Supervisory authorities



Home > Scientific teams > solid state chemistry > Functional nano-objects

Nanoparticules de TiO2 pour la photocatalyse

by Anne-Marie - published on , updated on

Participants :
Thierry Gacoin*, Jean Pierre Boilot

Transparent Mesoporous Nanocomposite Films for Self-Cleaning Applications
Adv. Funct. Mater. 2007, 17, 549–554

ABSTRACT : A versatile approach is studied for the elaboration of TiO2 based photocatalytic coatings for self-cleaning applications on transparent substrates. The basic principle of the synthesis relies on the use of preformed TiO2 colloidal particles that are further dispersed within a transparent silica binder with a mesoporous structure. Film porosity in the nanometer range is controlled by achieving the sol–gel silica condensation around self-organized micellar assemblies of a templating copolymer surfactant. The latter also acts as a stabilizer for the TiO2 particles, thus preserving their high dispersion within the film so that excellent optical properties are maintained even for high TiO2loading (up to 50 %). Studies of photodegradation kinetics show that such mesoporous films are at least 15 times more active than films synthesized with a usual microporous silica binder. Moreover, the measured quantum-yield efficiency (1.1%) is found to be among the highest reported up to now. Improved photoactivity of the films is discussed as resulting from the closer proximity between the organic molecules and the surface of the TiO2 crystallites as well as the improved diffusion rate of water and oxygen through the interconnected pore network.

Transmission electron microscopy image of a porous silica film obtained with a Copo/Si value of 0.01, showing (a) a textured arrangement of pores (cross-sectional view) of the colloidal TiO2 particules deposited on a thin carbon grib (b) and (c) a TiO2 mesoporous silica film obtained with Ti/(Ti+Si)= 0.2 (cross-sectional view)