TMS (The Minerals, Metals & Materials Society),

THREE-DIMENSIONAL PHASE-FIELD SIMULATIONS OF
EUTECTIC SOLIDIFICATION AND COMPARISON TO IN
SITU EXPERIMENTAL OBSERVATIONS

Andrea Parisi!, Mathis Plapp!, Silveére Akamatsu?, Sabine Bottin-Rousseau?, Mikaél
Perrut?, and Gabriel Faivre?

! Laboratoire de Physique de la Matiere Condensée, CNRS UMR 7643,
Ecole Polytechnique, 91128 Palaiseau, France
2 Institut des Nanosciences de Paris, CNRS UMR 7588, Université Pierre-et-Marie-Curie,
Campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France

Keywords: Phase-field simulation, solidification, eutectic alloys, morphological stability

The phase-field method has become the method of choice for simulating microstructure
formation during solidification. Recent progress, both on the formulation of the model
and on the numerical implementation, makes it now possible to simulate quantitatively the
evolution of complex microstructures in three dimensions. This is illustrated by simulations
of eutectic coupled growth. The morphological stability of lamellar patterns is investigated,
and the results are compared to experimental data obtained by in situ observations of the
transparent alloy carbontetrabromide-hexachloroethane. When the lamellar spacing exceeds
a critical value, a zigzag instability occurs. The further evolution of the system leads to
stable zigzag structures or lamella breakup, depending on the parameters.

Introduction

Recent years have seen rapid progress in the technique of phase-field modeling. While for a
long time the simulations could only yield qualitative answers to questions of microstructure
selection and morphological stability of solidification patterns, an ever increasing number of
situations can be modeled quantitatively. The dendritic solidification of a pure substance
has been simulated both at high and low undercoolings using the symmetric model of so-
lidification [1, 2]. More recently, alloy solidification has been treated in free and directional
growth using the one-sided model, both for single-phase and two-phase solidification [3, 4].
Models including fluid flow [5] or simultaneous heat and solute diffusion [6] have also been
developed.

The maximum benefit of this progress can be reaped by a critical comparison of simula-
tions and experiments. On the one hand, the capability of the model to reproduce experi-
mental observations constitutes a validation of the hypotheses and simplifications inherent
to any mathematical model. On the other hand, the simulations can yield insights into the
physical mechanisms involved that are very difficult to extract from experiments.

This is illustrated here by experiments and simulations of eutectic solidification. When
alloys with overall composition close to the eutectic composition are solidified, two-phase
composite microstructures typically arise, with a lamellar or fibrous microstructure. Since
the seminal work of Jackson and Hunt [7] it is known that there exist families of steady-
state solutions for lamellae and rods, parametrized by the spacing between microstructural
units. While Jackson and Hunt postulated that the state corresponding to a minimum front
undercooling should be selected, subsequent work, both experimental [8] and numerical [9],



has shown that in thin samples (quasi-two-dimensional geometry) a whole range of spacings
is stable. Thus, the final spacing depends on the initial conditions and the growth history.
The range of stable spacings is limited on both sides by dynamic instabilities. For low
spacings, a long-wavelength lamella elimination instability occurs; for large spacings, various
short-wavelength oscillatory instabilities appear.

Here, we show that in massive samples (full three-dimensional geometry), the first in-
stability to occur for large spacings is a zigzag instability, absent in two dimensions. This
instability is observed both in experiments and simulations, albeit with a somewhat different
critical spacing. The simulations allow us to identify all possible instabilities, to clarify their
connection with the well-known two-dimensional instabilities, and to map out the complete
stability diagram in the spacing-composition plane.

The remainder of the paper is organized as follows: first, the experimental setup is
described, and the main experimental results are presented. Next, the phase-field model and
simulation setup are briefly described. Finally, some simulation results will be described and
related to the experimental findings.

