with the
following properties:

• it contains no cycles;
• there is only one connected component;
• every time step has at most one successor: the cardinality of s(t) is either

0 or 1;
• every time step has at most one antecessor: the cardinality of s†(t) is either

0 or 1.

When applicable, we call the element in s(t) the successor of t an the element in
s†(t) the antecessor of t.

Definition A time morphism f : s′ → s between two times is a graph morphism
between times whose underlying function is injective.

Semantically, a time morphism corresponds to the renaming and inclusion of
an interval of time into a possibly larger one. This inclusion must preserve
successors and antecessors.

The category that is composed of times and time morphisms is called Time.
Since every time is a graph and every time morphism is a graph morphism,
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there is a forgetful functor FTime : Time→ Graph.

We proceed now to the description of time intervals.

Definition For all u ≤ v, the time interval [u, v] in T is composed of the elements
t such that u ≤ t ≤ v. A generalized time interval is either a time interval or one
of the three following elements:

• the past, denoted∞−; this is the time interval associated to the antecessors
of the cells in the data set;
• the future, denoted∞+; this is the time interval associated to the succes-

sors of the cells in the data set;
• the undefined, denoted U; this is the time interval associated to cells whose

lineage does not appear at all in the data set.

The set of generalized intervals in T is called I T .

We can give a graph structure to the set of generalized time intervals.

Definition Let s : T 7−→ T be a time, whose minimum is t− and whose maxi-
mum is t+. We define the relation is : I T 7−→ I T that connects intervals whose
extremities are connected. Pasts and futures are connected to themselves ac-
cordingly, and undefined is isolated, connected only to itself. That is:

• [u1, v1]→ [u2, v2] if v1 → u2;
• ∞− → [u, v] if u ≡ t−;
• [u, v]→∞+ if v ≡ t+;
• ∞− →∞−;
• ∞+ →∞+;
• U→ U.

The function that transforms every time into the graph of its intervals can be
given the structure of a contravariant functor.

Proposition Let f : T ′ → T be a time morphism. We define If : I T → I T ′ by:

• [u, v] is mapped to its preimage f−1[u, v]. If this set is empty, either:
– v is smaller than the image of f and the interval is mapped to∞−;
– u is larger than the image of f and the interval is mapped to∞+;

• ∞− is mapped to∞−.
• ∞+ is mapped to∞+.
• U is mapped to U.

Then If is a graph morphism and satisfies I(f ◦ g) = I(g) ◦ I(f). This defines
a contravariant functor I : Time→ Graph.

We skip the proof of this proposition. �

Lineages and tagged cell slices

We model the concept of lineage as a relation between elements of a cell set.
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Definition A cell lineage is a relation c : C 7−→ C, called children with the following
properties:

• it contains no cycles;
• every cell has either two or no children: the cardinality of c(t) is either 0

or 2;
• every cell has at most one mother: the cardinality of c†(t) is either 0 or 1.

It represents a binary forest whose nodes are cells and whose edges connect
mothers to daughers. When applicable, we call the elements in c(a) the daugh-
ters or children of a and the element in c†(a) the mother of a.

Definition A lineage morphism f : c′ → c is a graph morphism between lineages
whose underlying function is injective.

Semantically, a lineage morphism corresponds to renaming and inclusion of a
lineage into another that has been possibly extended in both directions. This
inclusion must preserve daughters and mothers.

The category composed of lineages and lineage morphisms is called Lin. Since
every lineage is a graph, there is a forgetful functor FLin : Lin→ Graph.

We proceed now to the description of tagged cell slices.

Definition A cell slice is a subset of the cell set composed of pairwise unrelated
cells. A tagged cell slice is a pair (S,H) where S is a cell slice and H is a subset of
the cell set, called the history of S, satisfying:

• if a ∈ S and b < a, then b ∈ H ;
• if a ∈ S and b ≥ a, then b /∈ H ;
• if a ∈ H and a→ b then b ∈ S ∪H .

The set of tagged cell slices in C is called S C.

We can give a graph structure to the set of tagged cell slices. There is a con-
nection between two tagged slices if this transition is coherent with the lineage,
while incrementing the history in a suitable way.

Definition Let c : C → C be a lineage. We define the relation nc : S C → S C
where nc((S1, H1), (S2, H2)) if:

• for all a ∈ S1, either:
– a ∈ S2;
– c(a) ⊂ S2 and a ∈ H2.

• for all a ∈ S2, either:
– a ∈ S1;
– c†(a) ⊂ S1 and a /∈ H1.

• H1 ⊂ H2.

The function that transforms every lineage into its graph of tagged cell slices
can be given the structure of a contravariant functor.
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Proposition Let f : C ′ → C be a lineage morphism. We define Sf : SC → SC ′ by
(X, Y ) to (f−1(X), f−1(Y )) where f−1 denotes the preimage. Since the inverse
lineage morphism preserves the relatedness of cells and the presence of the past
of a cell, this is a tagged cell slice. Then Sf is a graph morphism and satisfies
S(f ◦ g) = S(g) ◦ S(f). This defines a contravariant functor S : Lin→ Graph.

We skip the proof of this proposition. �

Temporal lineages and points of views

A temporal lineage is an object consisting of a cell lineage evolving in time. We
can structure this objects in two different ways.

From the temporal point of view we think about the cells present at each time
step, with the transitions happening between these time steps. Since the cells
present at a given time step must be unrelated, this corresponds to a function:

T → S C

Since the transitions between the sets of cells should obey the transitions in the
lineage, this function must be a graph morphism. That is, it must be an element
of Graph(T ,S C).

From the cellular point of view we think about the time steps where each cell is
present, and the connection between these time intervals. Since the lifetime of
a cell is contiguous, this corresponds to a function:

C → I T

Since the transition from mother to children happens between successive time
steps, this function must be a graph morphism. That is, it must be an element
of Graph(C, I T ).

Both views are equivalent, and this is what we will formalize in the following.
We start by proving that there is a bijection between both sets. This guaran-
tees that for every temporal lineage viewed in one way, there is an equivalent
one viewed in the other way. We proceed then to prove that this equivalence
continues to hold even in the presence of transformations via morphisms.

Before starting, we give some intuition on this equivalence. The underlying set
of temporal lineages can be seen as a relation of type:

T × C → Ω

which can be transformed in two equivalent ways:
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• T → (C → Ω), which corresponds to the temporal view;
• C → (T → Ω), which corresponds to the cellular view.

Since both time and cell sets occur in negative position (before the arrow), this
shows the contravariant nature of the transformation. Both time and lineage
morphisms correspond to the inclusion of lineages or times into larger ones
they can also be seen as a restriction of the corresponding times and lineages.
This leads to the intuitive conclusion that the restriction of times and lineages
leads to a restriction of the temporal lineage.

We expect that this restriction is the same independently of the point of view
over the temporal lineage. This can be represented similarly to a contravariant
right adjunction, as the natural isomorphism:

Graph(FTime−,S−) ∼= Graph(FLin−, I−)

of the contravariant functors Time× Lin→ Set.

We proceed now to the proofs of these propositions.

Proofs of bijection and natural isomorphism

Before starting, we notice three facts.

For sets A and B, every function f : A → (B → Ω) has a transpose called
f † : B → (A→ Ω) defined by:

f †(b) = {a ∈ A | b ∈ f(a)}

and this operation is an involution, that is, (f †)† = f . This is the curried equiv-
alent of the transposition of relations.

Every morphism f : Graph(T ,S C) defines three functions of type T → (C →
Ω):

• f0, which maps each time step to its corresponding slice;
• f−, which maps each time step to its corresponding history;
• f+, which maps each time step to the set of cells that are yet to appear;

and these three functions completely determine the morphism, since they con-
tain both the slice and its history.

Every morphism g : Graph(C, I T ) defines three functions of type C → (T →
Ω):

• g0, which maps the cell to the set of time steps corresponding to its inter-
val;
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• g−, which maps the cell to the set of time steps corresponding to its past
lineage;
• g+, which maps the cell to the set of time steps corresponding to its future

lineage;

and these three functions completely determine the morphism, since the empti-
ness of the image of g− and g+ determine the classification of an empty interval
as∞−,∞+ or U.

Proposition There is a bijection between Graph(T ,S C) and Graph(C, I T ).

We prove this proposition in three steps.

Lemma Every f : Graph(T ,S C) defines a morphism g : Graph(C, I T ).

We define g0 = f †0 , g− = f †+ and g+ = f †−.

We prove that for any x : C, if g0(x) is non-empty, then it is an interval. Let t−

and t+ be the lower and upper bounds of the set g0(x). Since x ∈ f0(t+) then x is
not present in this set’s history, and consequently, in that of any previous time
step. Also, since x ∈ f0(t−) and the disappearance of x implies its appearance
of the history, it means that x is present in all time steps between t− and t+.
Therefore, g0(x) is an interval.

Then we define the function g : C → I T by:

• If g0(x) is non-empty, then g(x) = g0(x);
• Otherwise:

– If g−(x) is non-empty, then g(x) =∞+;
– If g+(x) is non-empty, then g(x) =∞−;
– Otherwise g(x) = U.

In order to prove that g is a morphism, we must prove that if x → x′ then
g(x)→ g(x′).

If g(x) and g(x′) are both empty, it is clear that they have the same category and
therefore are connected by the identity arrow.

If g(x) is empty and g(x′) not, then g(x) must be∞− and the smallest element of
g(x′) must be the smallest element of T , otherwise f would not be a morphism.
Therefore they are connected by the arrow coming from∞−.

If g(x) is non-empty and g(x′) is empty, we use the same reasoning as before,
with g(x′) being∞+. Therefore they are connected by the arrow targeting∞+.

If both are non-empty, let t+ be the last time step of g(x) and t− the last first
step of g(x′). Since f is a morphism and x ∈ f(t+), then c(x) ⊂ f(s(t+)) and
consequently s(t+) ∈ g(x′). Since g(x′) is an interval, s(t+) must be the smallest
element of the interval and g(x)→ g(x′). �

Lemma Every g : Graph(C, IT ) defines a f : Graph(T ,S C).

We define f0 = g†0 and f− = g†++ where
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g++(x) = {u : T | y ≥ g0(x)}

that is, the set of time steps following the disappearance of the cell.

We prove that for any t : T the set f0(t) is a slice. Let x and x′ be two cells in
f(t). Then g(x) and g(x′) have an nonempty intersection, since both contain t.
Since related cells always have nonintersecting life intervals, x and x′ cannot be
related. Therefore f(t) is a slice.

We prove that f−(t) is a valid history for f0(t). These sets do not intersect since
for all x : C the sets g0(x) and g+(x) do not intersect. The assertion that x ∈ f−(t)
and y ≤ x implies y ∈ f−(t) comes from the fact that if t ∈ g+(x) and s ≥ t
then s ∈ g+(x). The assertion that x ∈ f−(t) and x→ y implies y ∈ f−(t) ∪ f0(t)
comes from the fact that t ∈ g+(x) and s→ t then s ∈ g+(x) ∪ g0(x).

We define f(t) = (f0(t), f−(t)). In order to prove that f is a morphism, we must
prove that if t→ t′ then f(t)→ f(t′).

The fact that f−(t) ⊂ f−(t′) derives from the observation that for any x : C and
y ≤ x it is true that g+(x) ⊂ g+(t).

If both f(t) and f(t′) are empty, then all the conditions for the morphism are
trivial.

If f(t) is non-empty, let x be such that t ∈ g0(x). If t is the maximum g0(x), since
g is a morphism, we have that c(x) ⊂ g0(t′). If t is not the maximum of this
interval, then t′ is in this interval and x ∈ f(t).

If f(t′) is non-empty, let x be such that t′ ∈ g0(x′). If t′ is the minimum of g(x),
since g is a morphism, we have that c†(x) ⊂ f(t). If t′ is not the minimum of this
interval, then t is in this interval and x ∈ f(t′).

Therefore the transitions between slices are valid and f is a morphism. �

Lemma The transformations defined above are inverses.

This follows from the fact that † is an involution. �

Natural isomorphism of points of view

Proposition The contravariant functors Graph(FTime−,S−) and Graph(FLin−, I−)
are naturally isomorphic.

We hide the forgetful functors for simplicity. Let f : T → T ′ and g : C → C ′. We
must prove the commutation of the following diagram:
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Graph(T ′,SC ′)
IT ′C′

��

Graph(f,Sg)
// Graph(T ,SC)

IT C
��

Graph(C ′, IT ′)
Graph(g,If)

// Graph(C, IT )

The proof of bijection explores the expression of the transformations as involu-
tions using †. Using the same expression, the natural isomorphism is equivalent
to:

Graph(g, If) ◦ (†) = (†) ◦Graph(f,Sg)

Since this equation can be translated into the language of relations as:

(g, f)∗ ◦ (†) = (†) ◦ (f, g)∗

which is true, the diagram commutes and the functors are naturally isomorphic.
�
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2.2 Measurements

In this section we discuss the concept of a measurement. Intuitively, a measure-
ment is the attribution of a value to some object. For example, one can measure
velocity by the attribution of a vectorial value to all cells at all time steps. We
use this term for both measurements coming from experiences, like positions,
and statistics, which are functions applied over the experimental samples.

We define a measurement to be any function that has a defined domain and
codomain, with the domain being composed of cells and times. This descrip-
tion is vague since there is no obvious way of determining all the possible ways
of composing these concepts in a semantically compatible way. Therefore we
proceed by showing examples of measurements, domains and codomains that
are relevant to applications. As remarked before, the possibility of denoting
measurements as mathematical objects is the one of the things that take us
closer to physics.

This section depends on Section 1.3.

Points of view and domains

We can represent a temporal lineage using the relational representation

f : T × C → Ω

that defines a subset of T × C, whose elements are the (t, c) such that the cell c
is present in the data set at the time t. This subset is denoted

∑
t:T

Ct

where Ct = f(t). We can also use the symmetric representation

f † : C × T → Ω

that defines a subset of T × C, whose elements are the (c, t) such that t is a time
step where c is alive. This subset is denoted

∑
c:C

Tc

where Tc = f †(c). Since the transposition of relations is an isomorphism, we
have that:
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∑
t:T

Ct ∼=
∑
c:C

Tc

Temporal lineages are the fundamental domains from which other domains for
measurements are derived.

Relative and absolute times and slices

When we talk about T and C we are implicitly attributing an identifier to each
time and cell, which is their corresponding element in these sets. However in
the implementation of algorithms and in some applications, it is useful to have
identifiers that are local to a time step or cell and defined by integers. In that
way, the elements become indices in an array.

For any time T we can define another time called its relative time T ′, which is
composed by integers and has the following properties:

• T and T ′ are isomorphic;
• the smallest element of T ′ is 0.

That is, the relative time of the time interval Tc of a cell c is a measurement
of the time elapsed since the appearance of this cell in the data set. Also, the
measurement of time is done in time steps.

Similarly, for any slice Ct we can define another set, its relative slice C ′t represent-
ing the local identifiers for cells at the time step t. Since slices have no defined
order, we can define it directly as C ′t = [0, |Ct| − 1].

Using these representations, the isomorphisms of point of view becomes:

∑
t:T

C ′t ∼=
∑
c:C

T ′c

which is the isomorphism used in the computational implementation.

Typing measurements

In this section we give examples of the types to which certain measurements
belong, which corresponds to an attribution of a domain and a codomain. The
first example is the positions of cells in space. This can be represented by a
function whose domain is a temporal lineage and whose codomain is a vector
is R3, having the type:

∑
c:C

Tc → R3



2.2. MEASUREMENTS 57

which is isomorphic to:

∑
t:T

Ct → R3

and in applications:

∑
c:C

T ′c → R3

Domains can be structurally simple. For example the measure of the average
speed of each cell, or other global cell statistics, corresponds to:

C → R

The measure of the center of mass of the embryo at each time step, or other
global temporal statistics, corresponds to:

T → R3

In Chapter 5 we calculate dissimilarities between cells, which corresponds to:

C × C → R

The distance between cells at each time step corresponds to:

∑
t:T

Ct × Ct → R

Finally, if we align trajectories with relation to their relative time, their position
correspond to:

∑
t′:T ′

Ct′ → R

Manipulation of measurements

We give an example of manipulation of measurements using the basic oper-
ations on domains and codomains. This is useful both for the mathematical
formulation and for programming, since the steps below can be seen as type
signatures for functions.
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We assume the existence of some algorithm for the calculation of speed, which
for any time set T , has the type (T → R3) → (T → R). In order to obtain
velocities for all cells at all times in temporal view, from the position of all cells
at all times in temporal view we execute the following steps:

1. to start with position: ∑
t:T

Ct → R3

2. to apply the isomorphism between temporal view and cellular view:∑
c:C

Tc → R3

3. to apply dependent currying: ∏
c:C

(Tc → R3)

4. to use the lifted application of speed:∏
c:C

(Tc → R)

5. to apply dependent uncurrying:∑
c:C

Tc → R

6. to apply the isomorphism between cellular view and temporal view:∑
t:T

Ct → R
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2.3 Trajectories

In this section we describe an algebraic structure for cell trajectories. It is com-
posed of the operations of concatenation and intersection and is essential for the
devolopment of Chapter 5.

Defining cell trajectories

Let T be a time set and S a state set for measurements. We define a trajectory to
be a dependent pair (I, x), where I = [I−, I+] is an interval in T and x : I → S
is a function into the state space. We call the space of trajectories in time T and
state S by Tr(T , S).

Possibly undefined values

We define a possibly undefined value of type X to be an element of the set X =
X ∪ {U}where the undefined value U has been added. Any function f : X → Y
can be lifted to a function f : X → Y by

f(U) = U
f(x) = f(x)

It can be verified that this operation defines a functor Set → Set. We identify
semantically the set R with the extended reals, where U =∞.

An algebra for trajectories

Here we define the operations of intersection and concatenation of trajectories.
Since the operation of intersection in time does not always have a defined result,
we will have to formalize this notion and deal with these cases.

Let X = (I, x) and Y = (J, y) be trajectories. If I+ → J−, we can define the
trajectory concatenation ∨ by:

X ∨ Y = ([I−, J+], x ∨ y)

where

[x ∨ y](t) =

{
x(t) if t ∈ I
y(t) if t ∈ J
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This operation can be lifted to Tr(T, S), by making U a unity:

X∨Y =


Y if X = U
X if Y = U
X ∨ Y otherwise

We define moreover trajectory intersection ∧ : Tr(T, S) × Tr(T, S) → Tr(T, S2)
by:

X ∧ Y =

{
(I ∩ J, (x, y)|I∩J) if I ∩ J 6= ∅
U otherwise

This operation can be lifted to Tr(T, S) by defining U to be a zero

X∧Y =


U if X = U
U if Y = U
X ∧ Y otherwise

Using these definitions, it is not hard to prove the distributivity of intersection
over concatenation

Z∧(X∨Y ) = (Z∧X)∨(Z∧Y )

In the following chapters we hide the overline and write ∧ and ∨ for the lifted
operations.
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2.4 Discussion

This chapter offers a mathematical representation for the objects studied in this
thesis. In particular, we can represent the data, composed by spatio-temporal
lineages as a function:

f :
∑
t:T

Ct → R3

from which one can derive a variety of other measurement spaces.

The possibility of this representation makes our approach closer to physics. In-
deed, in the cellular point of view these positions are represented by:

f :
∑
c:C

Tc → R3

which can be seen as the equivalent of the fluid flow in the Lagrange approach:

f : R3 × T → R3

where f(x0, t) corresponds to the position of the fluid element x0 at time t. This
does not make the equivalence without difficulties, due to limited life span of
cells, which does not happen with fluid elements.

The fact that temporal lineages have a more complicated structure than the
spaces in fluid mechanics makes their manipulation more convoluted. While
one can manipulate these spaces intuitively, it is interesting to have formal
guarantees of their validity. The theorems proven in Section 2.1 ensures the
coherence of points of view with relation to some simple transformations, like
restriction of time intervals and lineages. However, as it will be seen in the ap-
plication chapters, these manipulations are not enough for the practice on the
domain. In the following we propose some next steps in order to improve this
situation.

Research directions

As commented previously, the structure given to time intervals and lineages is
significantly complicated by the fact that cells enter and exit the field of view.
However, we did not explicitly developed the theory of in-toto cell lineages. An
interesting development would to expose this simplified theory, as compared to
the case of partial lineages, and show how both categorical structures interact.
That is, what is the mathematical construct that represents the more convoluted
structure as due to a loss of information.
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The categorical interpretation given in this chapter is limited to restrictions of
time intervals to other time intervals. Another temporal transformation that is
practically significant is the change of sampling rates. Physically, it is relevant
due to its relation with the temporal scales of the visualized measurements.
The choice of a sampling rate that is small enough can imply the change of the
shape of lineages, making the connection of a mother only to two children not
true anymore. Therefore one would have to generalize the structure given here.

We can also explore this subject in an aesthetical way and remark the similarity
of the natural isomophism of points of view presented here with an adjunction.
Therefore, one can proceed to a generalization of both the space of times and
cells so that the natural isomorphism is an actual adjunction, while preserving
the semantic content on the structures we consider to be actual biological cell
lineages.

The mathematical framework presented here is not adequate for the manipula-
tion of multiple embryos. In order to be better adapted it would have to be able
to deal at least with different sampling velocities. Furthermore, the direct use of
temporal lineages as the means of comparison between different embryos is in-
appropriated, since it excludes all the material factors that make embryogenesis
be the phenomenon it is. Instead, it is more appropriate to compare embryos
through common sets of measurements. A naive way of doing it using a similar
framework to that used here would be by the definition of a 2-category whose
arrows are measurements and whose 2-arrows represent a difference between
measurements. In this context, the problem of best matching between the cells
of different embryos can be formulated as a Kan extension (Lehner, 2014).

Finally, we called a measurement any function whose domain is a combination
of cells and times. This definition is very vague and we question if this can be
formalized. This could be done by the establishment of a collection of primi-
tive manipulations, which starting from a temporal lineage, can generate all the
possible domains that are semantically valid. This thesis offers a large range of
domains that serve as a practical constraint for this exploration, and a series
of manipulations that produces valid domains, like isomorphism of points of
view, projections, liftings, products, etc, which serves as a good starting point.
The obtention of a description of this kind would allow the mathematical for-
malization of manipulations to be derived from the formalization of the set of
building blocks.



Chapter 3

Implementation and design

This chapter discusses the engineering aspects that involve the development of
lineageflow, a computational system for the manipulation of measurements,
with the goal of creating a collaboration ground for biologists, physicists, math-
ematicians and computer scientists. The implementation of such a system has
to cover many practical aspects like:

• development workflow;
• exploration of measurements;
• reuse of components;
• deployment of algorithms;
• usage by a non-programmer.

We give an overview of the approach used to deal with each of these problems
in the following. The organization of the sections of this chapter is based on the
decomposition of computation in pure and effectful components.

A computation is pure when it is fully described by its inputs and outputs. This
is the case of algorithms, which transform sets of measurements into other sets
of measurements. This aspect of the system is discussed in Section 3.1.

In opposition, a computation is effectful when it has an observable interaction
with its environment. This is the case of the interaction with a database of
measurements, plotting and others. This aspect of the system is discussed in
Section 3.2.

We give some special emphasis to the tools for visual and statistical exploration
of data. These are essential for the interaction between researchers in an inter-
disciplinary domain. These tools are discussed in Section 3.3.

All the sections are recommended for readers who aim to develop algorithms
within the system.

63
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Algorithm development and pure computation

A type system is a language used by the programmer to describe data and
functions. The process of type checking allows a real-time interaction of the
developer with the compiler, which makes it possible to catch errors before the
program is run. Most importantly, a type system gives a declarative interface
for functions, using its inputs and outputs.

One of the factors that distinguish the different type systems used in program-
ming languages is their expressivity. Languages range from untyped flavors
of ASM, going through C, Java, up to dependently typed languages like Coq
and Agda, whose type system is as expressive as the value level programming
language itself. The implementation of lineageflow is made in Haskell, a
functional language that offers a good ground between these two extremes. It
is not object-oriented, which makes it different from Java and Python, for ex-
ample. It is based on the Hindley-Milner (Milner, 1978) type system, being
able to express algebraic data types and higher order polymorphism, and hav-
ing the unique property of type inference, meaning that the compiler can infer
the type of any correctly formed expression. Furthermore, the language has
a good ecosystem and a foreign function interface (FFI) to interact with other
languages.

Using the type system we can encode aspects of the domain of study in a man-
ner that prevents errors. As an example, it is very reasonable to encode the
identifiers of both time and cells using integers. However, a function:

cellSpeed :: Int -> Double

accepts any integer as input, which can lead to involuntary errors, like the input
of a time identifier instead of a cell identifier. But a function:

cellSpeed :: Cell -> Double

will only accept values that have been defined to be cell identifiers, and the
compiler will prevent you to do it otherwise. In Section 3.1 we expose how the
primitive concepts and manipulations of the study of temporal lineages and
measurements have been encoded computationally, and the guarantees that are
given by this encoding.

Another practical aspect that must be considered in the development of a sys-
tem like this is code reuse and modularity. A recognized enemy of modularity
is global state (Raymond, 2003), since its use makes the use of functions context
dependent. Ideally, functions shoud be fully described by their inputs and out-
puts. While this can be done in any language, the use of a functional language
enforces this behavior.
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Database and effectful computation

The precise definition and encoding of our objects of study allows a great deal
of automation on recurrent tasks. In this case, it allowed the automation of the
database interaction and the generation of the user interface. This automation
comes from the declaration of algorithms in the format:

algorithm :: Parameters -> Input -> Output

and of programs, which are collections of related algorithms, in the format:

data Program =
Algorithm1 ProgramInput |
Algorithm2 ProgramInput |
Algorithm3 ProgramInput

where | represents an union in the type system. Besides of the positive aspect
of explicit declaration, it allows the programmer to take less decisions when
developing, and thus focus on the algorithm.

This interface is only possible due to the developments of Chapter 2, which
allow the classification of measurements by their domain and codomain. This
classification makes possible to give only appropriated inputs to algorithms,
and to use the produced outputs in the correct way.

The deployment of executables is also declarative, using Nix (Dolstra, Löh, &
Pierron, 2010). As soon as the necessary infrastucture has been provided for the
initial deployment, the cost of adding new executables is close to zero. Fast de-
ployment lowers the barrier for interaction between developers and biologists.

Finally, it is very common for the developer to explore measurements and statis-
tics in a dynamical way, adjusting calculations in real time, visualizing plots,
etc. While Haskell, like most compiled languages, is not perfect in this sense,
the knowledge of the domain allowed the development of a library that gives
an infrastructure offering an experience à la Matlab/Python using the REPL.
As a positive byproduct, environments of exploration are declarative, allowing
their sharing and reproduction.

The effectful infrastructure is explained in depth in Section 3.2.

User interface and exploration

Another product of the declarative nature of algorithms is an unified graph-
ical user interface. A graphical user interface facilitates the interaction with
algorithms, eliminating the need of programming knowledge, which gives au-
tonomy to specialists who only wish to apply methods and interpret the re-
sults. The fact that it is unified allows a one-time learning experience, with
the marginal cost of learning how to use a new algorithm much lower.
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The same is done for the exploration of measurements. The infrastructure for
3D+time visualization of measurements and statistical plotting are connected
to the graphical user interface, making their use easier. This is exposed further
in Section 3.3.
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3.1 Computational core

We present here the encoding of temporal lineages and measurements in Haskell,
together with its denotations. This section has a weak prerequisite in Section
1.3 and Section 2.2.

Notation

We present here some Haskell notations (Lipovaca, 2011), which are necessary
for the exposition of the computational terms. Lines preceded by a > represent
input commands in the REPL, and the following lines the output.

The type of a value is declared with (::). Function types are declared with ->.

> :type sin
sin :: Double -> Double

Function application is done with separation by whitespace:

> sin 0
0

Functions with multiple inputs are usually declared in curried form:

> :type plus
Int -> Int -> Int
> plus 1 2
3

Records or product types can be named or unnamed:

-- a record with two unnamed integers
-- the first ‘Pair‘ is the name of the type
-- while the second ‘Pair‘ is the name of the constructor
data Pair = Pair Int Int

-- a record with two named integers
data Pair = Pair

{ fst :: Int
, snd :: Int }

Records with only one element can be newtyped, which incurs no performance
penalties with relation to the base type:

-- NewInt is distinct from Int, but has the same runtime
-- representation
newtype NewInt = NewInt Int

Sum types are represented as:
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data Name =
Option1 Var1 |
Option2 Var2 Var3

In the same way that values have types, types have kinds. Basic types like Int
and Double have kind Type. Type constructors like Maybe:

data Maybe a =
Nothing |
Just a

which represents possibly undefined values, have kind Type -> Type.

Domain specific types

We present here the types and constructs that model temporal lineages, mea-
surements and their derived structures. It is important to remark that the en-
coding of this domain of study is limited to the scope of Haskell’s type system,
which is based on Hindley-Milner (Milner, 1978) and for this reason, comes
with similar limitations. The most fundamental one is that we cannot encode
arbitrary propositions in the type system. Under the equivalence of categories
and types (Taylor, 1999), this means that we cannot talk about subobjects in
this language. As an example, we can express "the set of cells", but not "the
set of cells that go through mitosis". That being said, we start presenting the
fundamental types.

The fundamental types are:

• newtype Time = Time Int, which represents an absolute identifier of
time;
• newtype Cell = Cell Int, which represents an absolute identifier of

a cell;
• newtype Dep a b = Dep b, which represents b in a manner that is

dependent of a. For example, the local identifier of a cell, at a given time
step, is represented by Dep Time Cell;
• S2 a, S3 a, S4 a, which represent simplexes (non-repeating lists) with

vertices of type a. For example, cell contacts at a given time step are rep-
resented by S2 (Dep Time Cell).

Synonyms for Scalar, Vector and Tensor are also defined:

• type Scalar = Double;
• type Vector = V3 Scalar, where data V3 a = V3 a a a;
• type Tensor = V3 Vector.

Using these fundamental types, we can define measurements. Measurements
are always presented in the form f a where f is a type constructor of kind
Type -> Type and a is a type of kind Type. The type a represents the set



3.1. COMPUTATIONAL CORE 69

where the values of the measurement are taken, or the codomain of the mea-
surement. The type f represents the object over which we are performing a
measurement, or the domain of the measurement.

As it can be seen, domains are not represented by their corresponding types.
Instead, they are represented in Yoneda form, where the type d is represented
by d ->, the type of functions whose domain is d.

For efficiency reasons, this representation is not done using the function con-
structor (->), but using indexed arrays Array :: Type -> (Type -> Type)
instead. This representation of measurements as arrays is possible since mea-
surements are functions over finite domains, whose values can be enumerated.
The values corresponding to the domain subset can be recovered using an iden-
tity map.

Therefore, for a given domain d and codomain a, the type Array d a, repre-
sents the set of measures with values in a over the domain d. As an example,
the measurement attributing to every cell its first time step in the data set would
have the type Array Cell Time.

Using this method, we can construct more complicated domains, namely do-
mains that have more than one component. For example, position is a mea-
surement that gives for every time step, for every cell, a vector. So we may be
tempted to say it has the type

Array Time (Array (Dep Time Cell) Vector)

While this is semantically correct, this does not follow the idea that the domain-
image decomposition is a measurement over the embryo. In this case, the do-
main is time and the image is a measurement over cells in that time step. We
solve this situation by the use of the combinator

Compose :: (Type -> Type) -> (Type -> Type) -> Type -> Type

which composes two type constructors into a single one. Here, this corresponds
to the construction of a domain from two others, giving the type:

Compose (Array Time) (Array (Dep Time Cell)) Vector

Since this pattern happens frequently, we define the synonym:

type DSumMap t c a = Compose (Array t) (Array (Dep t c)) a

which simplifies the type to DSumMap Time Cell Vector. The name means
"map from dependent sum". Using this synonym we can also talk about the
isomorphisms between the time-view and the cell-view:

tc :: DSumMap Time Cell (Cell, Dep Cell Time)
ct :: DSumMap Cell Time (Time, Dep Time Cell)

which can be used to transform measurements between the two points of view.
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Manipulation example

We give here an example of a typical manipulation of measures. Using a func-
tion speed :: Array (Dep Time Cell) Vector -> Array (Dep Time
Cell) Scalar, which calculates the velocity for a single cell, we will calculate
the velocity for every cell, in time-view, using positions in time-view.

The isomorphisms between the time and cell views correspond to elements tc
and ct as before. Isomorphism application is:

dSumMapTranspose ::
forall i j a.
DSumMap i j (j, Dep j i) -> DSumMap j i a -> DSumMap i j a

that means that global speed can be calculated as:

globalSpeed ::
DSumMap Time Cell Vector -> DSumMap Time Cell Scalar

globalSpeed =
dSumMapTranspose tc . -- conversion to time-view
Compose . -- uncurrying
fmap speed . -- lifted application
getCompose . -- currying
dSumMapTranpose ct -- conversion to cell-view

where . denotes the composition of functions, and which must be read from
bottom to top, like mathematical notation.

Denotations

Denotational semantics (Stoy, 1977) is a method of specifying the meaning of lan-
guages using a mathematical model as a reference. For every set of syntactic
constructs C we define:

• a mathematical model JCK of meanings
• a semantic function J·K : C → JCK

The idea has been created by Scott and Strachey (Scott & Strachey, 1971) to
model computer programs in aspects like termination and non-determinism.
We use this method as a guide for the implementation of the system, that is,
the computational implementation is directed by the desired semantics. In the
general case, there is no exact rule on how to execute this procedure, but a
good way of verifying that the denotation is coherent is through the equivalence
of properties (Elliott, 2009). This principle says that the "manipulation of the
meaning must follow the meaning of the manipulation", which is the criterium
used for the implementation. We list some of these denotations in the following,
which are implemented in the package lineageflow-core.
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Type level denotations

We start with type level denotations of the fundamental types. These denota-
tions take types and return sets. We use the notation exposed in Chapter 2 for
the exposition.

The basic building blocks are the set of time steps:

JTimeK = T

and the set of cells:

JCellK = C

The function Dep constructs relative times and cells:

JDep Cell TimeK = T ′c

JDep Time CellK = C ′t

and as such, pairs in which second element depends of the first one are mapped
to dependent sums:

J(a, Dep a b)K =
∑
a:JaK

JbKa

Measurements are defined by their domain and codomain. Indexed arrays rep-
resent functions:

JArray a bK = JaK→ JbK

so that, for example, a function that gives the first time step of each cell has the
type and meaning:

JArray Cell TimeK = C → T

Composed arrays denote maps over dependent sums:

JDSumMap i j aK =
∑
i:JiK

JjK′i → JaK

and as an example, the isomorphism between time-view and cell-view is given
by an element with type and meaning:
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JDSumMap Time Cell (Cell, Dep Cell Time)K =
∑
t:T

Ct →
∑
c:C

Tc

Finally, the Compose constructor corresponds to uncurrying:

JComposeK : JArray i (Array (Dep i j) a)K→ JDSumMap i j aK

:
∏
i:JiK

(JjK′i → JaK)→ (
∑
i:JiK

JjK′i → JaK)

Value level denotations

Now we proceed with the value level denotations. Following (Elliott, 2009),
these are done using Haskell’s type classes. These type classes have laws that
have to be followed, which are the properties that guide the implementation.

Since arrays are denoted by functions, the equivalent of Functor’s fmap:

fmap :: Functor f => (a -> b) -> f a -> f b

which applies a function to every element in the array, is composition:

Jfmap f mK = f ◦ JmK

The same cannot be done with the domain since we have no access to its exact
elements only from the type, as discussed before.

The function denotation implies the behavior of Apply’s zipA:

zipA :: Apply f => f a -> f b -> f (a,b)

as a product of measurements:

JzipA m1 m2K = Jm1K× Jm2K

Since arrays correspond to functions, indexing of arrays

(!) :: Array i a -> i -> a

corresponds to function evaluation:

Jm!iK = JmK(JiK)

but this must be done with attention, once more because of the subobject inde-
termination.
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Since arrays are functions, and functions can be composed through evaluation,
arrays can be composed with

comp :: Array a b -> Array b c -> Array a c
comp f g = fmap (\b -> g ! b) f

which gives

JcompK = ◦
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3.2 Effectful core

Here we expose the effectful core, which automatizes some aspects of the devel-
opment of algorithms, namely the database access and the user interface. This
automation achieved through a declarative interface for executables and algo-
rithms. By declaring algorithms and executables following a certain structure,
the details of implementation are taken care of.

Measurement definition

Inside the type system of the programming language, measurements are struc-
turally defined by their domain and codomain. While this is enough for the
development of algorithms, this is not enough to guarantee a database that has
good properties. For this goal, we define the criteria that define the classifi-
cation of measurements, with examples being given by the measurement that
attributes to each cell its mother, if it exists. They are:

• species, the scientific name of the animal. Ex. Danio rerio, the zebrafish;
• specimen, an identifier of the experiment that generated the data. Ex.

141108aF, using the BioEmergences identifiers;
• tracking, an identifier of the tracking algorithm used to generate the tem-

poral lineage. Ex. SimAnn;
• domain, the type of the domain over which the measurement is taken. Ex.

cell;
• domain name, the identifier of the subset of the domain which is used. Ex.

all;
• image or codomain, the set in which the measurements are taken. Ex. maybe

cell;
• name, the identifier of this measurement. Ex. mother.