Experimental Method

The experiments consisted in real-time observations of directional-solidification fronts of a
transparent non-faceted eutectic in thin and massive samples. The transparent alloy is
introduced in a glass crucible, placed in an external unidirectional gradient G, and pulled at
a constant rate V' through the gradient. The growth front is observed in situ with an optical
microscope. We used a nearly eutectic CBry-CyClg alloy. This alloy has a eutectic plateau
at 84.4°C bordered by two solid solutions « and [ of cubic (f.c.c and b.c.c., respectively)
crystal structures, both growing from the melt in a fully non-faceted way. The relevant
material constants of this alloy are known, in particular, the interlamellar spacing A, for
which the front undercooling is minimum [7]. Near the eutectic composition, Ay, &~ 14.2um
at V = lpms~' [10]. It is known that A, scales as V12 [7], and that all morphological
transitions occur at critical spacings which are proportional to Ay, [9]. Therefore, in the
following, all lamellar spacings A will be expressed in dimensionless form as A = A/ Ayin.
We used either 12 pm-thick (“thin”) or about 400 pm-thick (“thick”) parallelepiped-
shaped glass crucibles. To avoid perturbations due to eutectic grain boundaries and surface
tension anisotropy, we grow weakly anisotropic single eutectic grains containing several hun-
dreds of lamella pairs. In thin samples, the lamellae are forced to remain perpendicular to
the sample plane by the wall effects (no flux condition), but can rotate about the normal
to this plane. The dynamics of the system is thus essentially two-dimensional. The front is
reduced to a mere line, and can be observed in side view with a conventional optical micro-
scope. The evolution of the shape of the front can be followed in real time with an accuracy
of about 0.1um. This configuration has been used extensively for years, which permitted an
accurate quantitative determination of the 2D morphology diagram of CBrs-CyClg [8, 9, 10].
In bulk samples, eutectic lamellae are not aligned normal to the sample walls — at least
not instantaneously — contrary to what occurs in thin samples. It is thus necessary to
observe the growth front from the top through the liquid. Frontal (parallel to the growth
axis) observation is excluded since it would deliver superposed images of the front itself and
the underlying two-phase microstructure. We have built a new instrument [11], in which
this problem is solved as follows. We observe the growth front in oblique view through a
wall of the crucible. The direction of lighting is also oblique, but different from the direction
of observation. The contrast between o and (3 originates from the difference of refraction
angle of the light beams emerging from different phases (Fig. 1). By using a long-distance
microscope (Questar QM100), and judiciously choosing the directions of observation and



Figure 1: Sketch of the method of observation in thick samples. z is the axis of the thermal
gradient . The sample is pulled in the —z direction. y is normal to the glass wall of the
crucible, through which the observation is made. LDM: long-distance microscope. LLS:
linear light source. Rays 1 and 2 run through a 8 and a « lamella, respectively. The
reduction of the image in the y direction due to the oblique direction of observation is
corrected numerically.

lighting, one can make one of the phases appear bright, the other dark in the micrographs.
The spatial resolution of this method is of the order of 1 um, and the depth of field is of
about 200 pm.

Experimental Results

We have performed long (>2h) solidification runs in a series of 350 pm-thick samples of
CBry-C,Clg for various values of V' in the range 0.1-1 yms™'. Each run began by a short
(=~ 5 min) initial transient corresponding to the emergence of coupled growth by an invasion
process [12]. This process occurs very rapidly so that its details are not directly observable by
our methods. Both the average spacing and the arrangement of the pattern at the end of the
invasion varied from sample to sample. Some samples exhibited a highly disordered pattern
characterized by a multitude of small lamellar domains separated by regions containing
a high density of topological defects (Fig. 2a). No preferred orientation of the lamellae
was visible, except near the sides of the sample, where the lamellae were normal to the
crucible wall. Such patterns remain disordered until the end of the experiment. In the other
samples, the initial pattern exhibited a preferential orientation of the lamellae normal to the
glass plates, and most of the topological defects present are progressively eliminated during
further solidification (Fig. 2b). The few lamella terminations which survived in the final
steady state are probably produced by perturbations such as grain boundaries or a lateral
bias in the thermal field.