This classification leads to a database scheme which defines the elements the
user has to provide as input to the algorithm. A property of this scheme is
that if two measurements share all elements, except the identifier, then they
correspond to measurements over the same "real" object, with values in the
same set. In particular, the arrays containing the measurement values have the
same lengths for both.

While the criteria of classification are defined, the way each entry is to be writ-
ten must be based on some convention. Domains and codomains are simple,
since they can be serialized directly from the programming language. However,
while there are conventions for the scientific names of species, this is not true
for the identifications of trackings, domain subsets or measurement names, or
even the scheme of identification of a specimen. Therefore, the exact contents
of the database scheme is something that must be decided by a community.

The access to the database is given by a measurement query, which consists of a
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JSON serialization of the classification of a measure. This uniformization of the
access to measurements is one of the ingredients for the automation of the user
interface.

Algorithm definition

Algorithms must be declared matching the pattern Parameter -> Input
-> Output. In this form, both inputs and outputs must be composed of mea-
surements, while parameters must be values that can be interpreted and fed to
the algorithm.

Each component of the parameters, inputs and ouputs have a cardinality. The
cardinality can be either Single, corresponding to a single value, or Many,
corresponding to a list of values.

The conditions for each component of the algorithm are:

• Parameters must be records of readable quantities, with a given cardinal-
ity.
• Inputs are records of measurements with a given cardinality, whose do-

main and image are readable.
• Output are records of measurements with a given cardinality, whose do-

main and image are writeable.

Both readable and writeable are properties that are defined internally, with rela-
tion to the database and this is checked at compile time.

An example of algorithm declaration is given here:

module Derivative

data Parameter = Parameter
{ parameter_size

:: Int -- type
:% Single -- cardinality
:? "Size of the filter to be used for derivation."

} deriving Generic

data Input = Input
{ input_measurement

:: DSumMap Cell Time Vector
:% Single
:? "Vectorial measurement to be derived."

} deriving Generic

data Output = Output
{ output_measurement

:: DSumMap Cell Time Vector
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:% Single
:? "Derived measurement."

} deriving Generic

algorithm :: Parameter -> Input -> Output
algorithm

(Parameter (S s))
(Input (S m)) =
(Output (S d))
where

d = deriveV (simpleForward s) d

Given this declaration, the system derives automatically the way to access the
database for each one of these components. This is done using GHC Generics
(Lämmel & Peyton Jones, 2003), which decompose the records into components
and processes each one of them separately.

The interface between the user and algorithms is mediated by algorithm queries.
These queries are JSON serializations of the algorithm declaration. Since the
access to measurements is standardized, and the interaction of an algorithm
with the database is done through measurements, this means that such queries
can be standardized. This is another ingredient for the automation of the user
interface.

Executable definition

Executables must be declared as collections of algorithms, from which the in-
terface of the program is automatically derived. The generated executable:

• generates a template of the algorithm query to be filled by the user;
• feeds the filled query to the algorithm, which is run.

The executable definition is merely a mechanical operation, since the building
blocks are already prepared. An example is given here:

import qualified Derivative1
import qualified Derivative2

data Program =
Derivative1 ProgramInput |
Derivative2 ProgramInput
deriving Generic

runner :: Program -> IO ()
runner = \case

Derivative1 input ->
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runProgramWith csvDatabase input Derivative1.algorithm
Derivative2 input ->

runProgramWith csvDatabase input Derivative2.algorithm

main :: IO ()
main =

genericMain
"lf-derivatives" -- name of the executable
"Description of the executable."
runner

This definition would result in an executable lf-derivatives with the algo-
rithms derivative-1 and derivative-2. Every algorithm has two command-
line options:

• gen generates an algorithm query adapted to the algorithm, that just
needs to be filled, manually or by the graphical user interface.
• run takes as inputs the database location and the algorithm query and

runs.

which interact with the two functions of the runner functions.

Unified graphical user interface

Given the aforementioned infrastructure, all that is needed is a friendly rep-
resentation of measurement and algorithm queries. This is done through the
graphical user interface, which is composed of two parts: a server and a client.

The server intermediates the relation between the user interface and the exe-
cutables by:

• transforming requests into executable commands;
• returning the generated query templates;
• running the executables and checking the running state of algorithms.

The client:

• sends the requests for specific algorithms;
• receives the query templates and renders them graphically;
• guarantees that inputs to algorithms are present in the database.

Since inputs can be fed to the algorithm using the current contents of the database,
the requests are less prone to errors than hand-written ones. All these function-
alities are implemented in the packages:

• lineageflow-database;
• lineageflow-database-meta;
• lineageflow-database-csv;
• lineageflow-server;
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• lineageflow-client.
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3.3 Measurement exploration

The effectful infrastructure offers a standard interface for the access to databases
and the execution of algorithms. We make use of this structure in order to
provide easier interfaces for the visual, statistical and numerical exploration of
measurements.

3D visualization

The time-view for temporal lineages corresponds directly to the way images
are generated by the microscope, as the evolution in time of a specimen. There-
fore, we may visualize directly measurements over temporal lineages through
the superposition of the value attributed to a cell to its position. Using this
method, we developed the package lineageflow-view, where we visualize
some types of measurements in 3D, namely:

• Scalars, which can be visualized using a color code;
• Vectors, which can be visualized using arrows, colored by the norm of the

vector norm using a color code;
• The symmetric part of tensors can be visualized as ellipsoids whose axes

are its eigenvectors. There are different ways to color this ellipsoid, but
the simplest one is using the norm of the tensor.
• The antisymmetric part of tensors can be visualized as vectors. For a given

tensor M , it is the vector m that satisfies for every vector v ∈ R3 the equa-
tionMv = m×v. This gives the plane over which rotations are performed.

The visualization of these measurements can lead to important information
about the correlation between the measurements and the morphology of the
animal.

We think it is particularly important to relate the visualization of these measure-
ments to the visualization of graphs. While this is a distinct way of interpreting
numerical measures, it is similar to the way a physicist interprets a graph by
evaluating its convexity, concavity and etc. That is, the absolute identification
of values is not as important as the identification of recognizable patterns. Since
these patterns have three dimensions, they are more variable and sophisticated
than one or two dimensional ones.

Integrated statistical plotting

Even if there are many different types of domains and codomain, structurally,
there are not many possibilities. Domains are either composed of simple sets
like time or cells or composed of a dependent sum using these types. As showed
in the previous section, these types of measurements are represented as arrays
or arrays of arrays. Therefore, we can take advantage of these similarities in
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order to offer a variety of statistics that only use this structure, with no need of
programming knowledge. All graphs in this thesis have been produced using
this infrastructure, which shows its versatility.

In general, measurements that correspond to evolutions in time can be repre-
sented as graphs or videos, and measurements that correspond to values on
cells are better represented as distributions. For example, for any scalar mea-
surement over a temporal lineage, we may plot:

• the graph of the time evolution of means and standard deviations of the
measures on the set of cells at each time step;
• the histogram of the global distribution of a measurement;
• the video (or frame sequence) showing the evolution of the histograms

corresponding to the local distribution of each time step.

All these features are implemented in the package lineageflow-plot.

Interactive REPL

Very often, algorithm developers want to experiment with different ways of
plotting and generating measurements, or with partial implementations of al-
gorithms, and this is an essential part of research. The possibility of this interac-
tive experience is one of the main reasons scientists use languages like Python
and MatLab, with this kind of interaction with programming being generaly
linked to dynamically typed and interpreted languages. While Haskell has a
REPL (read-eval-print loop), it is currently not as adapted to persistent environ-
ments as those of the mentioned languages. However, given the state of defi-
nition of this domain of study, exposed in the previous sessions, this has been
overcome. The technical details not being very interesting, we present here the
use of this infrastructure, implemented in the package lineageflow-play.

In order to use the interactive infrastructure, one has to create a folder, which
we will name project. Inside this folder, we must have a file where the de-
sired measures are fetched, named Vars.hs:

velocity5 <- getVector "velocity-5"
velocity10 <- getVector "velocity-10"

and another one where the function definitions are made, named Defs.hs:

import LineageFlow.Prelude
import LineageFlow.Playground

getVector :: Text -> IO (DSumMap Vector)
getVector name =

retrieveMeasure domain image $
MeasureQuery

"species"
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"specimen"
"tracking"
(domainName domain)
"all"
(imageName image)
name

plotNorm :: DSumMap Vector -> IO ()
plotNorm = showPlot . graph . meanWith norm
...

and then the REPL can be used in the same way as it is used for other languages,
with reloading and redefinition of variables being done with the command :lf
project.
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3.4 Discussion

In this chapter we approached the design of a framework for the manipulation
of spatio-temporal lineages with a separation of concerns in mind. We have
been able to separate to some degree the development of algorithms, the in-
teraction with the database and the exploration of measurements. Central to
this decomposition are the mathematical developments of Chapter 2, which
allowed the definition of formal interfaces between algorithms through the clas-
sification of measurements.

We can extend the interface metaphor to the different components of the sys-
tem, as their points of interaction serve as interfaces between fields of exper-
tise. One can make local improvements based on purely technical concerns and
have these improvements propagate through the whole system. This reasoning
is very similar to the one that is made in the software development community.
However, in this case we are dealing with the interaction of people, which is
intermediated only in part by a computational system. We will discover the
outcomes of this approach with practice, in the future.

We will discuss further the application of this paradigm to other domains in the
general conclusion, so we focus on local improvements in the following.

Research directions

The denotations defined in Section 3.1 give a guide for the implementation of
many manipulations. However, it would be interesting to have a set of deno-
tations that can be considered complete or at least very encompassing. That is,
that defines as much as possible the semantics of the possible manipulations on
measures. Since these denotations are defined mathematically, this is related to
the definition of a set of primite manipulations on domains, proposed in Sec-
tion 2.4.

As discussed previously, there are limitations to the encoding of domain sub-
sets. However, these limitations do not mean that one has to abdicate com-
pletely to their identification. A possibility is to recur, for example, to explicit
type tags, as it is done in the database for the classification of measurements.
The improvement of this identification can be especially important when one
will start to compare measurements over multiple embryos.

The database scheme as defined here has a certain degree of arbitrarity. It has
been created in this form in order to adapt well to the degree of granularity of
the analysis present in the laboratory, but it is not the only possible one. A more
thorough analysis of the possible schemes and their advantages would be posi-
tive for the future development of the system, and is related to the extension of
this methodology to other domains, as proposed in Chapter 8.
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Finally, the visualization infrastructure can have many improvements. A lim-
itation that is evident in this thesis (Section 6.3) is the representation of ten-
sors in 3D, defined by the way we color ellipsoids. The development of a
technique that allows the representation of the signals and intensities of the
different eigenvalues of the tensor would vastly improve the interpretation of
images. In particular, that would make easier the visual distinction between
compression and decompression from stress tensors.
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Chapter 4

Reference manipulations

In this chapter we discuss two operations that arise often in the application
chapters, homogenization and differentiation. This chapter has no original content,
but it has two main purposes:

• to serve as a reference for the following chapters;
• to provide concrete examples of the mathematical structures and types

developed in the previous chapters.

Also, it discusses some of the problems that arise on the manipulation of struc-
tures that are fundamentally discrete. It is recommended for readers interested
on the mathematical formulation of the following chapters.

The first section is devoted to homogenization. While homogenization is not
very common in continuum physics, it is essential for the manipulation of dis-
crete structures. This is due to the fact that it allows the control of the spatial
and temporal scales of measurements. As a consequence, we can control the
spatial and temporal resolution of 3D visualizations. Since the interaction of
homogenization with non-linear combinations of measurements is non-trivial,
visual criteria are used for the decision on how and how much to homogenize.
The presentation will focus on the homogenization of the quantities appearing
in the application chapters.

The second section is devoted to differentiation. The study of physical measure-
ments like velocities and accelerations make the evaluation of rates of change
a necessity. The difficulty we face is that the definition of a derivative is not
unique in the discrete case, and each option has different advantages and draw-
backs. We will present some of these methods of differentiation and their prop-
erties.

Before starting, we discuss convolution, since both differentiation and homoge-
nization in time are defined using it.

85
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Convolution

Let x : N → R be a discrete function, n an integer and f : [−n, n] → R a filter.
The convolution f ∗ x : N→ R between them is defined by:

[f ∗ x](t) =
n∑

k=−n

f(k)x(t− k)

From this definition one can see the difficulty of the definition of the operation
in the case where x is defined in a finite interval, since x(t − k) is not always
defined. There are two main techniques to overcome this problem:

• We define time to be cyclic, which eliminates the boundaries. This is in-
appropriate to this application since the behavior of cells is variable in
time.
• We restrict the domain of the convolution only to the points where the for-

mula is well defined, ignoring the boudaries. This is inappropriate to this
application since the domain of measurements must remain unchanged
in order to correspond to the same object.

Our solution is to define the value of the convolution to be an undefined value
at the boundary points. This definition preserves the time interval of the mea-
surement at the cost of changing its codomain. We formalize this definition.
Let:

• T = [t−, t+] be a discrete time interval;
• S be a semiring with operations + and × and S its extension with an

undefined value;

For all times t ∈ T we define tn to be the element that is the n-th successor (or
antecessor, for negative n) of t. Given an integer n, a filter f : [−n, n] → S, and
a function T → S we define the convolution f ∗ x : T → S to be:

[f ∗ x](t) =

{∑n
k=−n f(k)x(tk) for t ∈ [t−n , t

+
−n]

U otherwise

In order to be able to apply convolutions to the obtained result, we must give a
semiring structure to S. This can be done with:

U + a = a+ U = U
U× a = a× U = U

The application of multiple convolutions can lead to the proliferation of un-
defined elements to the codomain. This problem can be solved using flatten-



87

ing. Let U and U′ be the added elements in S and S. We can define a function
µ : S → S by:

µ(U′) = U
µ(x) = x

This allows the convolutions to be applied without leaving the first layer of
undefined values.

The implementation of this method can incur into efficiency problems if done
without care. For this reason, we define Double = Double, with U being an
IEEE NaN, which stands for "not a number". It is not difficult to show that this
choice obeys both the semiring structure and the flattening of undefined values.

Since Double is the representation R, for any filter f of any size, we will con-
sider that the operation x→ f ∗ x has the type (T → R)→ (T → R).
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4.1 Homogenization

Intuitively, homogenization is a process that reduces the differences between
objects, following a given criterion. As commented before, the function of ho-
mogenization in this thesis is to control the scale of measures, which is evalu-
ated through the visualization of measurements in 3D+time. This same goal
has been studied in the context of 2D graphs in domains like signal processing
(Antoniou, 2000) and analytical chemistry (Savitzky & Golay, 1964).

In this section we cover the methods of homogenization used in this thesis,
namely:

• temporal homogenization of scalar, vectors and tensors;
• spatial homogenization of scalar, vectors and tensors;
• temporal homogenization of cell contacts.

Since the homogenization of vectors and tensors is done coordinate by coordi-
nate, we focus on the homogenization of scalars.

Temporal homogenization

In the temporal setting, the homogenization of scalars is done by a convolution
with a filter f : [−n, n]→ R such that:

• it is symmetric: f(−k) = f(k);
• its total sum is one:

∑n
k=−n f(n) = 1.

The naive homogenization is given by the flat filter fn : [−n, n] → R which for
every k ∈ [−n, n] is given by:

fn(k) =
1

2n+ 1

More interesting results are found by the study of continuous functions that
have been contaminated by noise. Let x̂ = x + ε be a function defined on
integers, where ε is a noise with no time correlation and unit variance, and
f : [−n, n]→ R a convolution filter. Then one can show that:

Var(f ∗ x̂) =
n∑

k=−n

f 2
k

The minimization of this variance, bound by the moment conditions up to order
p:

n∑
k=−n

klfk =

{
l = 0 ⇒ 1

l = 1, 2, ..., p ⇒ 0
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defines the Savitzky-Golay filters (Savitzky & Golay, 1964). A suitable choice of
the parameters n and p allows analytical solutions to be found.

Spatial homogenization

The most common way of homogenizing values defined in a set of points in
space is through spatial convolution (Goldhirsch & Goldenberg, 2002). There
are two types of homogenization, normalized and non-normalized.

Let φ : R3 → R be a non-negative function whose integral is equal to 1, and
f a real function defined in a set of points {xn}Nn=0 in R3. The non-normalized
homogenization of f using φ is defined by:

φ(f)(x) =
N∑
n=0

f(xn)φ(x− xn)

Since it conserves the total sum of the function, it is adapted to measurements
like mass, whose total sum has to be kept constant.

The normalized homogenization of f using φ is defined by:

φ̃(f)(x) =

∑N
n=0 f(xn)φ(x− xn)∑N

n=0 φ(x− xn)

Since it preserves constant functions, it is well adapted to measurements like
velocity.

Typically, the function φ is a Gaussian function, whose variance controls the
width of the homogenization.

Simplicial homogenization

Suppose we have a set of cell contacts, subset of
∑

t:T Ct × Ct, which changes
often in time and we want to obtain contacts that are less variable. This is
an inherently discrete problem, but we can get a continuous equivalent that is
easier to deal with.

The first step is to transform the set of contacts into its characteristic function:

c :
∑
t:T

[(Ct × Ct)→ R]

where ct(x, y) equals 1 if the cells x and y are in contact in time t, and 0 other-
wise. Since every Ct is a subset of C, we can extend each of these functions with
zeroes to C × C:
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ĉ :
∑
t:T

[(C × C)→ R]

This set is isomorphic to C ×C → (T → R), which we can interpret as functions
in time for every pair of cells. Now we can use any method of scalar homoge-
nization for each of these function, giving a family of functions c̃ of same type.

The final result is obtained by restricting at each time step the function to the
present cells. For each time step t, we denote the restriction of the function
c̃t : C × C → R to the domain Ct × Ct by ct. The final result is given by the lifted
application:

∑
t:T

ct :
∑
t:T

[(Ct × Ct)→ R]

This result can be manipulated directly, as a weighted contact matrix for each
time step, or other methods can be used for the extraction of contacts.

Module interface

In the package lineageflow-homogenization there is a type Homogenizer,
defined as:

newtype Homogenizer =
Homogenizer (Array i Scalar -> Array i Scalar)

that can be applied using:

homogenizeS :: Homogenizer -> Array i Scalar -> Array i Scalar
homogenizeV :: Homogenizer -> Array i Vector -> Array i Vector
homogenizeT :: Homogenizer -> Array i Tensor -> Array i Tensor

Each method presented above is implemented using this interface in the mod-
ules LineageFlow.Homogenization.Time and LineageFlow.Homogenization.Space.
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4.2 Differentiation

The concept of differentiation is used widely in physics for the calculation of
rates of change. Its continuous definition is given by:

f ′(x) = lim
x′→x

f(x′)− f(x)

x′ − x

However, its direct discrete translation:

∆f(n) =
f(n+ ∆n)− f(n)

∆n

does not have good properties for general use.

All the methods used here consist of a convolution with a filter which is called a
differentiator. In the following we present different differentors and their prop-
erties.

Since the differentiation of vectors and tensors is done coordinate by coordi-
nate, we focus on the differentiation of scalars.

Naive differentiators

The forward differentiator of size n is given by:

f(k) =


k = 0 ⇒ −1/n

k = n ⇒ 1/n

otherwise ⇒ 0

giving:

[f ∗ x](k) =
x(k + n)− x(k)

n

As commented before, this is not a good choice in general, as it is greatly ampli-
fies noise. However, when noise is the quantity to be studied, like in Chapter
7, it is well adapted.

Lanczos differentiators

Lanczos differentiators follows from an integral definition of derivation in the
continuous case:
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f ′(x) = lim
h→0

3

2h3

∫ h

−h
yf(x+ y)dy

They are optimal in the case where the sampling corresponds to a smooth func-
tion that has been disturbed by uncorrelated noise (McDevitt, 2012). For this
reason, they are closely related to the Savitzky-Golay filters presented in the
previous section (Savitzky & Golay, 1964). Their derivation is done in a similar
way.

Let x̂ = x + ε be a function defined on integers, where ε is a noise with no time
correlation and unit variance, and f : [−n, n] → R a convolution filter. Then
one can show that:

Var(f ∗ x̂) =
n∑

k=−n

f 2
k

The minimization of this variance, bound by the moment conditions up to order
p, which are:

n∑
k=−n

klfk =

{
l = 1 ⇒ 1

l = 0, 2, ..., p ⇒ 0

defines the Lanczos differentiators. A suitable choice of the parameters n and p
allows analytical solutions to be found.

Holoborodko differentiators

Holoborodko differentors aim to approximate low-pass filters in using filters
of finite size (Holoborodko, 2008). This approximation is done by the study
of the power spectrum of the filter, which is chosen in order to reproduce the
derivative at low frequencies, with decaying power at higher frequencies. For
this reason, these filters are adapted to cases where one wants to suppress high
frequencies or where one knows that a certain range of frequencies is infected.

Let f : [−n, n] → R be an antisymmetric convolution filter. Its frequency re-
sponse in the Fourier spectrum is:

f̃(ω) = 2i
n∑
k=1

f(k) sin(kω)

Since the frequency response of the regular derivative, whose corresponding
filter is called d, is d̃ = iω, we define the tangency system of order i and j:
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{
∂k f̃
∂kω

(0) = ∂kd̃
∂kω

(0) for k = 0, ..., i
∂k f̃
∂kω

(π) = 0 for k = 0, ..., j

A suitable choice of the parameters n, i and j allows analytical solutions to be
found.

Module interface

In the package lineageflow-derivatives there is a type Deriver, defined
as:

newtype Deriver =
Deriver (Array i Scalar -> Array i Scalar)

that can be applied using:

deriveS :: Deriver -> Array i Scalar -> Array i Scalar
deriveV :: Deriver -> Array i Vector -> Array i Vector
deriveT :: Deriver -> Array i Tensor -> Array i Tensor

Each differentiator presented above is implemented using this interface in the
modules LineageFlow.Derivatives.Naive, LineageFlow.Derivatives.Lanczos
and LineageFlow.Derivatives.Holoborodko.
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Chapter 5

Clustering cell trajectories

One of the great transversal subjects in complex system science is multi-scale
dynamics, the study of the relation between the dynamics of microscopic and
macroscopic observables. Many approaches to this subject exist, differing both
in formalism and application, ranging from thermodynamics (Callen, 1960) and
statistical mechanics (Grabert, 1982), to dynamical systems theory (Jacobi, 2009)
and to automata and multi-agent systems (Doolen, 1991).

A requisite for this kind of study is being able to describe the objects that com-
pose the different scales. This may be a problem, for example, in the social
sciences, where the identification and recognition of differents groups of peo-
ple can be very difficult. In embryogenesis however, there is a large amount
of work dealing with both scales that are studied in this thesis (Alberts et al.,
2002). Microscopically there are cells and their observed dynamics and macro-
scopically, morphogenetic fields and tissues, which are composed by groups of
cells. However, we have no automatic way of identifying such fields.

In general, the description of morphogenetic fields and tissues in the biologi-
cal literature is verbal, visual and schematic, often taking the form of an atlas
or fate map, which is a mapping of territories over the embryo. An example
of such representation is given in Fig. 5.1. However, in this thesis we are in-
terested in numerical measurements taken over the embryo and their relation
to the morphology of the animal. The goal of this chapter is to build a bridge
between the two languages, through the transformation of numerical measure-
ments into groups of cells that share similarities. Besides offering insights on
the formation of tissues, this transformation can offer a middle ground for the
collaboration between biologists and physicists, making the interpretation of
some measurements easier.

Before introducing the algorithm, we discuss the implications of such a trans-
formation. Morphogenetic fields can be seen as groups of cells that behave
similarly. Therefore, the interpretation of the generated cells groups as morpho-
genetic fields implies the interpretation of the set of measurements provided to
the algorithm as a quantification of the behavior of cells. This leads to two com-
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Figure 5.1: Example of a fate map of the ascidian (Makabe & Nishida, 2012).
In this image we can see the distinctive aspects of the representation of tissues.
The regions are represented graphically, in superposition to the animal mor-
phology and referred to by name. We aim to translate numerical measurements
into a similar representation.
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plementary views on the transformation.

On one hand, the algorithm can be applied to any set of measurements. There-
fore, the mechanical transformation of these into homogeneous groups of cells
can be seen as an induced emergence of macroscopic observables. In this case, the
induced observables can be interpreted as artificial morphogenetic fields, which
take into account only the chosen measurements.

On the other hand, we expect that a diligent choice of a number of descriptive
measurements can be used to represent the behavior of cells to a good degree of
accuracy. We expect this ideal set of measurements to be transformed into the
actual morphogenetic fields of the animal. This judgement provides a search
strategy for the best choice of descriptive measurements, whose correspond-
ing artificial morphogenetic fields match as well as possible the morphological
ones. Given the different morphologies of animals, the best set of measure-
ments is bound to be highly dependent on the species and the period of the
embryogenesis being studied.

We proceed now to the criteria used for the determination of morphogenetic
fields. Independently of species or moment in time, the substract of embryoge-
nesis is the same: cells interacting in space. Given this fact, we have a number
of expectations on the groups that are to be found.

• Spatial contiguity. As the fate maps show, morphogenetic fields are con-
nected in space. This connectivity is explained by the necessity of com-
munication and coherence on the morphogenetic fields for the execution
of morphological functions.

• Temporal persistence. The formation of compartments is a progressive phe-
nomenon and these compartments do not disappear. We expect the exis-
tence of similarities between cell behaviors at early stages and their con-
solidation while the groups are formed.

• Permanence of the lineage into the group. Given the strong role of genetic
expression on the behavior of cells, we expect cells to remain inside a
given morphogenetic field, and cell interchange between them to be an
exception. Furthermore, since there is a persistence of expression even
after mitosis, the same is expected from the children of cells in a given
group.

Our goal is to find a method to transform a set of measures into groups that
obey more or less closely these properties. The strategy used here is to define
a dissimilarity between cells through the comparison of measurements at each
time step. The use of comparisons that are local in time only is justified by the
fact that the global dynamics of the embryo changes very strongly during the
development of the animal. The method used for the composition of this dis-
similarity is inspired from path integrals in quantum mechanics and stochastic
processes (Feynman, 1965).
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Figure 5.2: Scheme describing the algorithm steps. Boxes are classified as
structural, numeric, or efficiency. Structural elements are the ones related only
to temporal lineages. Numeric elements are measurements taken over the tem-
poral lineage. Efficiency elements are optional steps that can be used in order
to reduce the computational cost of the algorithm.

Description

The algorithm can be decomposed into the following steps, represented in Fig. 5.2:

1. To select the measures to be used for clustering. In this chapter we chose
cell positions coming from the cell identification and velocities calculated
using the methods described in Chapter 4. This choice is justified by the
contiguity requirement for morphogenetic fields and the coherent move-
ment of cells towards the same region.

2. To calculate genealogic dissimilarities between cell trajectories, as described
in the following sections;

3. Optionally, to calculate these dissimilarities only between a set of neigh-
bors. This step reduces the computational complexity of the task and is
crucial for the application of the algorithm to full zebrafish data sets;

4. To use these dissimilarities as an input for a clustering algorithm.

We now proceed to the description of these steps.
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Figure 5.3: Example of dissimilarity calculation. The lines represent the evo-
lution in time of the value of a measurement for two cells (blue and red). The
dissimilarity is calculated as the average dissimilarity between the two values
in the time period where both cells are present (grey region between dotted
lines).

Genealogic dissimilarity

A dissimilarity is a function that takes two similar inputs and gives a non-negative
value as output. Some examples of dissimilarities between cells at a given time
step are:

• their distance;
• the absolute value of their velocity difference;
• the absolute value of the difference of intensities of some marker.

In general, the absolute value of the difference of the values of any measure-
ment is a dissimilarity. This means that any numerical measurement offers a
criterion of comparison between cells.

As mentioned before, the comparison between cells is done only at fixed mo-
ments in time. In order to build a global dissimilarity between cells, we must
combine the dissimilarities calculated at each time step into a single value. This
is done using the average value of the dissimilarities calculated in the time steps
where both cells are present. If there is no moment in time where both cells are
present, this value is left undetermined. In Fig. 5.3 we see an example of this
process.

This method has a clear shortcoming: we cannot compare mothers to children,
since the appearance of one implies the disappearance of the other. In order to



100 CHAPTER 5. CLUSTERING CELL TRAJECTORIES

Figure 5.4: Example of genealogic trajectory. In the upper part of the image we
see the trajectory of a cell (bold line) and the trajectory of its children (dashed
lines). There is 50% of chance for the trajectory of the mother to be extended by
that of either of its children, resulting in the two trajectories (bold lines) in the
lower part of the image.

overcome this problem, we introduce the concept of a genealogic trajectory. The
genealogic trajectory of a cell is given by its own trajectory, extended by the
trajectory of its children, which in turn are extended by their children and so
on. This extension is done in a probabilistic manner. If the cell divides, there is
a 50% of chance for its trajectory to be extended by one of its children. If the cell
has no children, the genealogic trajectory is just the regular one. This process is
exemplified in Fig. 5.4.

This construction may remind physicists of branching processes (Grimmett &
Stirzaker, 2001). However, the construction of genealogic trajectories is more
related to a decision tree, as it consists on the choice of branches on a preexisting
structure, while branching processes study the creation of these structures.

We proceed to the calculation of the dissimilarities between these genealogic
trajectories. Since they have been extended, we can now compare mothers and
children. However, since these trajectories are random varibles, the dissimi-
larities themselves are random variables. In order to transform these variables
into numbers, we take the average value of each dissimilarity given the possi-
ble trajectory choices. The resulting value is called the genealogic dissimilarity,
which is the value that will be used for clustering. In particular, the genealogic
dissimilarity between a mother and one of its children is half the dissimilarity
between its children.
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In order to use multiple measurements for the clustering, we should mix the
multiple dissimilarity calculations into a single one. This is done using a weighted
mean, which gives a number of mixing parameters that have to be provided by
an user.

Efficiency

The computation time and memory space needed for the calculation of these
dissimilarities are very high. In order to lower the requirements, we can retrict
the calculation only to neighboring cells. We say that two cells are neighbors for
a given measurement if their respective values are neighbors in the image of
the measurement, at some moment in time. This definition assures the choice
of pairs of trajectories that have the greater probability of belonging to the same
group.

Clustering

For the clustering of trajectories, we may use any algorithm that accepts as in-
put a matrix of dissimilarities. Our method of choice the spectral clustering algo-
rithm exposed in (Ng, Jordan, & Weiss, 2001). It is adapted to this application
since it can be calculated using sparse dissimilarity matrices in a very efficient
way (Luxburg, 2007). This efficiency is essential since it allows the experimen-
tation of different mixing parameters. Besides the matrix of dissimilarities, a
desired number of clusters must be provided as input.
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5.1 Formulation

We present here the mathematical formulation of genealogic trajectories and
dissimilarities. The definitions are based on the algebraic definition of intersec-
tion and concatenation presented in Section 2.3.

Genealogic Trajectories

A genealogic trajectory is a cell trajectory that has been extended probabilistically
by the trajectories of its children. For every cell division, one of the children is
chosen at random and its trajectory is concatenated with that of its mother. This
process is repeated for each children.

The formal definition is recursive. For any trajectory X we define iX to be
an equiprobable zero-one random variable. The genealogical trajectory X̃ is
a trajectory-valued random variable such that

• If X has no siblings, X̃ = X ;

• If X has siblings Y0 and Y1 then X̃ = X ∨ ỸiX .

We impose the condition that for two different cells X and Y , iX is independent
of iY . This allows the calculation of joint probabilities using multiple cells.

Genealogic Dissimilarity

In the following, C is the set of cells and T the set of time steps. For any set X ,
we represent an undetermined value of type X by X = X ∪ {U}.

A dissimilarity in C is a symmetric non-negative function d : C × C → R. Given

• two trajectories X and Y with values in a set S, whose intersection is
X ∧ Y = (K, z);
• a dissimilarity d in S;

we define the partial dissimilarity Pd between two trajectories as

Pd(X, Y ) =

(
|K|,

∫
K

[d ◦ z](t) dt

)

The set R2 has a natural monoidal structure given by the sum of coordinates
represented by ⊕. By giving the following monoidal structure to R2
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a⊕ b =


b if a = U
a if b = U
a⊕ b otherwise

we can prove that Pd satisfies the following

Pd(X ∨ Y ) = Pd(X)⊕ Pd(Y )

We define the trajectory dissimilarity Dd : Tr(T, S)× Tr(T, S)→ R as

Dd(X, Y ) = divPd(X ∧ Y )

where div (m, s) = s/m, considering 0/0 = U.

The genealogical dissimilarity between two trajectories is defined as

D̃d(X, Y ) = E[Dd(X̃, Ỹ )]

where E denotes expectation.

Finally, we define the similarity Sd,σ : Tr(T, S)× Tr(T, S)→ R as

Sd,σ(X, Y ) = exp

[
−D̃d(X, Y )2

2σ2

]

where σ is a scale factor. This is the measurement that is used as input to the
clustering algorithm.

Properties

The distributive law for ∨ and ∧ gives a way to decompose genealogical dis-
similarities into regular dissimilarities. Genealogical dissimilarities can be cal-
culated from the matrix of pairwise partial dissimilarities:

Pd(Z ∧ (X ∨ Y )) = Pd(Z ∧X)⊕ Pd(Z ∧ Y ) (5.1)

Let us consider a simple lineage with a cell M , two daughters C1 and C2 and a
cell N with no daughter. If M and N do not coexist at any moment in time, Eq
(5.1) states that

D̃d(M,N) =
D̃d(C1, N) + D̃d(C2, N)

2
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In particular

D̃d(M,C1) =
D̃d(C1, C2)

2
= D̃d(M,C2)

This equation shows that the mother is equidistant to its daughters and that if
both daughters stay close to each other, their mother stays close to both of them,
leading to a degree of coherence between their clustering allocations.

Another important property is given by the application of Eq. 5.1 and the addi-
tion of a point in time for Z. This can be written as

Pd(X ∧ (Z ∨ Z ′)) = Pd(X ∧ Z)⊕ Pd(X ∧ Z ′)

This is an important property that allows the incremental calculation of partial
dissimilarities from past partial dissimilarities and new data points.

Derived dissimilarities

A derived dissimilarity allows one to use a measurement as the criterion for the
measure of dissimilarity between cells. From any measurement m :

∑
t:T Ct →

M where M is a metric space with a distance d, we can derive a family of dis-
similarities dm :

∑
t:T Ct × Ct → R given by:

dm(t, c1, c2) = d(m(t, c1),m(t, c2))

Since there is no guarantee that dm(c1, c2) = 0 implies that c1 ≡Ct c2, then we
cannot say this is a metric. The triangular inequality is preserved, but it is lost
in the genealogic dissimilarity.

This is the procedure we use for the generation of dissimilarities. In this context,
we can speak about the clusters generated by a set of measurements, leaving the
dissimilarities implicit.



5.2. IMPLEMENTATION 105

5.2 Implementation

Generation of genealogic trajectories

As explained before, the genealogic trajectory of a cell is a trajectory-valued ran-
dom variable and the dissimilarity is calculated as an expectation over pairs of
these variables. Since we calculate this expectation explicitly, we must generate
the full set of pairs of trajectories.

The fact that the probabilities of branching between divisions are independent
allows the calculation of this expectation. However, much care must be taken
when comparing two genealogic trajectories. Notably, if two cells are in the
same lineage, their trajectories must coincide from some point in time.

The simplest example of this situation is given by a single cell M that divides
into C1 and C2. The dissimilarity D̃(M,M) is given by:

D(M ∨ C1,M ∨ C1) +D(M ∨ C2,M ∨ C2)

2

that is, there are no mixed terms involving both C1 and C2.

Since the algorithm for the generation of this set is not so simple, we describe
its general lines below in Haskell-like pseudocode. We encode a lineage recur-
sively as:

data Lineage =
Last Cell |
Divided Cell Depth Lineage Lineage

that is, a lineage may be composed of just a cell (identified by its ID number),
or a cell that divides, identified by its ID number, the depth of its tree and the
lineage of its children. The depth of the tree is zero at the end of the lineage,
and grows for every antecessor. We suppose that we already transformed each
cell into its this representation.

We aim to obtain a function that returns a set of pairs of trajectories from a pair
of lineages, named pairs. A trajectory is just a sequence of cells. In order to
define this function, we have to study three cases.

Both cells do not divide

The only possible pair of trajectories is the pair of cells themselves.

pairs (Last id1) (Last id2) = {([id1],[id2])}

Only one of the cells divides

In this case we are sure that the cells are different, and we can recurse on both
branches of the cell that divides.
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pairs (Last id1) (Divided id2 _ lineage_left lineage_right) =
add id2 to the right of pairs in

pairs (Last id1) lineage_left ++
pairs (Last id1) lineage_right

Both cells divide

In this case we use the depth of the lineage. If the lineages have the same depth,
we compare their id. If the id’s are different, we continue as if the cells had
different depth. If the id’s are equal, we recurse over each side separately:

pairs (Divided id _ lineage_left lineage_right)
(Divided id _ lineage_left lineage_right) =

add id to both sides of pairs in
pairs lineage_left lineage_left +
pairs lineage_right lineage_right

If they have different depths, we recurse over the branches of the deepest one:

pairs lineage_short
(Divided id_long _ lineage_long_left lineage_long_right) =

add id_long to the right set in
pairs lineage_short lineage_long_left +
pairs lineage_short lineage_long_right

Clustering and mixing measures

The clustering algorithm uses a single similarity as input (Luxburg, 2007). In
order to be able to use this technique for multiple measures we need to be able
to mix different similarities into one.