In a few samples, the final stationary pattern exhibited an in-phase sinusoidal deforma-
tion of the lamellae (Fig. 2¢) [11]. Such “zigzag” patterns — and the corresponding zigzag
bifurcation — are well known in other pattern-forming dynamical systems such as Rayleigh-
Bénard convection [13]. In our case, the appearance of zigzag patterns in some experiments
was clearly correlated with the fact that the scaled average spacing A was larger in those
than in the other experiments. This indicates that the lamellar pattern undergoes a zigzag
bifurcation above some critical spacing A,,. We measured the values of the amplitude A
of the zigzags as a function of A (i.e. of V and \) and found the bifurcation threshold at
A.. ~ 0.85.
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Figure 2: a) Disordered growth pattern 10 min after the onset of solidification at V' =
1 pms™. b) Steady symmetrical pattern (with a few lamella terminations) and c) steady
zigzag patterns (arrows: line defect) after 2 h of solidification at V = 0.5 pms™!. Bars: 100

.

Phase Field Model and Simulation Setup

The phase-field model used here is based on the multi-phase-field approach [14]: the liquid
L and the two solid phases o and 3 are described by three phase fields p;,, p, and ps which
represent their local volume fractions. We use the model developed in Ref. [4] which has been
extensively tested and calibrated in two dimensions against boundary integral simulations.
The time evolution of the phase fields is given by

T = — 1
Do =l (1)

where p’denotes the set of phase fields {pa, pg, pr}, 7(D) is a relaxation time, F is a free energy
functional that depends on the values of the phase fields, their gradients, the temperature,
and the composition ¢, and §F /dp; denotes the functional derivative, which has to be taken
subject to the constraint that the sum of all phase fields remains equal to one. The alloy
composition ¢ satisfies a conservation law,
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with the current given by
J=—-MP)Vu+ Jar, (3)

where g is the chemical potential, M (p) is a mobility which is taken to be zero in the solids
in the one-sided model, and Jar is the so-called antitrapping current which counteracts
spurious solute trapping caused by the use of thick diffuse interfaces [3, 4].

All the details about the construction of the free energy functional F and the antitrapping
current are given in Ref. [4]. An important point is that the model can accommodate arbi-
trary phase diagrams. Simulations were carried out for two alloy systems: a generic eutectic



Figure 3: Illustration of the simulation geometry. Left: initial configuration. Growth is
along z, lamellae are oriented along y. Right: an instability develops. The positions of the
triple lines x;(y) are used to obtain its growth rate.

alloy with a completely symmetric phase diagram, and CBry-CyClg. As in the experiments,
the temperature gradient was along z, and we started from straight lamellae aligned with
the y direction, with no-flux boundary conditions at the ends. This corresponds to a regular
initial state as depicted in Fig. 2b. The stability of lamellar arrays was investigated using
simulations with a single lamella pair contained in a box with periodic or no-flux boundary
conditions on the lateral sides; in the growth direction, the diffusion field was calculated on a
hierarchy of several grids of different mesh size in order to fully resolve the solute boundary
layer in a reasonable calculation time. The initial condition was a steady-state lamellar so-
lution computed previously, supplemented by small random fluctuations of the phase-fields
and the composition which trigger the instability.

Simulation Results

The straight lamellae can become unstable with respect to several different modes which
break some of the multiple elements of symmetry contained in the unperturbed pattern,
as shown in Fig. 4. There is a discrete translational symmetry along z and two planes
of symmetry located at the centers of the two types of lamellae. When both symmetry
planes survive, the pattern is still periodic with the same wavelength A\ as the basic pattern;
therefore, this instability will be referred to as 1-\. In contrast, when one out of the two
planes survives, the resulting pattern is periodic with a wavelength equal to twice A; this
instability will be called 2-A. Finally, the instability which leads to a loss of both symmetry
planes is known as the zigzag instability. By appropriately choosing the boundary conditions
of the simulation box and following the triple line motion, the growth rates w of these various
instabilities can be extracted. For w > 0, an instability is active, whereas for w < 0, the
perturbation decays and the system is stable.