For every measure m we have a dissimilarity dm and consequently a genealogic
dissimilarity and a similarity between cells Sm : C × C → R. We give a weight
wm to every measure and by defining the standard deviation of the entries of
the genealogic similarity matrix by σm we define the mixed similarity by:

Sw(c1, c2) =

∑
mwm

Sm(c1,c2)
σm∑

mwm

This allows to mix different similarities in a more natural way, giving them
weights that are independent on the unit we use to measure the different values.
That is, if we use two measures and give them the same weight, we expect the
global similarity to be composed in equal proportions of each similarity.
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Neighborhood and sparsity

The calculation of the matrix of dissimilarities has size and running time of
orderO(C2) in the number of cells. While this is possible to calculate for subsets
of the embryo, it becomes prohibitive for the full data sets.

In order to decrease the total running time and needed memory for the algo-
rithm, we only calculate dissimilarity between neighbors. We say that two cells
are neighbors if at some moment in time they are neighbors for the local Delau-
nay tesselation in the image of the measurement. This guarantees the proximity
of cells that are going to be used for clustering. Since the number of neighbors
of a cell does not change when expanding the spatial volume of a data set, the
complexity grows more slowly.
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5.3 Results

For the exposition of the method, we will use the following data sets, shown in
Table 1, composed of three wild types and two oep mutants.

Table 5.1: Data sets used for the analysis. Three wild-
types (WT) and two oeptz57/tz57 (cyclopic) mutants have
been studied. The voxel and timestep size entries cor-
respond to the parameters used by the microscope. The
starting and ending time of each data set has been cho-
sen in order to obtain similar development phases at
the same time step.

ID Genotype Voxel size (µm) Time step size Start End

071226a WT 1.37 2min33sec 7h31 13h03
140523aF WT 1.26 2min28sec 7h52 13h13
141108aF WT 1.38 2min26sec 6h54 12h10
081018a oeptz57/tz57 1.31 2min31sec 8h15 13h42

120914aF oeptz57/tz57 1.51 2min31sec 6h45 12h12

In all applications of the method, we used the genealogic dissimilarities derived
from positions and velocities. These dissimilarities have been mixed with a
parameter λ, ranging from 0 to 1. When λ is 0 all weight is given to velocity and
when λ is 1 all weight is given to position. In most cases, λ = 0.5 is used. We
denote the number of clusters provided to the algorithm by k. When evolution
in time is showed, we use the end shield, bud stage and 6-10 somites stages of
the zebrafish development (C. B. Kimmel et al., 1995).

The application of the algorithm to the wild type 141108aF (Fig. 5.5) has some
interesting aspects. The first and most important one is that clusters are per-
sistent. That is, from the moment that a cluster appears in the data set, it stays
until the end. This shows that this method is able to satisfy the criterion of
temporal persistence of the identified clusters.

An interesting point is that for a number of clusters equal to 2, the embryo is
segmented through its bilateral symmetry axis. This emergence is not imposed
by the method, but a natural emergence from the data. Furthermore, as the
number of clusters grows, their bounds roughly coincide with the visual con-
tours of the embryo. This shows that these groups respect to some extent the
morphology of the animal.

Another notable observation is the appearance of layers of cells in the latest
stages of development. This superposition of groups of cells is due to the use
of velocity for the generation of clusters and the relative drift of these groups.

The results of the algorithm depend on the persistence of cells inside the field



5.3. RESULTS 109

Figure 5.5: Coherence of patterns revealed by the clustering algorithm. Re-
sults of the application of the algorithm for the wild type 141108aF with a fixed
λ = 0.5. The result is represented by the 3D rendering of the embryo with dif-
ferent colors representing different clusters. The choice of colors has no special
signification, but is chosen in order to help the visualization of the evolution of
clusters with the change of parameters. Each row corresponds to the number
of clusters given as parameter to the algorithm, ranging from 2 to 7. In each
line we see the corresponding view from the animal pole and an orthoslice at
6h54 (End Shield), 9h31 (Bud Stage) and 12h10 (6-10 Somites) hpf (hours post
fertilization).
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of view, as shown by the comparison between the wild types 071226a, 140526aF
and 141108aF (Fig. 5.6). As it can be seen, the algorithm does not completely
eliminates the possibility of temporal segmentation. This is due to the partiality
of the data set and the flow of cells through the boundary of the field of view.
This limitation is not absolute, as 141108aF shows full time persistence of clus-
ters, even if there is some flow through the boundaries. However, we can see
similar patterns emerging at comparable moments of the development.

The comparison of results of the application of the algorithm between wild
types and oep mutants (Fig. 5.7), shows fairly similar patterns that have some
differences. The observation that the frontal part of the head of the wild type is
segmented in two symmetrical parts, while the oep’s has a central distinguished
region can correspond to the cyclopy of this specimen. However, we have no
sufficient evidence to prove this explanation.

Parameter exploration

An exploration on the parameters λ and k shows how much they change the re-
sulting patterns in Fig. 5.8 and Fig. 5.9. Going from the left to right, we increase
the importance that is given to position on the calculation of clusters. Com-
paring the first column with the last one, we see that clusters from last column
have more visible boundaries and are less spread through the embryo. This is
very important, since that means that our intuition about the measurements is
translated well into the clusters.

In the exploration for 120914aF (Fig. 5.9) we see that for λ = 0 and k = 2 the
algorithm does not identify bilateral symmetry. This shows that bilateral sym-
metry is a decurrence of the weight of position in the algorithm.
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Figure 5.6: Comparison of patterns on different wild types. Results of the ap-
plication of the algorithm with fixed λ = 0.5 and k = 6 to embryos 071226a
(left), 140523aF (middle) and 141108aF (right) at three different stages of em-
bryogenesis. All the embryos are represented from the animal pole in verti-
cal position. Different colors represent different clusters for each embryo. The
choice of colors is arbitrary and has no specific meaning. In both left and mid-
dle specimens we see the influence of the entrance and exit of cells from the
field of view for the algorithm, which breaks the temporal coherence of the cell
lineages and consequently the temporal robustness of the method.
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Figure 5.7: Comparison of patterns between wild type and oep. Compari-
son of the application of the algorithm for the wildtype 141108aF (left) the oep
120914aF (right) for λ = 0.25 and k = 7 at three different stages of embryogen-
esis. The application of the algorithm shows similar distributions of clusters in
both embryos, but with different characteristics corresponding to their different
natures.
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Figure 5.8: Parameter exploration for the wildtype 141108aF. This figure shows
the results of the clustering algorithm on the same embryo for various param-
eters. Each row corresponds to a number of clusters (varying from 2 to 7) and
each columns to a λ, the value that interpolates the weights of positions and ve-
locities. The importance of position grows from left to right. It can be seen that
the clusters on the right side of the table have the tendency to be less spread
through the embryo. This agrees with the intuition of the parameter giving
more importance to position than velocity.
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Figure 5.9: Parameter exploration for the wildtype 120914aF. This table shows
the results of the clustering algorithm on the same embryo for various parame-
ters. The parameters and disposition are the same as the ones used in Fig. 5.8.
The upper left image shows that bilateral symmetry is not always found when
k = 2.
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5.4 Discussion

The goal of the development of this algorithm was the transformation of sets of
measurements into a partition of the embryo in a way that is coherent with the
interpretation given to these measurements, possibly matching the morphology
of the animal. We discuss here our accomplishments and shortcomings.

In the cases where no temporal segmentation of the embryo was generated,
the results are remarkably positive. All clusters are visible, spatially localized
and evolve in time in way that is visually natural. Furthermore, we can see
coherent domains that reveal some morphological landmarks, most notably,
bilateral symmetry. Also, the way groups evolve with the change of weights
seem coherent with the interpretation given to these measures. In particular,
greater weights given to position is translated into more compact clusters.

Some results were partially negative. The temporal persistence of clusters de-
pends on the flux of cells through the boundary of the field of view, which may
cause the generation of ephemeral clusters. Ideally, having full data sets would
eliminate this problem as all the lineages would be completely connected and
every pair of cells would be comparable. However, we note that the tempo-
ral segmentation happens at a specific moment, before which the clusters are
persistent.

The algorithm in its present form can take into account an arbitrary number
of measurements. This is positive, as one can refine the set of clusters by pro-
gressively adding new measurements that seem relevant for the morphologic
process being studied. However, the way we combine these measurements is
arbitrary, which augments the space of uncertainties of the algorithm.

Finally, one of the features this algorithm offers is the possibility of augmented
observation. Using this method one can visualize multidimensional set of mea-
surements through their generated clusters, which are much easier to interpret.
This is already visible in the results, where one can observe layers of cells due
to the influence of velocity in the clustering. However, given the nature of ob-
servation, only the experience of systematically applying the method and veri-
fying the results will bring more examples of concrete applications of this idea
to light.

Research directions

There are several ways of expanding the study done in this chapter.

The first one is the experimentation with different species. As said before, the
use of the algorithm in embryos with different characteristics will show more
clearly the effects of the choices of measurement made here. For one part, the
embryogenesis of some animals like the sea urchin exhibits cellular divisions
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which are more proeminent than that of the zebrafish. Also, others animals like
the ascidian have fate maps that are more well known, making it possible to
perform better comparisons with the expected results. Furthermore, since the
zebrafish has a relatively large embryo, the task will be computationally less
demanding.

Another related next step is the use of different measurements as input. Of
great relevance are the values coming from gene expression markers. Given
the body of knowledge of the relation between the expression of certain genes
and the formation of embryos, these would offer good criteria for the quality of
the results.

Finally, we can create control groups for the application of the algorithm. This
can be done through the generation of data by some controlled model where
there are clearly distinct groups with known relevant parameters. The applica-
tion of the method to this data would offer a valuable reference on its limita-
tions.

The output of this algorithm is given in the form of groups that are homoge-
neous by some criterion. This property can be used for other studies, such
as methods that use the uniformity of groups for the definition of parameters.
For example, one may want to study a model of adhesion between cells whose
parameters of adhesion depend only on the morphogenetic fields each cell be-
longs to. Therefore, one may use the output of this algorithm as input for the
model.



Chapter 6

Estimating forces from trajectories

In this chapter we will explore some deterministic aspects of embryogenesis. A
system is deterministic when complete knowledge of the state of the system
fully determines its future states. Here, we study this component of the move-
ment of cells.

We use one of the simplest and oldest forms of describing movement, New-
tonian mechanics, as a reference (Goldstein, Jr., & Safko, 2001). Newtonian
mechanics puts forces at the origin of movement, relating them to a change of
velocity:

The sum of the forces applied to a body equals its mass times its
acceleration.

Furthermore, when bodies are interacting, the applied forces are not arbitrary:

When one body exerts a force on a second body, the second body
simultaneously exerts a force equal in magnitude and opposite in
direction on the first body.

This constraint is fundamental, as it allows us to integrate the local information
of cells into the whole embryo, by creating an interdependence between them.

Our goal in this chapter is not to create a model of forces between cells, but
rather to infer possible forces from the cells movement. More precisely, we aim
at finding the set of forces between cells that reproduce as well as possible the
cells’ trajectories. The problem can formulated as:

Given the constraint of Newton’s laws, what are the forces between
neighboring cells that match as well as possible the accelerations
calculated from the tracking data?

The mechanical interactions between cells happens through the contact of their
membranes. Currently, we have no means to extract precisely the cell mem-
branes from the microscope images, which is due to the resolution of the images
and the nature of the membranes of the cells of the zebrafish.

117
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Since there is no obvious way to a give default set of contacts for every cell,
we use instead the Delaunay tesselation (Delaunay, 1934) of the center of cells.
This method provides contacts that respect the proximity of cells. However,
this algorithm is adapted to convex sets of points, which is not the case for the
zebrafish embryo. A consequence of this is the production of long-distance
contacts between cells. We overcome this problem by removing contacts that
are farther away than a certain threshold, compatible with the typical distances
between cells.

The reader probably noted that we did not mention masses. Once more, this
is related to the absence of membranes, which would offer a way to estimate
the cells’ masses through their volumes. In this particular situation we prefer
to not use indirect methods like dual triangulations (Bott & Tu, 1982). This is
due to the fact that these methods tend to give unstable results and depend
very strongly on the set of contacts being used. For this reason, we use the
simplifying assumption that every cell has the same mass. It is important to
stress that this is a limitation related to the data, not to the method.

Finally, we do not expect to be able to find a perfect matching between forces
and accelerations. The first reason is that forces can be non-Newtonian in na-
ture, which is the case of dissipative forces and friction. The second reason
is that we ignore completely non-cellular elements, including the environment
and the elements that are beyond the boundary of the field of view. We will talk
more about these limitations in the discussion.

Controlling time and space scales

We aim at having results that are visually interpretable, since this is essential
for the interplay between physicists and biologists. Therefore, we must be able
to control the characteristic scales of forces in both time and space in order to
obtain results that are smooth in these dimensions. Since noisy inputs lead
to noisy outputs in general, we present the methods used to smooth out the
irregularities of accelerations and contacts.

Accelerations are notably difficult to calculate with good quality. Even small
fluctuations on a smooth curve are greatly amplified by the process of differen-
tiation. For this reason we use the robust differentiators described in Section
4.2, that are able to provide better results through the use of a larger number of
time steps. Afterwards, the obtained accelerations are homogenized in space,
in order to obtain more meaningful spatial patterns.

The Delaunay triangulation is very unstable with relation to changes in cell
positions. At two close time steps one can have very different triangulations,
which gives an extra factor of discontinuity for the estimation of forces. For
this reason we homogenize the cell contacts as described in Section 4.1. This
procedure provides a set of contacts coming from an interval of time around the
current time step, with each contact having a connexity factor. This connexity
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factor represents the proportion of time steps in the time interval where the
contact is present. Therefore, a high connexity factor represents a contact that
is persistent in time, while a low one represents a contact that is present only
eventually.

Since the quantity of contacts between cells is one of the largest contributors for
the running time of the algorithm, we remove those that have small connexity.
This allows the reduction of the computational requirements to the calculation,
while keeping the most important contributors to the interaction between cells.

Visualization and stress tensors

Forces between pairs can be visualized as lines between their positions in space,
whose color corresponds to the intensity of the force. While this may seem nat-
ural, our experience shows that the resulting images are typically very difficult
to interpret, due to the large number of cells. Furthermore, it is difficult to ma-
nipulate measurements defined over contacts, as they appear and disappear
more often than cells, in a less structured way.

In order to overcome this problem, we introduce the concept of a stress tensor
(Landau, Lifshitz, Kosevich, & Pitaevski, 1986). Stress tensors are the analogous
of forces between pairs of cells in the context of continuous mechanics. Instead
of providing directly the forces between the neighbors, it shows how forces are
applied at every direction around the point it is calculated. By integrating the
application of this tensor to a surface we obtain the total force applied on it.

For a given discretization of space, we can recover forces between pairs of cells
from the application of the tensor over the surfaces of contact. It is worth noting
that the cells themselvels are a natural discretization of space. By the use of this
process, we lose the continuous details of the stress tensor.

Stress tensors can be recovered from discrete forces between pairs of cells using
the method of coarse graining (Goldhirsch & Goldenberg, 2002). This method
uses a convolution in order to "spread" the values defined at the discrete points
into space. This generates continuous fields, whose evolution equation can be
derived from intercellular forces. However, by using this procedure, we lose
the precise information of the forces between each pair of cells.

The representation using stress tensors has three advantages:

• It is simple to homogenize temporally and spatially, giving greater control
of scales;
• Its visualization is less noisy and more intuitive. We can represent its sym-

metric part as an ellipsoid, whose main axes are the principal directions
of stress. This leads to visual alignments that are easier to grasp;
• Its representation is independent of the choice of cell contacts used for

the calculation of forces. That means that it is a possible intermediate
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representation for the comparison of calculations using different sets of
contacts.

Taking that into account, after the calculation of the stress tensor, it is homoge-
nized in time and space.
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6.1 Formulation

The equation connecting forces to accelerations, setting all masses to 1, can be
written as:

∑
j

Fij = ai

where Fij is the force applied by cell j over cell i.

We aim to find Fij that match as well as possible the calculated accelerations.
The solution for this problem is well defined in the language of linear algebra.
Here, we explain formally the intermediate steps that are necessary for the ap-
propriate estimation of forces.

Connexities

In order to obtain less noisy results we homogenize the cell contacts in time
(Section 4.1). This homogenization attributes to each contact a connexity value,
which is a real number between 0 and 1. By denoting the connexity between
cells i and j by cij , we introduce these connexities in the equation for forces by:

∑
j

cijFij = ai

which means that the effective force between two cells that is to be calculated
is cijFij . This corresponds to the attribution of greater weights to the forces
between contacts that are more consistent in time.

Linearization

We proceed to the transformation of the previous equation into a matrix for-
mula. For that, we take into account the third of Newton’s laws:

Fij = −Fij

and keep as variables only half of the forces. Let F be the vector of Fij for i > j

and A the vector of accelerations. We define the contact matrix N : C × C R7−→ C
by:
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Ni,jk =


cjk for i = j

−cjk for i = k

0 otherwise

This definition makes the equation equivalent to NF = A.

In the implementation, we must order pairs of indexes into a contiguous set of
numbers. We use an encoding similar to Cantor’s pairing function applied to
the lower diagonal:

(i, j)→ i(i− 1)

2
+ j

For the inverse, we define i =
⌊√

1+8n
2

⌋
in:

n→
(
i, n− i(i− 1)

2

)

Pseudosolution

The forces we are looking for should reproduce as close as possible the accelera-
tions, while staying as small as possible. This description matches well the solu-
tion given by the Moore-Penrose pseudoinverse (Penrose & Todd, 1955). For every
matrix M , its Moore-Penrose pseudoinverse M+ always exists, being uniquely
determined by the following properties:

• MM+M = M
• M+MM+ = M+

• (MM+)∗ = MM+

• (M+M)∗ = M+M

where M∗ is the transpose of M . For some special cases it is simple to calculate:

• If M is invertible then M+ = M−1

• If M∗M is invertible then M+ = (M∗M)−1M∗

• If MM∗ is invertible then M+ = M∗(MM∗)−1

From the properties:

• MM+ is the orthogonal projection onto the range of M
• M+M is the orthogonal projection onto the range of M∗

we can see this solution as a least-squares approximation for the system of equa-
tions, with the projection happening both in the domain and the codomain. The
solution given by the pseudoinverse is the one whose image is the closest to the
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vector provided, while being the one which has the smallest quadratic norm.
This means that the solution we are looking for can be written as

F = N+A

which can be transformed into forces by multiplication, contact by contact, with
connexities.

The explicit calculation of the pseudoinverse is not necessary, since the result
can be obtained using explicit least squares minimization. However, this for-
mulation is simpler to manipulate formally. As an example, it is useful to re-
duce the dimensions of the problem in order to lower the computational com-
plexity of the problem. Namely, the pseudo inverse has the following useful
property:

N+ = N∗(NN∗)+

which reduces the calculation of the pseudoinverse of a matrix of size |C|2 × |C|
to one of size |C| × |C|.
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6.2 Implementation

Here we describe some details of the algorithms implemented in the package
lineageflow-forces.

Least Squares Algorithm

The forces are calculated using a least squares approximation of the resulting
accelerations. This approximation is calculated using the algorithm SparseQR
from the Eigen library (Guennebaud, Jacob, & others, 2010). This choice come
from the test of multiple algorithms and the comparison with the explicit pseu-
dosolution in test cases with a small number of cells. Furthermore, the docu-
mentation of this algorithm states explicitly that it is optimized for least square
problems.

Complexity

The main source of computational cost in this problem is the size of the matrices
involved. In particular, the bottleneck of this algorithm is the size in RAM of the
contact matrix. For this reason, much care has to be taken when choosing which
neighbors to use. In particular, the most demanding step is the calculation of the
least squares solution, which has large memory requirements. The reduction of
the pseudoinverse dimension using the properties in the previous section is
useful for reducing these requirements.

The main quantity that controls the running time and RAM usage is the number
of cell contacts. Filtering these contacts by connexity allows the reduction of an
almost arbitrary quantity of contacts while retaining as much stability as possi-
ble. By filtering the contacts whose connexities are the smallest, we guarantee
to keep the most relevant terms in the least squares equation.

Stress Tensor

By defining σ to be the three dimensional stress tensor, the explicit formula for
its elements σαβ using forces between pairs of cells is (Goldhirsch & Golden-
berg, 2002):

σαβ(rk) =−
∑
i>j

Fijαrijβ

∫ 1

0

Nσ[rki + srij]ds

−
∑
i

∆viα(rk)∆viβ(rk)Nσ(rki)
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where:

• rk is the position of cell k;
• rij = ri − rj is the difference between the positions of cells i and j
• ∆vi(r) = vi − V (r) is the difference between the calculated velocity of a

cell and its Gaussian spatial homogenization, as defined in Section 4.1.

and Nσ is the normal distribution of a three-dimensional vector v with standard
deviation σ:

Nσ(v) =
1

σ3(2π)3/2
e−

|v|2

σ2

Since the integral term in this equation is very costly to calculate for every single
contact between cells, we stablish bounds for this term in order to find the most
relevant ones. The integral term can be approximated as:

∫ 1

0

Nσ(a+ tb)dt ≈
exp

(
− |a|

2

σ2 + (a·b)2
σ2|b|2

)
4
√

2πσ2|b|

[
erf
(
|b|
σ

+
a · b
σ|b|

)
− erf

(
a · b
σ|b|

)]
≤ 1

2
√

2πσ2|b|

So that by putting an upper bound in |b|we bound the smallest value this term
can have. By using the mean value theorem, we know that there is some 0 <
s < 1 for which:

∫ 1

0

Nσ(a+ tb)dt =
exp

(
− |a|

2

σ2 + (a·b)2
σ2|b|2

)
σ3(2π)3/2

exp

[
−
(
a · b
σ|b|

+ s
|b|
σ

)2
]

=
1

σ3(2π)3/2
exp

(
−|a|

2 + 2s(a · b) + s2|b|2

σ2

)
≤ 1

σ3(2π)3/2
exp

(
−(|a| − s|b|)2

σ2

)
This implies that with an upper bound in |b|, we may establish an upper bound
in |a|, which gives the smallest value this term can have. These two approxima-
tions together give the largest bounds for terms which have both low |a| and
|b|.

We can write the equation in matrix form as:

Σ = −Ψ(f ⊗ r)− Φ(∆v ⊗∆v)

where:
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• Σk is the stress tensor at the position of cell k;
• Ψij,k =

∫ 1

0
Nσ[rki + srij]ds;

• Φik = Nσ(rik).

Given the previous remarks, Ψij,k has the largest bounds for values that have
both small |rki| and |rij|. It means that a good approximation is to consider only
the terms for pairs of indices that are neighbors.

Types

We introduce here the main types for the estimation of forces at a given time
step. Introducing the synonyms:

type DArray i j a = Array (Dep i j) a
type DS2 i j = S2 (Dep i j)

we have the following types for the set of contacts, which is identified by an
identity map:

DArray Time (DS2 Time Cell) (DS2 Time Cell)

accelerations in the temporal-view:

DArray Time Vector

forces as vectors for every contact:

DArray Time (DS2 Time Cell) Vector

and stress tensors in the temporal-view:

DArray Time Tensor

Resources

As a reference, the requirements for the results calculated in the following sec-
tion are approximately:

• RAM: 8GB;
• Time: 14h on a Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz.
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6.3 Results

We present here the results obtained by the application of the force estimation
method to the zebrafish embryo 141108aF. This data set has around:

• 340 time steps;
• between 5000 and 8000 cells per time step;
• 100000 cells globally.

The voxel size is 1.38µm and the time steps are spaced by 2min33sec. Space
units are represented in voxel size and time in time steps. This is due to the
fact that for the conversion to metric units we would need precise values for
masses, which we do not have at the moment.

Scalars, vector and tensor norms are represented with a color code using a gra-
dient on the sequence blue, green, yellow and red, which is represented in each
image. Scalars over contacts are represented as lines between pairs of cells, col-
ored by the value of the scalar. Vector are represented as lines outcoming from
the position of the cell, in the direction of the vector and colored by its norm.
The symmetric part of tensors is represented as ellipsoids whose eigenvectors
are used as axis, colored by the norm of the matrix. The asymmetric part of ten-
sors is represented as the vector that corresponds to the antisymmetric matrix.

Accelerations

We calculate accelerations using:

• a Lanczos derivative of order 2, using a filter size of 20 time steps;
• a Gaussian spatial homogenization of size 20 voxels.

both procedures are described in Chapter 4. These values have been chosen by
trial and error, in order to obtain time and space scales that are appropriate for
visual interpretation. The results are shown in Fig. 6.1.

Contacts and Connexities

The cell contacts are calculated using a Delaunay triangulation on the set of cell
centers. From this we obtain around 50000 contacts per time step.

We proceed by removing all the cell contacts whose lengths are larger than 15
voxels. This results in around 40000 contacts per time step.

We proceed to the homogenization of the contacts, using a flat homogenization
of scalars, with a filter size of 10 time steps. This procedure gives a measure
of temporal connexity for each contact and increases the number of contacts
to around 100000 per time step. We recall that the increase of the quantity of
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Figure 6.1: Accelerations calculated with Lanczos derivative. The filter size
and homogenization radius are chosen in order to obtain adequate scales for
visual interpretation.

contacts is due to the collection of all contacts in a window of time around each
time step.

Finally, we remove all the contacts whose temporal connexity is smaller than
0.6. This reduces the quantity of contacts to around 20000 per time step. The
connexity threshold has been chosen in order to make possible the estimation
of forces given the computational constraints. These connexities are shown in
Fig. 6.2. As it can be seen, there are no clear patterns and the result is noisy.
This is not surprising given the nature of the cell center identification and the
inherent instability of the Delaunay triangulation.

Forces

We calculate the forces using the method described previously, using the accel-
eration and connexities exposed in the previous sections. The representation of
the norms of forces are shown in Fig. 6.3. While the results seem more ordered
than the connexities, no clear spatial patterns are visible. However, we are able
to see that the global intensity of forces is variable in time.

We explore further the change of the global intensity of forces through the dis-
tribution of the their norms in Fig. 6.4. As it can be seen, the distribution is not
stationary and change very significantly also in shape with time. The global
intensity of forces decreases in the last time steps, which is compatible with the
stabilization of the positions of cells.



6.3. RESULTS 129

Figure 6.2: Connexities of the filtered set of contacts. The filtered set of con-
tacts contain only those whose connexity is larger than 60%. No clear patterns
are found in these results.

Figure 6.3: Norm of forces calculated using the proposed method. While some
patterns are identifiable, they are short lived and hard to interpret. However,
one can see that the global intensity of forces change in time.
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Figure 6.4: Distribution of the norm of estimated forces. The distributions
change very significantly in time, both in intensity and shape. The global dis-
tribution is more concentrated in the lower intensities in the last time steps.

Stress Tensor

The stress tensors are calculated using the method cited previously (Goldhirsch
& Goldenberg, 2002). The radius used for the spatial coarse graining is 20 vox-
els. Furthermore, a flat temporal homogenization with size 10 and a Gaussian
spatial homogenization of size 20 is applied. These parameters have been cho-
sen by visual inspection.

The symmetric part of these stress tensors is shown in Fig. 6.5. Due to the
homogenization, we are able to see color patterns and tensor alignments that
are interpretable. We recall that red represents regions with high stress, while
blue represent low intensities. We are able to identify:

• The large red region with vertically aligned tensors in the first time steps,
denoting the upward movement of cells towards the head;
• The red region of horizontally aligned cells in the following time steps,

converging towards the location of the spine;
• The two red regions in the later time steps, coinciding with the formation

of the two eyes;
• The stabilization of stresses in the last time steps, coinciding with the sta-

bilization of shapes.

The distribution of pressures derived from the trace of the stress tensor is pre-
sented in Fig. 6.6. It is interesting to note that the time evolution shows multi-
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Figure 6.5: Homogenized stress tensors. Here we see the emergence of patterns
both in intensities and the alignment of tensors. We are able to identify the
movement towards the head, the formation of the spine and the formation of
the eyes.

ple simultaneous peaks in the distribution. This can be interpreted as different
regions which have stresses which are homogeneous locally but different be-
tween these regions.

We decompose the stress tensors in two parts, a symmetric and an antisymmet-
ric one. The symmetric part corresponds to the one that preserves the angular
momentum, while the antisymmetric part transforms it. The asymmetry of the
stress tensor is often linked to anomalies in the material and diverges from the
classical formulation of continuum mechanics (Willam & Iordache, 2001). We
present the vectors corresponding to these antisymmetric tensors in Fig. 6.7.
The most notable feature of this component is that it has a norm that is an or-
der of magnitude smaller than the symmetric part, which means that the stress
tensor are almost symmetric.

We present the statistical distribution of these quantities now. We start with the
norm of the symmetric part of the stress tensor in Fig. 6.8. It is interesting to
note that these norms have a very similar distribution to that of the pressure,
with similar values and peaks. In opposition, the antisymmetric part of the
tensor (Fig. 6.9) has values that are an order of magnitude smaller, and with
a different profile, with single peaks and which is more uniform in time than
pressures.



132 CHAPTER 6. ESTIMATING FORCES FROM TRAJECTORIES

Figure 6.6: Pressures derived from stress tensors. The distribution of pressures
shows simultaneous peaks in different locations at some time steps. This shows
the local nature of the interaction between cells.

Figure 6.7: Antisymmetric part of homogenized stress tensors. This compo-
nent is responsible for the transformation of angular momentum. As it can be
seen, it is less intense than the symmetric part and no spatial patterns can be
identified.
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Figure 6.8: Norm of the symmetric part of the stress tensor. The distribution of
this quantity is very similar to the one of pressures, both in intensity and shape.

Figure 6.9: Norm of the antisymmetric part of the stress tensor. The values of
this component is an order of magnitude smaller than the symmetric part. It
differs also in the profile of the distribution, having a single peak at each time
step.
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6.4 Discussion

We start by noting that the movement of cells is not the only relevant compo-
nent for the morphogenesis of the embryo. In the presence of cell division and
the change in shape of cells, the importance of forces depends very strongly on
the species being studied. As an example, while the zebrafish development is
very rich in cell displacement, the development of the sea urchin is dominated
by cellular divisions.

That being said, forces provide a good conceptual bridge between physicists
and biologists. Since it is a common concept that is easy to understand and
interpret, the mutual feedback about the models is simpler. This was shown in
the results, where the alignment of tensors and color patterns were simple to
interpret with some knowledge of the morphology of the zebrafish.

These alignments and patterns are remarkable, as they show the coherence of
the calculated tensors with the morphogenetic processes happening during the
development of the embryo. This is especially important in a method that is
composed of such a large pipeline of transformations, each one capable of com-
promising the results. We attribute this success to the judicious homogenization
of measurements.

Those tensors shed light on processes that are not completely obvious. As an
example, the formation of the eyes is visible as large region, with strong in-
tensity and horizontally align tensors. While the visual distinction of tissues
is perhaps not surprising, the intensity and alignment of these forces are not
evident and clarify the nature of a morphologically relevant process.

This leads to the question of the correctness of these forces. As discussed before,
the model we use here is very restrictive and ignores many possible contribu-
tions to the dynamics of cells. However, it is difficult to access the precision
of the method, since it is impractical to measure forces in the embryo globally.
On the other hand, many experimental methods for the local measurement of
forces exist (Polacheck & Chen, 2016). Therefore, one can theoretically validate
these stresses using the locally measured forces as reference points. However,
in order to do so one confronts the problem of combining the microscopy meth-
ods being used with these particular techniques, which can be a problem.

Directions of research

A first possible direction of research is the prediction of trajectories through
stresses. Using the estimated stresses, one may simulate the movement of cells
and compare the results with the actual trajectories. Also, this is another test
that can be used for the verification of the correctness of forces.

By assuming some degree of correctness of these stresses, one may study them
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directly. Since the algorithm produces large quantities of data, this offers good
statistics. This can be done through the study of its material properties, like
elasticity, or the creation of models, which can then be fitted to the data.

This model goes in a different direction of many others, which consider forces
to be purely frictional. One can verify the compatibility of both assumptions
through the use of the calculated stresses. From the application of Cauchy’s
equation (Landau et al., 1986) one can derive the local forces, which can be
compared directly to the velocities calculated from trajectories.

An important characteristic of this method is its extensibility by more precise
models. Finer-grained assumptions about the nature of the cell interactions can
lead to parametric models that are more meaningful and whose results are more
informative. This parametric model would change the shape of the terms in the
least squares equation, but the general procedure is still valid.

One of the shortcomings of this method is the lack of intuition on its limita-
tions. This can be overcome with the study of its application to systems whose
dynamics is explicit. In particular, the application to systems where there is dis-
sipation of energy and friction can give important insights on this matter. This
method can also be applied to better understand the effect of the partiality of
the data set on the results.

The knowledge of the real cell contacts can improve the results. This would re-
move one of the arbitrary choices of the method, where many parameters have
to be given, namely the Delaunay tesselations, averagings and thresholds. Also,
that would give the means of comparing both results through the stress tensors
in order to evaluate the dependency of the results on the choice of contacts.

Finally, one can use these contacts for the recalculation of forces. Since we can
see well defined patterns on stresses, due to the homogenization procedures,
we ought to see them in forces too. This can be done through the application
of the stress tensor to the interfaces between cells, which can be calculated as
dual meshes from the cell contacts. We expect these calculated forces to be as
well behaved as stresses, and allow the patterns to be seen in view of the direct
interaction between cells.
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Chapter 7

Cell trajectory deviations

In opposition to determinism there is stochasticity. A process is stochastic when
the knowledge of the state of the system does not determine its future, this
behavior being modeled by a random process. This opposition comes also in
form of complementarity. The idea is that a process can be decomposed into
two components: one deterministic and one stochastic. In the context of this
decomposition, the deterministic component represents the main tendance and
the stochastic one fluctuations around this tendance.

In this chapter, we study the stochastic component of the movement of cells.
This is done through the study of the relative position of pairs of cell, that is,
their difference in position.

It is known (Cadart, Zlotek-Zlotkiewicz, Berre, Piel, & Matthews, 2014) that
immediately after mitosis the just divided cells are rounder and less attached to
its neighbors than regular cells. We expect to be able to identify this difference
in attachment by analysing the statistics of relative positions. For this purpose,
we will study three different groups of cells:

• pairs of cells that are within a certain distance to each other, which will be
called neighbors;
• pairs of cells after division, which will be called sisters;
• pairs composed of one cell after division and another cell within a certain

distance of the first one, which will be called divided neighbors.

The reference distance between neighbors is chosen in order to have a similar
size to typical distances between sisters.

We now discuss some conditions under which the study of relative positions
can lead to the stochastic component of the cells’ movement. For this goal, we
decompose the factors that contribute to the movement of cells into:

• external: environmental constraints and forces between cells;
• internal: autonomous self-directed dynamics;

137
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• fluctuations: divergences from the main tendance of external and internal
factors.

and make assumptions about these factors:

• External forces and constraints are continuous in space. It means that
cells that are close to each experience similar environmental effects. This
assumption is reasonable given the coherent movement of morphogenetic
fields;
• The self-directed forces that lead to autonomous movement are statisti-

cally negligeable. It means that taking away the external factors, we keep
only the fluctuations around the main tendances. This assumption is rea-
sonable since the number of cells which are autonomous is much smaller
than the global number of cells;
• The additivity of these different factors. It means that the manipulation of

the different factors can be done algebraically.

Since two neighboring cells share similar external factors and their autonomy
is to be ignored, we expect their relative movement to be determined by fluctu-
ations. Thus, we claim that:

If two cells are close to each other at a given moment in time, then
the dynamics of their relative position at short times is stochastic.

We limit ourselves to claim at short times since the closeness between cells is
eventually broken due to displacement. However, we also study the long time
evolution of the relative position, as it also offers insights on the dynamics of
neighbors.

Measurements to be studied

We divide the study of the relative position of cells in two parts, one focusing
on its short time dynamics and another focusing on its long time dynamics.

For the study of short time dynamics we will focus on the statistics of relative
positions. We analyse the statistical distribution of relative increments, that is,
the changes in relative positions for each of the tree groups of cells.

For the study of long time dynamics we will focus on resuming statistics of the
relative positions and increments. Since the increase of distance between cells
has the tendance of increasing the difference between their environments, we
expect extra drift effects.

We analyse the following measurements:

• Mean squared relative displacement, whose behavior gives indications on the
nature of the stochastic process and on how cells drift away from each
other in time. The interpretation of this measurement is done through the
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comparison with Brownian motion, whose mean squared displacement is
linear in time.
• Relative increment autocorrelation, which quantifies the relation between

relative increments at different moments in time. For example, positive
correlations between two different points in time shows that the displace-
ments tend to go to the same direction, while negative correlations shows
that they tend to go to opposite directions.