A large number of such runs was carried out in order to determine the stability thresh-
olds for different alloy compositions. The results for CBry-CyClg are shown in the stability
diagram, Fig. 5 (the results for the symmetric model alloy are qualitatively similar), and can
be summarized as follows:

e Each of the instabilities described above is active for A larger than some critical value
which depends on the type of the instability and on the alloy composition.

e The first instability to occur is always (for all compositions and alloy systems investi-
gated) the zigzag instability.
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Figure 4: Various possible instabilities of straight lamellae.
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Figure 5: Stability diagram for CBrs-C5Clg in the spacing-composition plane. The indicated
modes are stable below the lines, and unstable above. A.;, is the Jackson-Hunt minimum
undercooling spacing, and cg, c¢g and ¢, are the compositions of the liquid and the two solids
at the eutectic temperature.

e The zigzag instability is a long-wavelength diffusive instability, that is, the growth
rate scales as w = —D, (A\)E? for k — 0, where k is the wave number along y (along
the direction of the lamellae), and D, is a so-called phase-diffusion coefficient which
changes sign at the critical spacing. As a consequence, the wavelength along y of the
fastest growing mode strongly depends on .

e The other modes are finite-wavelength modes, that is, they occur with a well-defined
wavelength along y that is almost independent of A and comparable to A. It can be
shown that these modes are the three-dimensional extensions of the well-known oscil-
latory modes in two dimensions. Indeed, for k sufficiently small, w becomes complex,
which corresponds to oscillatory growth or decay.

e For small A\, the same lamella elimination instability as in two dimension occurs; no
new instability was observed.

e The largest range of stable spacings occurs at the eutectic composition, as in two
dimensions; however, the largest stable spacing is only about 1.2 A,;,, whereas it is
more than twice A, in two dimensions. This value seems to be quite robust: the
simulations for the symmetric model alloy yield almost the same result.

The evolution of unstable lamellae beyond the linear instability regime was investigated
by simulations in extended systems containing several lamellae pairs. Figure 6 shows such



Figure 6: Evolution in extended systems. Left column: A/A,;, = 1.3. The final zigzag
structure is stable. Right column: A/Ay;, = 1.6. A labyrinth structure emerges, which
continues to evolve on a very slow time scale until the end of the simulation.

simulations carried out for the symmetric model alloy at the eutectic composition, where
the volume fractions of the two solid phases are equal. For A closely above the instability
threshold, a coherent zigzag pattern develops and saturates at a finite oscillation amplitude.
For M far from the threshold, several instabilities are active simultaneously, and the evolution
of different lamellae is decoupled. Numerous pinching and reconnection events take place,
and a labyrinth pattern develops which becomes more regular by the elimination of defects,
but on a very slow time scale. Simulation times were not sufficient to reach a steady state.

Discussion

Clearly, the simulations are capable of reproducing the different patterns observed in the
experiments, as can be seen by comparing Figs. 2 and 6. Both in simulations and experiments,
lamellar patterns were found to destabilize and to form zigzag structures above a critical
dimensionless spacing A... The simulations show that the instabilities known from thin
samples are still present, but are preceded by the zigzag instability for all alloy systems and
compositions investigated.

The critical spacings A,, determined from experiments and simulations slightly differ.
This difference in too large to be attributed to uncertainties in the experimental control
parameters or to numerical errors and must therefore be due to assumptions made in the
model. T'wo possible causes are readily identified. First, for reasons of numerical efficiency
detailed in Ref. [4], we have used in the simulations a somewhat smaller solid-solid surface
tension than in the real alloy, which leads to different contact angles. Second, we have not
included in the model any anisotropies of the surface tensions. In particular, anisotropy of



the solid-solid interfaces might play an important role in the stability of straight lamellar
patterns. These issues will be clarified by future simulations.

The behavior of the disordered labyrinth patterns is complex and remains to be studied
in detail, both in simulations and experiments. In the experiments, no patch of lamellae was
ever observed to exhibit a spacing larger than A = 1.1. In the simulations, the reconnection
and rearrangement of lamellae tends to reduce the large initial spacing toward a value closer
to A = 1. This shows that, in three dimensions, there are many different mechanisms for
spacing adjustment which need to be clarified.

This work was supported by Centre National d’Etudes Spatiales, France.
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