Both measurements compare different moments in time and are presented in
initial and averaged form:

• The initial form compares all the different time steps with the initial point
in time;
• The averaged form averages all the comparisons over intervals of time of

the same size. This can lead to better statistics and give indications about
the stationarity of the process.
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7.1 Formulation

We collect here the definition of statistical terms and measurements that have
been studied. All these are adapted for discrete and finite time sets.

Definition of statistical terms

Let V be a R-vector space whose inner product is represented by ·.

The average of a function X : C → V , denoted by EC [X] : V is defined by:

EC [X] =
1

|C|
∑
c:C

X(c)

The covariance of two functions X, Y : C → V , denoted by CC [X, Y ] : R is
defined by:

CC [X, Y ] = EC [(X − EC [X]) · (Y − EC [Y ])]

The autocovariance of a function X :
∑

t:T C → V , denoted by AX : T × T → R
is defined by:

AX(s, t) = CCt+s∩Ct [X(t+ s), X(t)]

Relative Position

For a given cell i, we denote by Xi(t) ∈ R3 its position at the moment t ∈ T . We
define the relative position of two cells i and j by

Xij(t) = Xi(t)−Xj(t)

This quantity is well defined for all t in the time interval Iij = Ii ∩ Ij .

Relative Displacement

We recall that times with an apostrophe are relative times (Section 2.2), which
measure the time elapsed from the moment of appearance of the cell in the data
set. We define the relative displacement by

Dij(s
′, t′) = Xij(t

′ + s′)−Xij(t
′)
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This quantity is well defined for pairs of cells in the set Cs′t′ = Ct′+s′ ∩ Ct′ . The
initial relative displacement is

D0
ij(s

′) = Dij(s
′, 0′)

and the averaged relative displacement is

D̃ij(s
′) = EI′ij [Dij(s

′)]

Relative Increment

We define the relative increment or relative velocity between two cells i and j to
be:

Vij(t
′) = Dij(t

′ + 1)−Dij(t
′)

The initial autocovariance of these increments is

γ0
ij(s

′) = AVij(s
′, 0′)

and the averaged autocovariance of these increments is

γ̃ij(s
′) = EI′ij

[
AVij(s

′)
]

Mean squared relative displacement

The initial mean squared relative displacement is defined by

δ0(s′) = ECs′
[
|D0

ij(s
′)|2
]

and the time averaged mean squared relative displacement is

δ̃(s′) = ECs′
[
|D̃ij(s

′)|2
]
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Relative increment autocorrelation

The normalized initial relative increment autocorrelation is defined by:

γ0(s′) =
ECs′

[
γ0
ij(s

′)
]

EC0′

[
γ0
ij(0

′)
]

and the normalized averaged relative increment autocorrelation is

γ̃(s′) =
ECs′ [γ̃ij(s

′)]

EC0′
[γ̃ij(0′)]
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7.2 Implementation

Measurements

The use of higher-order functions greatly simplify the presentation of measure-
ments. Both the mean square deviation and velocity autocorrelation are in-
stances of the same functions:

shiftWith :: (a -> a -> Scalar) -> Array t a -> Array t Scalar
shiftWith0 :: (a -> a -> Scalar) -> Array t a -> Array t Scalar

msd = shiftWith (\v1 v2 -> square (v1 - v2))
auto = shiftWith (\v1 v2 -> v1 !.! v2)

where square denotes the squared norm and !.! denotes the inner prod-
uct. The two versions of shiftWith correspond to different implementations
corresponding to the averaged and initial (suffixed by 0) versions.

Computational complexity

Any cell at any time step is susceptible to be taken as a reference for the calcu-
lation of deviations between neighbors. However, we always take these cells at
the first time step of their appearance on the data set. This choice maximizes
the time steps contributing to statistics and reduces redundant calculations.

The computational complexity of the calculation depends mostly on the num-
ber of reference cells and radius of calculation. In practice:

• Every pair of sisters is used since they are few and statistics is more scarce;
• For every cell that just divided, we take all the neighbors in a given radius;
• In the case of neighbors in general, for a given proportion of all cells, we

take all the neighbors in a given radius. This restriction of the number of
cells reduces the running time. Experimentation shows that the statistics
found using all cells or just a proportion of them do not differ substan-
tially.

Types

For each pair of cells, there is a sequence of vectors representing their relative
position. This is represented by the type:

DSumMap (Cell,Cell) Time Vector

It is important to note that since the subset of the domain is not identified in the
type system, the type is the same for all the groups of pairs. This representation
of relative positions is equivalent to the cellular point of view of the data set.
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Since the alignment of trajectories for statistics is given with relation to relative
times, the transposed type is:

DSumMap (Dep (Cell,Cell) Time) (Cell,Cell) Vector

We note that this is different from the alignment with relation to absolute time,
which would give:

DSumMap Time (Cell,Cell) Vector
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Figure 7.1: Distribution of relative increments: sisters. Distribution of the co-
ordinate x of relative increments over time for pairs of sister cells of the embryo
141108aF.

7.3 Results

We present here the results of the calculations applied to the embryo 141108aF.
This data set has approximately:

• 340 time steps;
• between 5000 and 8000 cells per time step;
• 100000 cells globally.

Around 10% of the cells in the data set divide. This means that we have around
10000 pairs of sisters cells, which implies around 20000 cells generated after
division.

The typical distance between sisters after division is around 10 voxels, or 15
µm. Inside a sphere with a radius of this size, there are around 10 cells.

Distribution of relative increments

We plot the distributions of relative increments for sisters (Fig. 7.1), neighbors
of divided cells (Fig. 7.2) and neighbors of cells in general (Fig. 7.3) respectively.
This plotting is done using the coordinate x of the displacement vector, but the
result is not substantially different for other coordinates.

These distributions are not visually distinct. In order to obtain better criteria for
their distinction, we compare the distributions using the Kolmogorov-Smirnov
test (Kolmogorov, 1933). This test compares two distributions using a p-value
(Marsaglia, Tsang, & Wang, 2003) and returns if they are compatible. This is a
binary test, whose answer is always "yes" or "no".
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Figure 7.2: Distribution of relative increments: divided neighbors. Distri-
bution of the coordinate x of relative increments over time for neighbors of
divided cells of the embryo 141108aF.

Figure 7.3: Distribution of relative increments: neighbors. Distribution of
the coordinate x of relative increments over time for neighboring cells of the
embryo 141108aF.
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Figure 7.4: Evolution of the norm of the average of relative increments on
the embryo 141108aF. The evolution is shown for pairs of sisters, neighbors of
divided cells and neighbors in general.

We apply this test to each pair of distributions at each time step. For a p-value
of 0.1, we can observe that:

• the distributions of sisters cells and neighbors of divided cells are undis-
tinguishable for almost all time steps;
• the distributions of sisters and neighbors of divided cells are both distin-

guishable from neighbors in general, for times smaller than 35 minutes.

These results corroborate the idea that a divided cell is attached differently to
its environment. Intuitively, since the environment is less relevant for a divided
cell, it does not matter if we study its deviation relatively to its sister or a regular
cell. However, it is important to note that the statistical difference between
distributions disappears very fast.

Properties and non-Gaussianity of the distribution

We study now the typical sizes of relative increments. As shown in the previ-
ous section, the distribution of relative increments is centered around zero. We
quantify this property using the norm of the average of relative increments, that
is shown in Fig. 7.4. While the evolution in time of this quantitity is different
for different groups of pairs, the values are an order of magnitude smaller than
the size of typical relative increments, which shows that all averages are very
close to the null vector.
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Figure 7.5: Evolution of the average of the norm of relative increments on
the embryo 141108aF. The evolution is shown for pairs of sisters, neighbors of
divided cells and neighbors in general.

The average size of relative displacements is show in Fig. 7.5. We can see that
this size is slightly higher in the first time steps and decrease to a stable value
in all cases. There is no significant difference between the size of relative dis-
placements between the three groups.

We aim to identify the distribution of these increments. The first natural test
is to compare this distribution with a Gaussian one whose mean and stan-
dard deviation parameters have been calculated from the sample data. The
Kolmogorov-Smirnov test is able to distinguish the two distributions both for
p = 0.05 and p = 0.1. This is expected since the distribution of relative incre-
ments is discrete due to the sampling of voxels in the microscope images.

In order to overcome this problem, we sample the Gaussian distribution accord-
ingly. Given a real random variable X , we define the integer sampled distribution
X̂ by the probability distribution:

P (X̂ = n) = P

(
−1

2
≤ X − n < 1

2

)
We compare the empirical distribution of relative increments with the integer
sampled Gaussian whose mean and standard deviation parameters have been
calculated from the sample data. However, the Kolmogorov-Smirnov test is
still able to distinguish the two distributions for both p = 0.05 and p = 0.1. A
similar test has been done for the binomial distribution, with negative results.
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Figure 7.6: Evolution of the mean squared relative displacement of pairs
of cells in initial form, first 25 minutes. This mean is calculated over pairs
of sisters, neighbors of divided cells and neighbors in general in the embryo
141108aF.

In order to obtain different characteristics from a Gaussian while retaining sym-
metry, we tested q-Gaussian distributions (Tsallis, 2009). The main parameter
of this family of distributions is determined by the excess kurtosis of the data.
The calculation of the empirical excess kurtosis oscillates in time around zero,
from negative to positive. Since the signal of this parameter determines the
interpretation given to the distribution, we consider this test negative.

Mean squared relative displacement

We present now the evolution in time of the mean squared relative displace-
ment for each group of cells. We divide this in three parts, up to 10, 50 and 100
time steps, which correspond to about 25 minutes, 2 hours and 4 hours. All the
curves are presented in initial and averaged forms, as defined in the previous
sections.

In the curve in initial form up to 25 minutes (Fig. 7.6 and Fig. 7.7) we see a
slightly concave behavior. The averaged curve is more straight, meaning that
this concave behavior is particular to the first time steps only. Furthermore, the
displacements are sightly larger in the initial form, which corresponds to the
larger sizes of relative increments in the first time steps.

The curves up to 2 hours (Fig. 7.8 and Fig. 7.9) are globally straight in both
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Figure 7.7: Evolution of the mean squared relative displacement of pairs of
cells in averaged form, first 25 minutes. This mean is calculated over pairs
of sisters, neighbors of divided cells and neighbors in general in the embryo
141108aF.

initial and averaged cases. As commented before, this behavior is similar to
that of a Brownian motion, and is an indicator of uncorrelated increments. Dis-
placements in both cases have a similar magniture, which shows once more the
particularity of the first time steps. Finally, the curves which include divided
cells grow slightly faster than the curve for neighbors in general.

The curves up to 4 hours (Fig. 7.10 and Fig. 7.11) have slightly convex behavior
at the end. An interpretation of this observation is that as cells separate from
each other, we start to see effects of drift due to differences of global flow. It is
remarkable that the global linear behavior is observed up to 3h, which shows
a very low rate of divergence between neighboring cells in general. The initial
and averaged curves are similar in this case due to the lack of extra statistics for
large intervals of time.

Autocorrelation of relative increments

We present here the calculated autocorrelation of relative increments, in both
initial and averaged forms (Fig. 7.12, Fig. 7.13 and Fig. 7.14). First, there is al-
most no difference between the calculations in initial and averaged forms. This
is an evidence to the stationarity of the process. We stress that this stationarity
is related to the fluctuations of relative positions, and not to the whole process
of embryogenesis.
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Figure 7.8: Evolution of the mean squared relative displacement of pairs of
cells in initial form, first 2 hours. This mean is calculated over pairs of sisters,
neighbors of divided cells and neighbors in general in the embryo 141108aF.

Figure 7.9: Evolution of the mean squared relative displacement of pairs
of cells in averaged form, first 2 hours. This mean is calculated over pairs
of sisters, neighbors of divided cells and neighbors in general in the embryo
141108aF.
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Figure 7.10: Evolution of the mean squared relative displacement of pairs of
cells in initial form, first 4 hours. This mean is calculated over pairs of sisters,
neighbors of divided cells and neighbors in general in the embryo 141108aF.

Figure 7.11: Evolution of the mean squared relative displacement of pairs
of cells in averaged form, first 4 hours. This mean is calculated over pairs
of sisters, neighbors of divided cells and neighbors in general in the embryo
141108aF.
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Figure 7.12: Autocorrelation of the relative increments between sisters. This
autocorrelation is presented in initial and averaged form over the embryo
141108aF.

Furthermore, the curves are very similar between the three groups of cells. In
all cases, we see a low negative correlation at the first time step, and very low
positive one at second time step. Given the strong similarity of these curves and
the slight difference on the previous ones, we posit that the identified difference
between pairs which contains sisters and others is caused by a difference in the
distribution of increments, and not by a difference in the nature of the process.

Nature of the process

These combined results show that this process is not very different from Brow-
nian motion. However, some differences are important:

• While small, the correlations at time steps 1 and 2 are present in the statis-
tics for all types of pairs, in both initial and averaged form. The fact that
this behavior is visible even in the presence of averaging shows that it is
probably not just statistical noise;
• The distribution of increments is not Gaussian, as discussed previously;
• The intensity of the process is not constant in time, even if the variations

are small, as shown in the figure Fig. 7.5.
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Figure 7.13: Autocorrelation of the relative increments between divided
neighbors. This autocorrelation is presented in initial and averaged form over
the embryo 141108aF.

Figure 7.14: Autocorrelation of the relative increments between neighbors in
general. This autocorrelation is presented in initial and averaged form over the
embryo 141108aF.
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7.4 Discussion

The numerical results give some insights about the behavior of neighboring
cells both at short and long time intervals. There are differences in the short
time dynamics of the relative displacement between pairs of cells that contain
just divided ones and those which do not contain. We have some statistical
evidence for this distinction and a suitable biological explication, the rounding
of cells after division. However, since we are not able to distinguish these dis-
tributions after 35 minutes this may mean that this difference is not important
globally for the morphogenesis of the animal.

These statistical differences could also be a valuable asset for the identification
of cell divisions from the tracking. For this reason, one would need a more
precise description of the distribution of relative increments. A possible way of
obtaining better results is through the study of data sets with increased spatial
and temporal resolutions in some particular region of the embryo. This would
reduce the bias introduced by voxel sampling in the distribution and give a
finer temporal information, at the cost of a smaller number of cells to study.

At long time intervals, there are no visible drift effects before 3h of elapsed time.
This means that, in general, neighbors stay fairly close to each other, or at least
close enough to be in an area that has a constant drift. While it is expected for
cells to tend to stay close to their neighbors for the formation of morphogenetic
fields, one may question if this behavior is a bias introduced by the tracking
algorithm. This question can only be answered by the use of a data set that has
been manually corrected to contain no tracking errors.

Finally, we have evidences of the stationarity of the process of deviation be-
tween neighboring cells. However, it is important to remark that this stationar-
ity is linked to relative times, and does not imply a stationarity with relation to
absolute times. The statistics for relative times involve a mixture of many dif-
ferent moments in time, since cells appear and disappear from the data set very
often. This mixture and the consequent delocalization in time of the statistics is
a possible reason for the observed stationarity.

Directions of research

As commented before, we can differentiate the behavior of three groups of cells
at short time ranges, but cannot differentiate them at long time ranges. This
means that a model of the long time dynamics of embryogenesis may make no
distinction between these types of groups. In particular, such a model can treat
cells after division just like regular cells. This assumption can be broken how-
ever in phases of embryogenesis where there are massive waves of simultane-
ous divisions. In this case, cells immediately after division are not exceptional
anymore, which is important since small anomalous behaviors in embryogene-
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sis can have permanent effects on the dynamics of the embryo.

The study performed here used an alignment of trajectories following their rel-
ative times, since we were interested in the behavior of cells after division.
However, this choice makes the study of fluctuations delocalized in time. A
similar study using absolute times would shed light on the temporal dynamics
of noise, at the cost of having statistics that are irregularly distributed on time.
An example of characteristic accessible through this study is the stationarity of
deviations.

A natural model for the distribution of relative increments is a sum of two ran-
dom processes, each one corresponding to a cell of the pair. By attributing
a fixed distribution for each kind of cell, after division of not, one can esti-
mate the most appropriate distributions for these types of cells. This estimation
is simpler by the use of the assumption that both processes are independent,
which permits the explicit calculation of the optimal distribution. However,
since neighboring cells interact with each other, a more accurate model would
consider the presence of correlations between these distributions. These cor-
relations can also be a reason for the non-Gaussianity of the distributions of
relative increments, since even the sum of two correlated Gaussians is not nec-
essarily a Gaussian. A simplifying assumption that can be used in this case is
that the distribution attached to each cell is Gaussian, leaving only its parame-
ters and the correlation to be calculated from the data. The obtention of these
results is very valuable for the modeling of trajectories.

The fact that autocorrelation of relative increments is very small has other con-
sequences as well. Using the assumption of thermodynamical equilibrium, the
term arising from the fluctuation-dissipation theorem (Kubo, 1966) is probably
negligeable. This means that the deterministic and stochastic components of the
system can be, in this case, completely disentangled and studied in separation.



Chapter 8

Conclusion

We divide this conclusion in three parts. We start by summarizing the main
results of this thesis and discuss some global aspects of the project. We pro-
ceed by proposing future research directions based on the results and methods
developed in this thesis. Finally, we conclude with some final remarks.
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8.1 Main results

We divide the results in three parts: mathematical formalism, biological and
physical results, and computational system.

Mathematical formalism

We began this thesis with the definition of a temporal lineage and its two possible
points of view: the temporal one, which observes the temporal evolution of
the set of cells composing the embryo, and the cellular one, which observes the
points in time in which each cell is present. These points of view are isomorphic
through the transformation (time, cell)→ (cell, time):

∑
t:T

Ct ∼=
∑
c:C

Tc

which allows one to change the representation of data when one is more conve-
nient than the other. For example, the calculation of the spatial homogenization
of a measurement is more convenient in the temporal point of view, while the
calculation of its derivative is more convenient in the cellular point of view.

The possibility of representing observables over the embryo as functions, whose
domain is formally defined, is a central point of this thesis. This representation
is essential to approach this subject with the methodology of fundamental sci-
ences like physics. In the same way as is done in these sciences, one does not
need to manipulate these mathematical objects only formally: one can also ma-
nipulate them intuitively, using the conceptual semantics that is given to them.

In the following, we gave a categorical interpretation to temporal lineages that
integrates into them the relations between cells and time steps that come from
times and lineages. Under this interpretation, we proved the coherence be-
tween the two points of view with relation to the restriction of temporal lin-
eages to time intervals and sublineages. These proofs give formal guarantees
on the correctness of simple manipulations that are performed often.

We completed this formalism by the definition of an algebraic structure for tra-
jectories, which allows a convenient and useful method of concatenation and
intersection of trajectories.

These results provide a good mathematical foundation for the study of embryo-
genesis, as shown by the theoretical and computational applications. However,
many possible extensions are possible.
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Biological and physical results

The results obtained in this thesis are very diverse in their content, but they
have in common the fact that they can be interpreted as observations. This is due
to the fact that the hypothesis used through this thesis aimed to integrate the
single cells into the whole embryo, not to offer conditions for prediction.

The first result we presented was the use of measurements over temporal lin-
eages for the generation of clusters of cells having characteristics compatible
with what biologists expect for a morphogenetic field, like temporal and ge-
nealogic persistance. The main goal of the creation of this algorithm was to
produce a tool for the active search of local observables that are important for
the determination of the embryo’s morphogenetic fields. Using it, one can pro-
gressively enrich the set of measurements that generate the clusters and assess
their relevance and compatibility with the morphology of the animal, therefore
choosing measurements based on the results and their interpretation.

While we call this algorithm an inference, instead of a prediction, there are sim-
ilarities. In the same way we use differential equations for the prediction of the
next time step of a system in the future, this algorithm can be seen as predicting
the next step in an organizational level. However, unlike in the case of differ-
ential equations, this next step belongs to a completely diverse space, which is
not governed by the same rules. Since this space, composed of morphogenetic
fields, does not behave in the same way as cells, we are unable to continue using
the same technique.

The estimation of intercellular forces goes in the opposite direction. Instead of
searching for larger structures, we look for finer dynamical details, which ulti-
mately determine the processes underlying the data that we analyse. The use of
simplifying hypotheses, like the Newtonian one, allow us to access these details
by using an heuristic equivalent to a numerical interpretation of Occam’s razor:
find the minimal set of forces that reproduce the data. Heuristics like this one
are not absolute, but are very common in physics, like in the principle of least
action.

The results we obtained are compatible with our intuition of the process of the
formation of the embryo. We are able to see localized regions with high stresses
when there is a convergence of cells to these regions, and the global stabilization
of stresses when morphogenetic movements become less intense. Even if these
results are only visible on stress tensors, we expect that forces contain the same
information, statistically, since stresses are calculated from them.

The complementary strategy takes us to the stochastic behavior of cells, since
they compose the aspects of the dynamics of cells that are completely inaccessi-
ble from the scale of organization of the data. The approach that we use for the
modelling of these behaviors is through random processes. Intuitively, the de-
viations from normal trajectories arise from activities internal to the cell, which
can be completely intracellular or be related to the cell surface and its interac-
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tion with the cell environment.

The study of the deviations between neighboring cells gave results that match
very closely a Brownian motion, except for two points. The first one are tempo-
ral correlations, which seem to be too small to have an important interference
on the global morphogenesis of the embryo. The second is the non-Gaussianity
of the process, which we interpret from the point of view that the deviation
between cells is produced from a sum of noises for each cell. As commented
above, there are interactions between cells happening at microscopic levels.
Therefore, a possible reason for the non-Gaussianity of process is this interac-
tion, which introduces correlations between the individual noises and deforms
the distribution of relative displacements.

Under the interpretation of these results as observations, we obtained a view
of embryonic morphogenesis from many different angles. We have been able
to access, within our limitations, the underlying components of movement, de-
terministic and stochastic. The independent study of these quantities was only
possible due to an extensive homogenization of accelerations and the explo-
ration of the local continuity of displacement fields. In addition to this cellular
scale, we managed to obtain some details of the dynamics of larger scales of the
embryo implied by the dynamics of cells themselves.

These results give a large body of quantitative observations. This is consid-
ered valuable in the field of developmental biology, that has been for a long
time mainly relying on the visual observation and verbal description of mor-
phogenetic events. Our quantitative results open the way to the measurement
of differences between individuals whether normal or mutants or submitted to
drug treatments. They are also expected to be the basis of theoretical models re-
constructing morphogenetic processes underlying embryogenesis. If these are
carefully considered, in the context of the assumptions that generated them,
many possible directions of research are possible. We propose some of them in
Section 8.1.

Computational system

Another outcome of this thesis is lineageflow, which is an extensible, user-
friendly system for the manipulation of measurements over the embryo. It is
architectured as a series of formally defined interfaces, which intermediate the
relation between users, algorithms and measurements. These interfaces allow
the establishment of an ecosystem of reusable parts, which connect themselves
in order to produce more sophisticated results.

Since all the results presented in this thesis have been produced with this sys-
tem, they are highly reproducible. Furthermore, since these results can be pro-
duced from a graphical interface, they are also reproducible by non-specialists.
After some basic training, an user should be able to produce the results ob-
tained in this thesis, including graphs and 3D visualizations, in around two
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days. This estimation comes from a personal use of the system for this thesis,
and the average running times of algorithms.

Given the fact that algorithms are going to be used by people that are not nec-
essarily familiar with their implementation, one must take extra care. The ex-
pected dynamics between peers is that the developer explains the general ideas
behind the method to the user, and how the results are to be interpreted. With
these informations, the user runs algorithms on its own data and interprets it.
Therefore, it is of utmost importance that the implementation of algorithms fol-
lows the semantics given by them. This has been covered to some degree on the
implementation of the library that composes the computational core of the sys-
tem. This library implements the primitive types and operations that are proper
to this domain through the use of denotations, that represent these operations
as mathematical transformations.

The possibility of having 3D visualizations and statistical plots is also essential
in this context, as they are the means we use for the interpretation of data. In
this way we can put the data on the hands of the people that can make the best
use of the results, and not necessarily on the hand of those capable of producing
them.

We see many possibilities for the expansion of this system, which we comment
in the next section.
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8.2 Future Directions

We propose here directions of research that involve either the interaction be-
tween the independent studies developed in this thesis or partially unexplored
subjects. Each subsection explores a particular interaction.

Clustering and forces

There are two main applications for the interaction of the clustering algorithm
with the estimation of stresses. One is the generation of clusters taking into ac-
count the value of the calculated stress tensors. This is a promising approach,
since we can already see well defined patterns on the 3D visualization of stress
tensors, which would then be summarized in time by the clustering algorithm.
Attention has to be made on the notion of distance that is to be used between
tensors, as different distances have different semantic contents. The use of this
algorithm with stresses presupposes that morphogenetic fields have homoge-
neous stresses locally, while having a different interaction with morphogenetic
fields, which lead to the next possibility.

The supposition of local homogeneity of stresses can lead to parametric mod-
els which assume a constant value in certain regions of the embryo. Therefore
parameters can be estimated from a set of clusters, obtained through the algo-
rithm, and the stress tensors calculated from the data. Such a model can offer
more precise information about the nature of stresses, the material properties
of the embryo tissues, etc.

Both applications can also interact. We can execute this process iteratively, by
feeding the estimated stresses to the clustering algorithm and repeating the pro-
cedure. Ideally, this process converges eventually, giving a set of stresses that
are homogeneous by definition and also by inference. This can be considered as
a direct fitting of the model to the data, which only uses the estimation process
as the starting point.

Clustering and noises

The analysis of noises performed in this thesis is focused on relative times and
the appearance of cells in the data set, which makes the statistics delocalized
in both time and space. While we already proposed an extension of the study
for absolute time, the analysis of the spatial distribution of noise is more com-
plicated, as the set of cells which is to be used for a statistical analysis is not
evident to choose.

The clustering algorithm can be a solution for this problem, as it creates groups
of cells that are consistently localized in space, and which are composed al-
ways by the same cells or cells in the same lineage, making the generation of
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statistics easier. Therefore, through the 3D plotting of the resuming statistics
over these clusters one can identify the possible correlation between space and
fluctuations.

The inverse procedure can also be executed although with some precautions.
In order to compare two cells, one must generate a comparable measurement
for cells at each time step. Increments are not appropriate for this goal as the
particular values they take are not as important as their distribution. We can
overcome this problem by generating a local distribution of increments, by con-
sidering all the values of the increment in an interval of time around a given
time step. From this point, one can compare the distributions using, for ex-
ample, Kolmogorov-Smirnov statistics, which measure the difference between
these distributions. The exclusive use of this statistics, with no mention to posi-
tion can be especially interesting, as one can verify an unbiased distribution of
noises around the embryo.

Forces and noises

Forces and noises complement each other in the composition the dynamics of
cells, through its deterministic and stochastic parts. This is particularly true
in a setting of thermodynamical equilibrium, where the term arising from the
fluctuation-dissipation theorem is not relevant, due to the lack of correlation of
noise. Therefore, one can proceed to the simulation of the movement of cell
using the calculated stresses and increment distributions. The result can be
directly compared with the actual trajectories, which offer yet another method
of verification of the precision of these estimated values.

One of the possible origins for the trajectory fluctuations is the internal activity
of the cell, which is regulated by genetic expression. Since it is known that me-
chanical stresses are capable of changing the expression of some genes, we may
ask if this has any effect over the fluctuations. This question is also interesting
from the mechanical point of view, as higher rates of compression may lead to
less possibilities of movement, or fluctuations of a different nature.

There are multiple possibilities for this analysis. One is collecting the average
intensity of stress and the variance of fluctuations for each cell, and plotting
this in a scatter graph. The principal directions of this graph may provide indi-
cations on an interaction between these measurements. Another possibility for
this study is done through the interaction of the three algorithms.

Clustering, forces and noises

The aforementioned relation between stresses and fluctuations can be accessed
through clustering. Indeed, the clustering algorithm can generate groups of
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cells which have homogeneous stresses or pressures, without imposing a partic-
ular spatial distribution. Therefore, for each group we will have typical stresses
and a distribution of increments. These quantities can be correlated visually,
since the number of clusters is much smaller than the total number of cells.

Multiple embryos and independence

The manipulations we presented in this thesis were always limited to a single
embryo. The fact of introducing multiple embryos to models introduces new
complexities and difficulties, but can lead to rich statistics and new paths of
research. More specifically, the analysis of cohorts of specimens is required to
assess the variability in a population. Our ability to quantify this variability
is also the path to quantify differences between individuals corresponding to
different genetic and environmental conditions. These are major issues in de-
velopmental biology We sketch some possible strategies in the following.

Microscopy imaging of embryos produces results that can be very different.
Even when comparing two specimens of the same species, same genotype and
in similar environments, the obtained results will not be exactly the same, as
there is always some degree of biological variability, which is amplified when
looking at the embryo as a large set of individual cells. These differences are
ever larger when imaging the zebrafish, due to its size, as one must also define
the field of view, which can change from one embryo to the other with the
movements of the embryo during its development.

An important development when dealing with these variabilities is their quan-
tification. That is, the definition of a methodology that compares embryos based
on their observable characteristics. In the context of this thesis, this ought to
be done through the comparison of measurements on temporal lineages. Sup-
posing a temporal alignment of embryos, a possibility is to do this through the
measurement of the Hausdorff or Gromov-Hausdorff distance (Gromov, 2007)
between the images of these measurements.

Statistically, we can consider the images coming from different embryos as
independent, since embryos are imaged separately. Supposing that the corre-
sponding images are produced in conditions that are similar enough, they can
be considered as different samplings of a same image valued distribution. The
application of tracking algorithms, or any other method that consists only in
the mathematical transformation of objects, does not change this judgement.
These considerations give us effectively a set of independent and identically
distributed (i.i.d.) random variables, which can be explored statistically.

Of particular interest are the artificial morphogenetic fields produced by the
clustering algorithm. Given similar embryos, the algorithm is expected to pro-
duce similar clusters. A large enough cohort of comparable embryos would
allow to undertand the impact of biological variability in the outputs of the
clustering algorithm. This would lead to a clearer interpretation of its results
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and in particular of the relations of these clusters with the morphology of the
animal.

Morphogenetic fields and exchangeability

As noted before, morphogenetic fields are composed by cells that behave sim-
ilarly and converge to a common destiny. Given their similarity, one can inter-
pret these cells as a sampling of a distribution of behaviors that correspond to the
given morphogenetic field. While we cannot say that the cells are independent,
given the constraints given by the morphology of the field, we hypothesize that
we can still can consider them as exchangeable. This statement allows us to take
advantage of the De Finetti-Hewitt-Savage theorem (Shiryaev, 1995).

We reproduce this theorem here. Let {Xn} be an exchangeable sequence of
random variables with values in X , that is:

X1, ...Xn
∼= Xπ(1)..Xπ(n)

for any permutation π, where ∼= represents the equality of distributions. Then
there is a probability measure µ of the set of probability measures P (X ) such
that:

P (X1 ∈ A, ..., Xn ∈ An) =

∫
Q(A1)...Q(An)µ(dQ)

where both µ and Q can be calculated from the empirical distribution of values.
We can summarize it by saying that an exchangeable set of variables can be
represented as a mixture of i.i.d probability distributions.

The clustering algorithm presented here generates groups of cells that are uni-
form based on the criteria of positions and velocities, which are purely kine-
matic measurements. That is, we can interpret them as artificial morphogenetic
fields for these quantities. Furthermore, the relative increments of trajectories
and estimated stresses are directly related to dynamics. Therefore, we can posit
that the distributions of these measurements are exchangeable and prone to be
studied via the De Finetti-Hewitt-Savage theorem, which greatly simplifies the
search for statistical models. A large cohort of similar embryos is likely to pro-
vide better statistics for this estimation.

In addition, this theorem being a two-way bridge, the exchangeability hypoth-
esis can be statistically tested with a large enough cohort of similar embryos.
Through the application of the clustering algorithm we can obtain a cohort of
identified morphogenetic fields, which we suppose to be identified in some
way that enables the matching of fields in different embryos. Using this data
we can:
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• find the best i.i.d. probability distribution for each morphogenetic field in
each embryo;
• find the best mixture model for each cohort of a given morphogenetic

field.

Therefore, we can compare the distribution of i.i.d. laws with the mixture
model, and the convergence of both with the growing size of the cohort can
be seen as a test of exchangeability.

Collaboration system

During this thesis we created lineageflow, which serves as a collaboration
system between biologists, mathematicians, physicists and computer scientists.
Much of its development is independent of the study of embryogenesis, de-
pending only on certain ingredients that we put in evidence here.

We consider the backbone of this method to be the declarative interface for
algorithms in the form

algorithm :: Parameter -> Input -> Output

which allows them to form an actual ecosystem of reusable parts. This declara-
tive interface is only possible since we can define inputs and outputs to be com-
posed of measurements, which have a standard access method in the database,
allowing the automation and uniformization of the user interface. On its turn,
the declaration of measurements is only done properly due its mathematical
representation. This representation is what allows the algorithms to be fed the
proper kinds of data, and have its outputs used properly.

Therefore, we propose that through a precise mathematical representation of
objects of study, one can extend this approach to other domains. Ideally, one can
also represent simultaneously multiple domains through this prism, allowing
them to constitute a larger sharing community.

We discuss this proposition through the question on how one can integrate sys-
tems belonging to different domains. We start by noting that some of the un-
certainties of the model used here can be traced back to the interaction between
domains. While the declarations of domain and codomain of a measurement
are unambiguous, there is no predetermined way of declaring specimens, track-
ings or even the identifiers of measurements, which leads to ambiguities. Un-
der the point of view we are using here, this can be interpreted as a lack of
formal representation of these objects.

In order to eliminate these ambiguities, one would need a way to declare the
nature of data at each one of the steps it goes through, in a coherent way. One
can interpret this problem as the determination of an interdisciplinar type system
for scientific computing.
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A possibility which comes from this metaphor, is to integrate different domains
symbolically. In Haskell notation, the object that can describe both embryos
and trackings would be

data Object = Embryo | Tracking

that is, we define objects on the integration of domains as being either objects
of one domain or objects of the other. This can be appropriate as long as the
objects are conceptually independent. But, for example, it would be incorrect
to determine that:

data Object = Animal | Vertebrate

since there are intersections between these concepts. Our hypothesis and propo-
sition is that the correct object can be obtained through a colimit (Barr & Wells,
2005), which is a generalization of a sum, in the correct conceptual category.

Finally, for every conceptual object there must be a concrete one which is com-
posed by data, that can be explored and manipulated. Therefore, we propose
that one must also define a category of structured data objects, that can be given
a desired semantical denotation and manipulated as conceptual ones. These
two ingredients would allow one to create an integrative, multidisciplinary sys-
tem of both practical and theoretical usage.

This problem is evidently very complicated, and can only be progressively clar-
ified by the application of similar ideas to different domains.
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Figure 8.1: Transdisciplinary feedback loop. We represent her the interaction
between theory and experience, through its intermediary steps: mathematical
formulation and computational implementation.

8.3 Concluding remarks

We conclude by revisiting our main thesis, presented in the introduction:

The goals of performing integrative studies of multilevel complex
systems and theoretical studies through mathematical representa-
tions are not incompatible, and can provide a synergetic relation be-
tween all involved scientists.

The chapters of thesis covered both theoretical and practical aspects of the ma-
nipulation of spatio-temporal lineages, passing through a mathematical formal-
ism, a computational ecosystem and physically inspired, biologically relevant
applications. Most importantly, this was done in a way that makes these do-
mains complementary to each other, by linking theory to experience.

Biology and physics provide semantics to mathematical objects that, otherwise,
can only be manipulated formally. Denotations give mathematical semantics
to computational objects that, otherwise, can only be manipulated in arbitrary
manners. Together, these interactions allow theories to have a stronger influ-
ence over practice.

Conversely, using these semantics, one can transform mathematical manipula-
tions into computational ones, producing results that can be interpreted under
the light of biology and physics. This closes the ring, with practical outcomes
providing empirical feedback to theory. This allows a continuous improvement
of the interaction between biology, physics, mathematics and computer science.
We represent this ring in Fig. 8.1.

Due to the possibility of the iterative enhancement of the method, this approach
is very flexible. It allowed the exploration of embryogenesis from multiple an-
gles, deterministic, stochastic and emergent, in a coherent manner. Also, it
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opens the way for a rich variety of new studies, as demonstrated in the pre-
vious section.

However, this approach is confronted to challenges in a multiscale setting, where
the emergence of higher scales of organization and the indirect observation of
lower ones is of utmost interest. This is particularly evident in the emergence of
artificial morphogenetic fields, where we produce objects of a different nature.
For this reason, an expansion of the scope of the method is necessary, in order
to encompass different objects of study. Such an expansion would require a co-
hesive effort from diverse groups of scientists, involved in both theoretical and
experimental studies.

As shown in this thesis, the formal representation of objects is compatible with
the integrative study of complex systems, and a powerful asset for sharing and
collaborating. Furthermore, as discussed in the previous section, this method
is independent of its substract, being applicable to different subjects, which al-
lows the same interdisciplinary feedback loop to be applied. Therefore, it is
hoped that the results exposed here encourage other scientists to make this ap-
proach more widespread and a possible organizational and collaborative prin-
ciple for transdisciplinary science.
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